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A Algorithm

Algorithm 1 Parameter-Efficient Group with Orthogonal Regularization
Require: training data Dtr, pre-trained vision transformer F (·; θ) with B blocks, clas-

sification head H(·;ψ), group of LoRA modules g(·;ϕ), balancing coefficient α,
iteration T

1: Initialization: Inject g(·;ϕ) into F (·; θ) to get the pre-trained model with group
of LoRA modules G(·;Φ) and freeze the pre-trained model weight

2: for t = 1, 2, ..., T do
3: sample a batch (x, y) in Dtr

4: Lcls ← LCE(H(G(x;Φ);ψ), y) ▷ Eq. (2)
5: LOR ← 0
6: for b = 1, 2, ..., B do
7: LOR ← LOR + (LO(W

q
b ) + LO(W

v
b )) ▷ Eq. (8)

8: end for
9: Lfinal ← Lcls + αLOR ▷ Eq. (9)

10: update g(·;ϕ), H(·;ψ) to minimize L.
11: end for
12: Merge the LoRA group with the pre-trained weight. ▷ Eq. (10)
13: return G, H

B Evaluation Protocol and Hyperparameters Search

In this section, we provide a detailed description of our evaluation protocol and
hyperparameters (HPs) search. In line with prior research in DG, we designate
one domain within the dataset as the unseen test domain, while the remaining
domains serve as source domains. The final experimental results are obtained by
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Table 1: The hyperparameter N used on five DomainBed benchmarks in our experi-
ments.

Hyperparameter PACS VLCS OH TI DN

N 2 4 4 4 4

Table 2: Performance comparison with more methods. Leave-one-domain-out accuracy
(%) on five DomainBed benchmarks.

Algorithm PACS VLCS OH TI DN Avg

Auto-RGN [14] 90.3±0.5 80.7±0.3 76.7±0.5 48.5±0.6 51.2±0.7 69.5
CoOp [24] 96.1±0.2 80.5±0.6 84.2±0.1 49.4±0.6 59.3±0.1 73.9
UPT [23] 96.5±0.2 82.7±0.1 84.4±0.2 54.9±0.9 60.2±0.1 75.7

PEGO 96.5±0.1 83.2±0.3 84.2±0.1 57.3±0.3 59.3±0.1 76.1

averaging the accuracies across all test domains. To maintain consistency with
DomainBed [8], 20% of the samples from each source domain are allocated for
validation and we adopt the training-domain validation strategy for hyperpa-
rameter search and model selection. Furthermore, all experiments are conducted
using three different random seeds to ensure the reliability and reproducibility
of our experiments.

As for algorithm-agnostic HPs in DomainBed (e.g ., learning rate, dropout,
weight decay), to reduce the training overhead caused by HPs search, we do
not tune any algorithm-agnostic HPs. Specifically, for all the experiments, the
learning rate, dropout, and weight decay are fixed to 5e-4, 0, and 0. As regards
the algorithm-specific HPs, we fix the rank of LoRA [11] r to 4 and the balance
coefficient α to 1e-3 for all the experiments. We only search for the number of
LoRA modules N from {2, 4, 6}. Tab. 1 provides a summary of the searched
hyperparameter N on five DomainBed benchmarks in our experiments.

As shown in the ablation experiments of the main body (Sec. 5.1, Pages 12-
13), the performance of our method is not sensitive to algorithm-specific HPs.
Besides, to save GPU memory, we use half-precision (FP16) during training and
inference for all the experiments.

C Comparisons with More Methods

In this subsection, we conduct a performance comparison between PEGO and
more methods, including Auto-RGN [14], CoOp [24], and UPT [23]. Auto-RGN
measures the Relative Gradient Norm (RGN) of each transformer layer and sets
different learning rates for each layer by its RGN. CoOp and UPT are both
Prompt Learning methods that introduce learnable text or visual prompts for
fine-tuning. As shown in Tab. 2, our method achieves better average performance
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Table 3: Trainable Parameters of Different Methods.

FT Adapter [10] LoRA [11] VPT [12] CoOp [24] UPT [23] Auto-RGN [14] PEGO

Parameters 86M 0.16M 0.15M 0.10M 2048 0.57M 86M 0.29M

Table 4: Leave-one-domain-out accuracy (%) of each domain on PACS when using
ViT-B/16 pre-trained by CLIP as the backbone.

Algorithm A C P S Avg

ERM (FT) 80.5±3.4 86.4±0.6 93.4±1.0 73.2±3.9 83.4±0.4

MIRO [4] 95.6±0.6 96.6±0.2 99.7±0.1 90.7±2.5 95.6±0.6

Adapter [10] 91.8±0.2 93.1±0.4 98.8±0.1 84.4±1.6 92.0±0.5
LoRA [11] 97.4±0.3 97.5±0.1 99.7±0.1 89.2±0.4 96.0±0.1
VPT [12] 97.1±0.4 97.8±0.1 99.9±0.0 90.1±0.9 96.2±0.3

L2-SP [17] 93.9±1.0 94.3±0.6 97.8±0.3 83.1±2.3 92.2±0.7
LwF [18] 93.2±1.4 94.2±0.7 98.5±0.2 88.8±0.4 93.6±0.6

LP-FT [13] 89.1±2.8 97.8±0.1 99.8±0.0 89.9±0.2 94.2±0.7

PEGO 97.1±0.1 98.5±0.2 99.7±0.1 90.9±0.2 96.5±0.1

than other methods benefiting from the proposed preserving and diversifying
losses.

D Trainable Parameters of Different Methods

The trainable parameters for each dataset are different due to the dimension
difference of the classifier. We compare the trainable parameters of all methods
on the PACS dataset. As shown in Tab. 3, our method is significantly parameter-
efficient compared to FT (0.29M vs. 86M).

E Detail Results of Each Domain

In this section, Tabs. 4 to 8 provide the detailed accuracy of algorithms on five
DomainBed [8] benchmarks: PACS [16], VLCS [7], OfficeHome [22], TerraIncog-
nita [2] and DomainNet [19]. Since SWAD [3], SMA [1], and GESTUR [15] do
not report the detailed results of each domain in their papers, we only present
the results of ERM, MIRO [4], Adapter [10], LoRA [11], VPT [12], L2-SP [17],
LP-FT [13], LwF [18] and PEGO.
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Table 5: Leave-one-domain-out accuracy (%) of each domain on VLCS when using
ViT-B/16 pre-trained by CLIP as the backbone.

Algorithm C L S V Avg

ERM (FT) 95.4±0.6 65.6±0.9 72.9±2.2 69.9±2.2 75.9±1.1

MIRO [4] 98.9±0.5 67.1±1.0 81.9±0.4 81.2±0.2 82.3±0.2

Adapter [10] 95.7±0.2 65.9±0.9 79.5±0.7 78.0±0.7 79.8±0.4
LoRA [11] 96.1±0.4 68.1±0.2 83.5±0.3 83.1±0.4 82.7±0.0
VPT [12] 96.8±0.5 67.2±0.3 84.9±0.2 82.6±0.4 82.9±0.3

LP-FT [13] 94.5±0.3 62.0±0.3 76.4±1.3 77.0±2.9 77.5±0.4
L2-SP [17] 96.8±0.9 66.2±1.0 78.5±1.6 82.5±0.2 81.0±0.2
LwF [18] 99.1±0.3 65.5±1.4 80.4±1.2 82.6±0.2 81.9±0.4

PEGO 96.4±0.1 67.8±0.5 83.3±0.3 85.2±1.0 83.2±0.3

Table 6: Leave-one-domain-out accuracy (%) of each domain on OfficeHome when
using ViT-B/16 pre-trained by CLIP as the backbone.

Algorithm A C P R Avg

ERM (FT) 59.2±1.3 56.1±0.6 74.8±0.1 75.4±0.8 66.4±0.4

MIRO [4] 80.8±0.1 72.2±0.5 88.6±0.3 88.5±0.2 82.5±0.1

Adapter [10] 67.1±1.2 61.7±0.4 81.5±0.5 81.3±0.6 72.9±0.4
LoRA [11] 83.2±0.2 71.8±0.4 89.1±0.2 89.5±0.2 83.4±0.1
VPT [12] 82.9±0.6 71.5±0.6 89.7±0.1 89.5±0.3 83.4±0.3

L2-SP [17] 62.6±1.3 57.1±0.4 76.4±0.8 76.6±0.2 68.2±0.5
LP-FT [13] 64.5±1.4 68.0±0.4 76.7±0.3 79.0±0.2 72.0±0.4
LwF [18] 79.0±1.7 70.4±0.7 86.8±0.3 86.7±0.4 80.7±0.4

PEGO 83.7±0.3 73.3±0.4 90.3±0.3 89.5±0.3 84.2±0.1

Table 7: Leave-one-domain-out accuracy (%) of each domain on TerraIncognita when
using ViT-B/16 pre-trained by CLIP as the backbone.

Algorithm L100 L38 L43 L46 Avg

ERM (FT) 38.1±0.3 26.7±2.5 41.9±1.3 34.4±1.8 35.3±0.6

MIRO [4] 65.0±0.6 46.7±0.7 60.8±1.3 44.9±0.1 54.3±0.3

Adapter [10] 38.8±5.1 44.9±2.0 56.2±0.3 37.8±1.3 44.4±0.8
VPT [12] 55.0±3.9 52.6±1.3 61.3±0.4 47.8±0.4 54.2±0.7
LoRA [11] 54.6±2.4 52.7±1.2 61.2±0.8 50.5±0.5 54.8±0.6

LP-FT [13] 42.8±4.2 33.2±3.3 46.7±1.1 33.2±1.1 39.0±1.5
L2-SP [17] 45.6±5.5 27.2±3.5 49.9±1.3 34.8±0.3 39.4±1.6
LwF [18] 44.4±1.8 34.9±2.6 47.5±1.3 30.9±3.8 39.4±0.6

PEGO 63.2±0.3 56.4±0.3 61.8±1.0 47.9±0.5 57.3±0.3
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Table 8: Leave-one-domain-out accuracy (%) of each domain on DomainNet when
using ViT-B/16 pre-trained by CLIP as the backbone.

Algorithm clipart infograph painting quickdraw real sketch Avg

ERM (FT) 68.0±0.1 22.5±0.4 46.5±2.4 18.5±0.6 58.7±1.6 52.5±0.7 44.4±0.5

MIRO [4] 74.9±0.1 37.1±0.2 59.8±0.4 18.7±0.8 72.2±0.1 61.2±0.6 54.0±0.2

Adapter [10] 75.6±0.2 37.6±0.2 63.1±0.2 19.4±0.3 77.2±0.1 64.2±0.3 56.2±0.1
LoRA [11] 76.4±0.1 43.3±0.3 63.6±0.3 19.5±0.3 79.2±0.1 66.4±0.1 58.1±0.1
VPT [12] 76.7±0.0 43.1±0.3 66.6±0.1 19.4±0.2 80.3±0.0 67.4±0.1 58.9±0.1

LP-FT [13] 70.9±0.2 26.7±0.3 55.8±0.3 17.1±0.5 66.3±0.4 57.5±0.4 49.1±0.3
L2-SP [17] 70.6±0.1 28.4±0.3 55.6±0.5 18.3±0.5 68.5±0.4 58.4±0.1 50.0±0.2
LwF [18] 73.2±0.1 30.6±0.3 58.0±0.5 18.6±0.4 69.1±0.2 60.8±0.0 51.7±0.1

PEGO 76.8±0.1 44.6±0.2 67.1±0.3 18.8±0.2 80.5±0.1 67.7±0.1 59.3±0.1

F Limitation

Although our method cannot be easily applied to some traditional convolutional
neural networks not containing linear layers (e.g ., ResNet [9]), it can be applied
to any type of Transformer [21] architecture, similar to LoRA. With the increas-
ing number of Transformer-based architectures being proposed (e.g ., ViT [5],
ConViT [6], DeiT [20]), our method exhibits a wide range of applications for
these networks.
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