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Abstract. In this paper, we introduce a new generative model, Diffu-
sion Layout Transformers without Autoencoder (Dolfin), that attains
significantly improved modeling capability and transparency over the
existing approaches. Dolfin employs a Transformer-based diffusion process
to model layout generation. In addition to an efficient bi-directional (non-
causal joint) sequence representation, we also design an autoregressive
diffusion model (Dolfin-AR) that is especially adept at capturing neigh-
boring objects’ rich local semantic correlations, such as alignment, size,
and overlap. When evaluated on standard unconditional layout generation
benchmarks, Dolfin notably outperforms previous methods across various
metrics, such as FID, alignment, overlap, MaxIoU, and DocSim scores.
Moreover, Dolfin’s applications extend beyond layout generation, making
it suitable for modeling other types of geometric structures, such as line
segments. Our experiments present both qualitative and quantitative
results to demonstrate the advantages of Dolfin.

1 Introduction

Modeling highly-structured geometric scenes such as layout [56] is of both sci-
entific and practical significance in design, 3D modeling, document analysis,
and image generation. Layout data are typically highly-geometrically-structured,
demonstrating strong correlations between neighboring objects in alignment,
location, and size. Traditional approaches modeling joint objects using e.g. con-
stellation models [10, 45, 49] demonstrate interesting results but they fail in
accurately capturing the joint relations of different objects. Deep model based
layout generation [2, 5, 22, 23, 29, 31] has demonstrated significantly improved
quality for the synthesis/generation of layouts.

1. Main challenges of unconditional layout generation. Layout generation
for documents, designs, and scenes consists of discrete geometric objects/items
(e.g. bounding boxes) that are highly structured with special joint spatial
arrangement requirements. For example, adjacent tables often observe strict
horizontal and vertical alignments. There is a strong interdependence amongst
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the items and the generation of an appropriate layout requires having all of
them well sized, properly localized, and perfectly aligned. A slight misalign-
ment of one item might destroy the overall layout structure. Valid layouts
may form complex manifold that is challenging to learn and explore when
searching for the optimization solution.

2. Why applying Transformers in layout generation? Before the wide
adoption of the transformers, generative modeling is primarily focused on
image generation using CNN-based architectures (e.g. VAE [25], GAN [12]).
Diffusion models for image generation (e.g. Stable Diffusion [38]) commonly
adopt the U-Net [39] as the denoising backbone, which is not directly appli-
cable to geometric structural data like layouts.

3. Significance of removing autoencoders in Transformers for layout
generation. Autoencoders are typically included in image generation [37,38]
and layout generation [23], which help reduce the learning complexity at a
certain level of increased opacity. In order to deal with the continuous and
discrete parts of the data, all existing Transformer-based layout generation
methods [2,5,22,29] consist of an encoder and a decoder to operate in the
latent space; mapping highly structural data to latent space with autoencoders
lead to distortion of the geometrical features (e.g. bounding box alignment).
Removing autoencoders in layout generation allows the modeling to stay in the
original space, which offers notable advantages in achieving the transparency
and accessibility of the diffusion process. This 1). allows a better understanding
of the generative process, 2). facilitates the direct interaction for the layout
with other tasks (if one wants to pull out or add constraints to the intermediate
layout for image generation and matching), and 3). makes feasible extensions
to other domains like line segment generation, as shown in Sec. 5.4.

In this paper, we present Diffusion layout Transformers without Autoencoder
(Dolfin), that operates on the original space (the coordinates of the bounding
box corners and the corresponding class label) for the geometric structural data.
Dolfin is a new diffusion model with the following contributions:

– By removing the autoencoder layer that is typically included in a diffusion
model for layout/image generation, the Dolfin model (bi-directional ) operates
directly on the input space of the geometric objects/items (e.g. rectangles
and line segments). Our proposed Dolfin outperforms the competing methods
in a number of metrics with reduced algorithm complexity as well as greatly
enhanced generalization capability to modeling geometric structures beyond
rectangles, such as the line segments.

– In addition to a bi-directional (non-causal joint) representation for Dolfin,
we further propose Dolfin-AR, an autoregressive diffusion model especially
effective in capturing the rich semantic correlation between objects/items.

– Given the simplicity and generalization capability of the proposed Dolfin
model, we experiment on generating geometric structures beyond layout, such
as line segments. To the best of our knowledge, this is the first attempt to
learn a faithful generative diffusion model for line segment structures that are
annotated from natural image scenes.
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(a) Dolfin. The layout tensors are directly fed as input to the transformer-based diffusion block.
The model processes the input and generates the desired samples without using an autoregressive
decoding process.
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(b) Dolfin-AR. The diffusion process starts with the input xt, and it passes through the transformer-
based diffusion block. During each autoregressive step i, the noise ϵi is sampled, and both ϵi and
other inputs are used to sample the next noise ϵi+1. Finally, the previous sample xt−1 is generated
based on the sampled noise using DDIM [44].

Fig. 1: The Dolfin model. We directly apply Gaussian noise on the original input space.

We make comparisons of our model with other models. In our experiments,
our design achieves high performance across numerous metrics.

To further expand the capabilities of our model into line segment generation,
an area not yet explored by diffusion models or GAN-based models, our approach
demonstrates promising results.

Furthermore, some alternative models, like the SAM algorithm for instance
segmentation, directly utilize input tokens in the original space. This aspect
makes our approach versatile and suitable for adaptation to various related
domains, aligning with the exploding developments of the future.

2 Background

2.1 Layout Generation

A layout is characterized by the global height H and width W of the entire scene
and a sequence of 5-tuples {xi, yi, hi, wi, ci}Ni=1, where each tuple comprises the
left-bottom coordinates of a bounding box (xi, yi), the height and width (hi, wi)
of the bounding box, and the corresponding category ci.

In our proposed method, each object in a layout is represented by a 4 × 4
tensor. The tensor consists of different entries that encode specific information
about the bounding box. The 4 entries on the first row represent x, y, h, w of the
bounding box, The entries on the second row denote the height and width of
the entire layout. All of these values are normalized to the range [−1, 1]. The
remaining 8 entries are used to indicate the category of the bounding box. Some
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of these entries have a value of 1, while others have a value of -1, representing
different categories. If all of the entries are -1, it indicates that the predicted
item isn’t active, which is used to handle layouts with different lengths.

The task of layout generation involves generating plausible layouts based
on incomplete information through the use of learned models, and it can be
classified into two categories: conditional and unconditional. In conditional layout
generation, a portion of the layout information is provided, such as the category,
shape (height and width), location (coordinates x and y), and other relevant
information. Inspired by the approach used in BLT [27], conditionality can be
achieved by selectively unmasking specific parts of the tensors, which allows
us to generate layouts based on the provided conditions. On the other hand,
unconditional layout generation involves generating the final layout entirely from
scratch, without any pre-existing conditions or constraints imposed on the layout.

2.2 Diffusion Model Used in Layout Generation

A diffusion model learns a prior distribution pθ(x) of the target distribution x with
parameters θ. It has already been employed in modeling various representations,
including 2D images [8, 18, 36], videos [17, 19], and 3D radiance fields [4, 42].
The model consists of a forward diffusion process and a backward denoising
process. The forward process is modeled by a Markov chain which gradually adds
Gaussian noise with scheduled variances to the input data. The noisy data at
time step t has the closed form representation as the following:

xt =
√
ᾱtx0 +

√
1− ᾱt · ϵt, ϵt ∼ N (0, I) (1)

where ᾱt is a constant determined by t. Based on Eq. (1), we can directly sample
xt from x0 during training.

In the backward process, a denoising network is learned for predicting and
removing the noise of noisy data xt at each time step. The network is optimized
by an L2 denoising loss:

Ldiff = ∥ϵt − ϵθ(xt)∥22 (2)

where ϵθ(xt) is the noise predicted by our model with model parameter θ as well
as input xt and t.

3 Method

We propose Dolfin, a diffusion layout transformer for generative layout and
structure modeling. Fig. 1 provides an overview of Dolfin.

3.1 Diffusion Layout Transformers
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As mentioned in Sec. 2.1, our input data for layout gen-
eration comprises both continuous components (bounding
boxes) and discrete components (categories). In contrast to
previous methods that encode the input into a continuous
latent space or separate the discrete/continuous compo-
nents and design a specialized discrete diffusion process
for discrete parts, our method directly operates on the
input geometric objects without any additional modules
or modifications on the diffusion model.

Inspired by the recent work DiT [37], we select a trans-
former based diffusion model as the base architecture of
Dolfin, as transformer-based models are particularly good
at modeling sequential data. As described before, we di-
rectly process the data in the discrete input space by adding
Gaussian noise to the input tensor. The transformer net-
work predicts the noise at each step of the diffusion process.

Starting from the original DiT, we make several modi-
fications to the transformer model. Our model only embeds the timestamp t into
the input, as opposed to embedding both the timestamp t and a global category
c. Fig. 2 illustrates the structure.

Our model consists of two versions: the non-autoregressive version and the
autoregressive version. The key difference between the two is the training ap-
proach used for the transformer encoder. In the non-autoregressive version, the
transformer encoder is trained in non-autoregressive way. Meanwhile, in the
autoregressive version, the transformer encoder is trained in autoregressive way.

3.2 Non-Autoregressive Model

In this version of our method, the transformer operates in a non-autoregressive
manner, processing all tokens simultaneously rather than sequentially. Fig. 1a
provides an overview of our method.

Training Given an initial layout represented by a vector xstart and a diffusion
timestep t, we randomly sample a Gaussian noise ϵt and apply Equation (1) to
add noise to xstart, resulting in xt. Next, we input xt and t into a transformer
model to predict the noise ϵθ(xt) and the variance of the step (only required for
DDPM [18], not required for DDIM in the DiT [37] framework) σ̂t. The mean
squared error (MSE) loss is then calculated between ϵ0 and ϵθ(xt), while the
Kullback-Leibler (KL) divergence loss is calculated (if we use DDPM) between
the actual and predicted mean and variance µt, σt and µ̂t, σ̂t, where µ̂t can be
sampled by σ̂t and ϵθ(xt) in DDPM.

LMSE = ∥ϵt − ϵθ(xt)∥22 (3)

LKL =
∑
t

DKL (q (xt−1 | xt,x0) ∥pθ (xt−1 | xt)) =
∑
t

DKL(µt, σt∥µ̂t, σ̂t) (4)
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Sampling Let T be the number of diffusion steps. At each time step t from
T−1 to 0, we first input xt+1 and timestamp t+1 into the pre-trained transformer
to obtain the predicted noise ϵθ(xt+1). We then use DDPM to compute xt from
xt+1 and ϵθ(xt+1). This process is repeated until the final sample x0 is obtained.

3.3 Autoregressive Model

In contrast to the non-autoregressive model that samples ϵ̂ using a single step,
our proposed method adopts a recursive sampling strategy repeated for N times,
where N corresponds to the number of tokens. This approach allows for more
comprehensive sampling and captures the dependencies among tokens. The
training and sampling procedures are outlined in Algorithm 1 and Algorithm 2
respectively, and Fig. 1b offers a visual representation of this approach.

For the k-th noise prediction ϵk,t corresponding to xt, it’s based on xt+1

and the previous predicted {ϵ0,t, · · · , ϵk−1,t} by the Transformer-based denois-
ing backbone. ϵθ in the standard version corresponds to the combination of
{ϵ0,t, · · · , ϵn,t} here. In Algorithm 1 and Algorithm 2, noise represents the output
of the denoising backbone, referring to the mean of the Gaussian diffusion step.
f, η are the parameters of the denoising backbone and the learning rate.

Algorithm 1 Autoregressive Training
1: Input: input x0, timestamp t
2: Sample xt from x0 and t
3: for t = 0 to N − 1 do
4: n_in← concat(xt, noise[0 . . . t−1])
5: ϵθ(xt)← Model(n_in, t)
6: Loss← MSE(ϵθ(xt), noise[t])
7: Update the parameters f ← f −

η∇fLoss
8: end for

Algorithm 2 Autoregressive Sampling
1: Input: input xt, timestamp t
2: Sample xt from x0 and t
3: for t = 0 to N − 1 do
4: noise[t]←Model(x, t)
5: x← concat(x, noise[t])
6: end for
7: ϵθ(xt)← noise[0 · · ·N − 1]
8: Sample xt−1 by xt, t, ϵθ(xt) using

DDIM [44]

3.4 Comparison of Our Method with Other Approaches

Our model has several advantages over other methods in the field. One of the
main benefits is that it employs a relatively simple model, which makes it
computationally efficient. In particular, unlike the works PLay [5] and DLT [29],
in which the inputs are encoded to a latent space, diffusion is directly applied
to the original space. Mapping the highly structural data to latent space with
autoencoders may lead to the loss of geometrical features (e.g. bounding box
alignment). What’s more, this approach eliminates the need to separate each
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(a) In the redrawing of PLay [5], the input layout is encoded using a pretrained
Variational Autoencoder (VAE) as a first-stage model to map it into a latent space.
The diffusion process is then applied, and the final result is generated by decoding the
latent representation using a VAE decoder.
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(b) In the redrawing of DLT [29], the attributes of a layout are divided into discrete
and continuous parts, and they are processed separately through different linear layers
before being concatenated and fed into the diffusion process. The output of the diffusion
process is then passed through separate linear layers to obtain the final sample.
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(c) In the redrawing of LayoutDM [22], a layout is divided into multiple discrete
components, creating a token sequence of length mn, where m is the number of
components and n is the number of objects in a layout. This differs from other methods,
which typically have a token sequence length equal to the number of items in a layout.

Fig. 3: The comparison between different layout generating models

object in the layout into several different tokens like the method provided in
LayoutDM [22], which in turn requires less computation.

To visually depict this diffusion sampling process, we present it in the supple-
mentary material, which showcases the gradual refinement of the layout from its
initial random state to its final coherent form. The figure serves as an illustration
of the step-by-step evolution of the layout during the diffusion process, highlight-
ing the transition from noise to a structured and visually pleasing arrangement.
This visual representation enhances our understanding of the generative pro-
cess and provides insights into the underlying mechanisms driving the layout
generation.

3.5 Beyond Layout Generation

Dolfin can be extended beyond simple application of layout generation. As the
transformer in Dolfin directly operates on the input geometric objects, it can
manage different types of geometric structures.

We present one application on line segments generation. Dolfin is able to
learn distributions of line segments from the images in the training set. Similar
to layout generation, we take two endpoint coordinates of each line as one input
token to the transformer, directly adding noise to the tokens and performing
denoising. By sampling from the learned distribution, the model generates novel
line segments that are natural and plausible.
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4 Related Work

Layout Generation. The task of layout generation involves using generative
models to create layouts (vectorized data) for various purposes such as houses,
rooms, posters, documents, and user interfaces [6,11,14,24,34,35,40,43,51,52,55].

LayoutGAN [31] and LayoutVAE [23] are two representative methods of
layout generation. In LayoutGAN, a generator is trained to produce layouts using
a differentiable wireframe rendering layer, while a discriminator is trained to
assess the alignment. This approach allows for the generation of realistic layouts.
LayoutVAE employs a variational autoencoder (VAE) [26] to generate layouts. The
VAE utilizes a Long Short-Term Memory (LSTM) network [20] to extract relevant
information for generating layouts. Recent works, such as BLT [27], introduce a
bidirectional transformer for layout generation, which further enhances the model
capacity of extracting relationships between different layout objects. The work
LT [15] introduces an autoregressive model without diffusion, tokens in a sequence
are sampled one by one, allowing each token to incorporate information from the
previously sampled tokens. DLT [29], LayoutDM [22], and PLay [5], introduce
transformer-based [47] diffusion processes, resulting in improved performance
and layout generation capabilities. Methods such as LayoutPrompter [32] and
LayoutGPT [9] utilize large language models (LLMs) to perform text-to-layout
generation, which are not applicable for unconditional layout generation.

In real-world applications, the generated layouts are often required to meet
customized constraints like categories or partial layouts, which yields the task of
conditional layout generation [1, 2, 22, 24, 27, 29]. Particular conditions include
categories, bounding box numbers, fixed bounding box positions and sizes, etc.
Conditions are added by using some encoders to encode the constraints or simply
by applying simple masks.
Layout Generation Using Diffusion Models. The diffusion model [18,44]
is applied to layout generating tasks in recent days. Works such as LayoutD-
iffusion [53] and HouseDiffusion [41] employ diffusion models to generate geo-
metrical data. Currently, researchers employ three main approaches that employ
Transformer-based models to address this problem. In PLay [5] (Fig. 3a), an
encoder is used to map the layout into a continuous latent space. Diffusion models
are then applied to this latent space instead of the original space. In DLT [29]
(Fig. 3b), separate linear layers are used for the continuous and discrete parts of
the input tensor, both before and after the transformer block. When adding noise
during the diffusion process, Gaussian noise is applied to the continuous parts,
while for the discrete parts, a discrete diffusion process is defined to introduce
noise. In LayoutDM [22] (Fig. 3c), layouts are considered as compositions of
distinct discrete elements, such as category, size, and position. To enable diffusion
modeling in this context, a discrete version of the diffusion process is devised.
What’s more, the sequences that enter the transformer have length far larger
than the number of items in the layouts, which is computational consuming.

In our method, as shown in Fig. 1, we simply view each element as a whole
and directly add Gaussian noise on the original vector space without projecting
it to a latent space.
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5 Experiments

5.1 Implementation Details

Datasets Our model is trained using two widely used layout datasets on document
and user interface, PublayNet [56] and RICO [7]. The PublayNet is a large
dataset of document layouts which includes around 330,000 samples extracted
from published scientific papers. The dataset is categorized into five classes: text,
title, figure, list, and table. It is divided into training, validation, and testing sets
as described in [56]. The RICO dataset consists of about 70,000 layouts of user
interface designs, classified into 25 categories. We adopt the 85%-5%-10% split
for training, validation, and testing as in [22,29].
Training Details The transformer encoder in Dolfin consists of 4 attention
layers and 8 attention heads with a hidden size of 512. This parameter setting
makes our model size similar to other baselines, ensuring a fair comparison. The
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Fig. 4: Unconditional generation on the PublayNet dataset. The first 6 columns are
from paper LayoutDM [22], each including 5 visual results of unconditional generation
by LT [15], MaskGIT [3], BLT [27], BART [30], VQDiffusion [13] and LayoutDM [22]
respectively. The last 2 columns contain the visual results of our Dolfin and Dolfin-AR.
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Method PublayNet PublayNet PublayNet PublayNet RICO RICO RICO
Align. ↓ Overlap ↓ FID ↓ MaxIoU ↑ Align. ↓ FID ↓ MaxIoU ↑

Real Data 0.021 4.2 - - 0.109 - -

PLay [5] - - 13.71 - - 13.00 -
VTN [1] - 2.6 19.80 - - 18.80 -
LayoutDM [22] 0.195 - - - 0.162 - -
LT-fixed [15] 0.084 - - - 0.133 - -
LT [15] 0.127 2.4 - - 0.068 - -
MaskGIT [3] 0.101 - - - 0.015 - -
BLT [27] 0.153 2.7 - - 1.030 - -
BART [30] 0.116 - - - 0.090 - -
VQDiffusion [13] 0.193 - - - 0.178 - -
DLT [29] 0.110 2.6 14.25 0.34 0.210 17.80 0.27
LayoutGAN-W [31] - - - 0.21 - - 0.24
LayoutGAN-R [31] - - - 0.24 - - 0.30
NDN-none [13] - - - 0.31 - - 0.35
LayoutGAN++ [24] - - - 0.36 - - 0.36

Dolfin (ours) 0.074 5.0 9.12 0.35 0.094 15.38 0.42
Dolfin-AR (ours) 0.042 2.4 16.88 0.36 0.148 26.44 0.17

Table 1: Unconditional generation results. Some baseline results are missing because
they are not open-source or lack details for implementation and metric computations,
making comparison with the numbers reported in their original papers difficult.

number of diffusion steps is set to 100 for sampling and 1000 for training. The
AdamW optimizer is employed with a learning rate of 1e-4. The batch size is set
to 10000 for the training of non-autogressive model and 6000 for the training of
autogressive model. Dolfin is trained on 8 NVIDIA RTX A5000 GPUs. It takes
approximately 48 hours to train the non-autoregressive model and 96 hours to
train the autoregressive model.
Metrics We employ five different metrics to evaluate the quality of the generated
layouts on the PublayNet dataset: Fréchet Inception Distance (FID) score [16],
overlap score, alignment score, MaxIoU score and DocSim score. For the RICO
dataset, we do not calculate the overlap score as the data samples in RICO
typically contain large regions of overlap.

The main models to compare with are three recent SOTA methods (PLay [5],
LayoutDM [22], DLT [29]). The evaluation metrics are highly sensitive to the
hyper-parameters, but the source code for evaluation is not provided in these
three papers. As the details vary, the results will vary a lot. E.g., if we use 1024
samples to compute the scores, the FID of conditional generation (conditioned
on category) on PublayNet is 1.73. However, if we use 512 samples, the score
will be 4.21. 3 To compute the FID score, we first render the generated layouts
into images. Subsequently, we utilize a widely accepted Inception model [46]
to measure the similarity between the generated images and the real images
from the dataset. The computation process follows the established methodology
presented in the work PLay [5], ensuring a fair comparison with their results.

3 We emailed the authors for the evaluation details. But only the author of PLay replied
for computing the FID score and the author of LayoutDM(1) replied for MaxIoU.
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Method PublayNet PublayNet Rico Rico
Cate. ↑ Cate.+Size ↑ Cate. ↑ Cate.+Size ↑

LayoutVAE [23] 0.316 0.315 0.249 0.283
NDN-none [28] 0.162 0.222 0.158 0.219
LayoutGAN++ [24] 0.263 0.342 0.267 0.348
LT [15] 0.272 0.320 0.223 0.323
MaskGIT [3] 0.319 0.380 0.262 0.320
BLT [27] 0.215 0.387 0.202 0.340
BART [30] 0.320 0.375 0.253 0.334
VQDiffusion [13] 0.319 0.374 0.252 0.331
LayoutDM [22] 0.310 0.381 0.277 0.392
LayoutDM(1) [2] 0.440 - 0.490 -

Dolfin (ours) 0.336 0.339 0.529 0.550
Table 2: MaxIoU scores for models conditioning on category / cate-
gory+size on PublayNet and RICO. Dolfin achieves superior performance
and outperform the competing methods in most cases. This validates the ef-
ficacy of including Transformer based architecture into Dolfin, allowing it to
directly operating on the original space of rectangles (geometric structures).

Method FID ↓ Difference ↓

LT [15] 317.4 30.86
LayoutGAN++ [24] 400.0 51.90
Dolfin (Ours) 92.1 16.04
Table 3: Quantitative results of line segment generation. Dolfin performs
better than the competing methods.

Method PublayNet PublayNet Rico Rico
Cate. ↓ Cate.+Size ↓ Cate. ↓ Cate.+Size ↓

Real Data 0.02 0.02 0.11 0.11

VTN [1] 0.29 0.09 0.43 0.44
BLT [27] 0.10 0.09 0.12 0.30
LT [15] 0.41 0.14 0.58 0.41
DLT [29] 0.11 0.09 0.18 0.28
LayoutDM(1) [2] 0.15 - 0.36 -

Dolfin (ours) 0.41 0.08 0.17 0.14
Table 4: Alignment scores for models conditioning on category / cate-
gory+size on PublayNet and RICO. Our method performs well when
comparing with other baselines.

Method PublayNet PublayNet Rico Rico
Cate. ↑ Cate.+Size ↑ Cate. ↑ Cate.+Size ↑

LayoutVAE [23] 0.07 0.09 0.13 0.19
NDN-none [28] 0.06 0.09 0.15 0.21
LT [15] 0.11 - 0.20 -
VTN [1] 0.10 - 0.20 -
BLT [27] 0.11 0.18 0.21 0.30

Dolfin (ours) 0.42 0.42 0.57 0.59
Table 5: DocSim scores for models conditioning on category / cate-
gory+size on PublayNet and RICO. We observe a significant boost of
performance by our method when compared with existing approaches.

For overlap score and alignment score, we adopt similar evaluation protocols
as those employed in previous works. Specifically, we utilize data from the
LayoutGAN++ [24], DLT [29] and LayoutDM [22] papers to compute the scores.
These metrics provide objective measures of the quality and accuracy of the
generated layouts.

Notably, the datasets exhibit different characteristics in terms of alignment
and overlap. While the PublayNet dataset demonstrates excellent alignment,
it has relatively little overlap between objects. In contrast, the RICO dataset
contains numerous instances of overlap between objects. As a result, we do not
use overlap as a metric on the dataset RICO.

5.2 Experimental Results

We compare the results of Dolfin and Dolfin-AR with several other methods list in
the tables. We present the comparisons of unconditional generation performances
in Tab. 1, PublayNet on the left and RICO on the right. Some baselines do not
provide the results on all the metrics, so we only report the available values
included in their original papers. The results shows that the proposed Dolfin model,
including both the autoregressive and non-autoregressive versions, consistently
outperforms other SOTAs on various tasks, except for the results of unconditional
generation on the RICO dataset. We also present the time cost for our model in
the supplementary material.

For conditional generation, we utilize the MaxIoU score, alignment score and
DocSim score as the metrics. The corresponding results are shown in Tab. 2,
Tab. 4 and Tab. 5 respectively. We test on sampling with conditions include
category and category+size (height and width of the bounding boxes) on both
PublayNet and RICO datasets. The data shows that even on dataset with large
regions of overlap, our method can still achieve nice performance.

We illustrate qualitative generations results in Fig. 4 and Fig. 5, which shows
that our methods can efficiently generate satisfying layouts. We also provide
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Fig. 5: Conditional generation on the PublayNet dataset. The first 5 columns are from
paper DLT [29], each including the visual results of onditional generation (conditioned
on Class+Size and Class) by DLT [29], BLT [27], VTN [1] and LT [15] respectively. The
last column contains the visual results of our Dolfin method.

visualizations for cate.-conditioned generation in the supplementary material,
which shows more diverse results under the same conditions in comparison with
others. For more results of conditional and unconditional generation, including
datasets COCO [33], Magazine [50] and TextLogo3K [48], please refer to the
supplementary material.

5.3 Layout Generation User Study

We perform a user study to assess the qualitative results (see Tab. 6) based
on Fig. 4 and Fig. 5. 53 participants are asked to rank the top three generated
layouts from various methods. Clearly, Dolfin is the most favourable.

Unconditional Generation Conditional Generation
Method LT MaskGIT BLT BART VQDiff LayoutDM Dolfin LT BLT VTN DLT Dolfin

% of participants 5.7 11.3 1.9 11.3 3.8 22.6 43.4 1.9 9.4 3.8 26.4 58.5
Table 6: User Study. % of participants who rank the model as Top 1.

5.4 Line Segments Generation

We train our non-autoregressive Dolfin model on the ShanghaiTech Wireframe
dataset [21], which consists of 5000 training images. We extract the line segments
from each image and use them directly as the input of Dolfin for training.

We present line segments generation results in the supplementary material.
We also show the output of ControlNet [54] based on the line segments for
better illustration in the supplementary material. For quantitative results and
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comparisons, we have diligently searched for relevant works in the same domain,
but regrettably, we could not identify any. To make comparisons, we reimplement
other models to handle the task as our baseline models, specifically LT [15] and
LayoutGAN++ [24]. Our proposed model demonstrates superior line segment
generation results compared to these baselines. For a comprehensive evaluation,
we utilize the FID score [16] and an additional metric (Difference) as detailed in
supplementary material. The numerical results are shown in Tab. 3.

6 Ablation Study

To show the effectiveness of our method Dolfin as well as to reveal the impacts of
some parameters, we conduct several ablation studies. (1) Compare the results
of encoding the input to latent space and directly operating on input space. (2)
Compare the results of using different transformer architectures. (3) Measure the
time cost of sampling a layout using our model with different number of tokens.

6.1 Direct operate on the input space

We extend our model by incorporating a two-stage architecture, where we intro-
duce a Multilayer Perceptron (MLP) as an autoencoder. This MLP is trained
to map the input tensor into a latent space representation. By leveraging this
two-stage model, our approach operates in the latent space, similar to the method-
ology proposed in the PLay [5] framework. Instead of directly sending the tensor
into the transformer block, we initially encode it using the MLP, obtaining a
latent representation, which is subsequently fed into the transformer block for
further processing.

We evaluate the performance of this extended model through quantitative
analysis, as presented in Tab. 7. The results indicate that the model with the MLP
performs significantly worse compared to the model without it. This suggests
that the introduction of the MLP autoencoder does not yield improvements in
terms of the evaluated metrics.

6.2 Adjusting Transformer Architectures

We conducted experiments with different transformer structures, including 4×384
and 8× 512, in addition to the original 4× 512 transformer block. The purpose
was to explore the impact of varying the number of layers and hidden dimensions

Method Align. ↓ FID ↓

Dolfin (MLP Autoencoder) 0.129 15.50
Dolfin (Regular) 0.074 9.12

Table 7: Unconditional Generation On
PublayNet (Use MLP as autoencoder).

Transformer 4 × 384 4 × 512 8 × 512

FID Score 9.49 9.12 9.45
Alignment 0.062 0.074 0.057

Table 8: Unconditional generation on
PublayNet with different architectures.



14 Yilin Wang et al.

FID ↓ Align. ↓ Unique Match ↑

Original 9.12 0.074 762
Separate 10.92 0.097 748

Table 9: Comparision of whether to treat
different parts separately. (PubLayNet)

FID ↓ Align. ↓ Unique Match ↑

Original 15.38 0.094 873
Separate 19.18 0.122 868

Table 10: Comparision of whether to
treat different parts separately. (RICO)

on the performance of our method. By evaluating the unconditional generation
FID and alignment score on PublayNet dataset, we observed that increasing
the number of transformer parameters does not necessarily lead to improved
performance. The results are presented in Tab. 8.

6.3 Process discrete and continuous categories separately

We do additional experiments by replacing Dolfin’s input (original geometric
items) with encoded discrete and continuous features in DLT. Results are in
Tab. 9 and Tab. 10, which show the benefits of operating in original space.

7 Conclusion

In this paper, we propose Dolfin, a novel diffusion layout transformer model for
layout generation. Dolfin directly operates on the discrete input space of geometric
objects, which reduces the complexity of the model and improves efficiency. We
also present an autoregressive diffusion model which helps capture semantic
correlations and interactions between input transformer tokens. Our experiments
demonstrate the effectiveness of Dolfin that improves current state-of-the-arts
across multiple metrics. In addition, Dolfin can be extended beyond layout
generation, e.g. to modeling other geometric structures such as line segments.
Limitation Dolfin has limitations with complex structured data. Training is
costly since we employ DiT as our base model. Additionally, overlapping exists
for small items in conditional cases, as shown in Fig. 6.

Fig. 6: Failure cases. Overlapping exists for small items in conditional cases.
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