
Supplementary Material

A Further Explanations

A.1 TTA with Data Augmentation Approaches

Data augmentation is being used across various fields to enhance robustness
against distribution shifts, including supervised [19,20], semi-supervised [15], and
self-supervised learning [1]. Similarly, in TTA, MEMO [21] applies multiple data
augmentations to a single input. Notably, it utilizes 64 data augmentations on
test-time input to minimize marginal entropy and enables more stable adaptation
than TENT [17]. Here, MEMO applies data augmentation to the input and
tunes the classifier by minimizing the averaged prediction over augmentations.
In contrast, Decorruptor uses augmentation when training the diffusion model
for robustness against distribution shifts before adaptation.

A.2 Detailed Contributions of Decorruptor

We clarify our Decorruptor is a classifier-agnostic generator that modifies cor-
rupted images into clean images. Decorruptor allows for obtaining stable perfor-
mance through the ensemble of multiple decorrupted images. Moreover, it can
also remove corruption from images with out-of-distribution (OOD) classes, mak-
ing them usable for downstream tasks. This is supported by VideoTTA results
(Section 5.4) in the main text. These are key differences from other EM-based
TTA approaches (e.g ., EATA, SAR, and DeYO) and a single robust model (e.g .,
PIXMIX). Following Eq. (10), the final prediction is obtained by ensembling the
predictions of the generated clean images with the original prediction. This in-
dicates that Decorruptor can be applied orthogonally with other TTA methods
that modify the original prediction. Note that the single Decorruptor checkpoint
was utilized across all datasets, methods (e.g ., EATA and PIXMIX), and tasks
(e.g ., image and video classification), demonstrating its versatility. Furthermore,
Decorruptor achieves a threefold increase in speed and superior performance
compared to the data augmentation-based model updating baseline.

A.3 Justification/Implication of Universal Prompt:

We chose the general text prompt (Clean the Image) to handle any unknown
distribution shifts at test time (i.e., corruption levels and types), Other valid
prompts (e.g ., Decorrupt the image) will also work while they are fixed dur-
ing training and inference time. To clarify it, since this prompt is fixed, our
Decorruptor can be considered an image-to-image translation model that reverts
corrupted images to their clean image counterparts.
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A.4 Pseudo-codes

We provide a pseudo-code in Algorithm 1 for training Decorruptor-CM with
consistency distillation [16]. Note, following LCM [11], two distinct timesteps tn
and tn+k, which are k steps apart, are randomly selected and the same Gaussian
noise ϵ are applied. The generated noisy latents ztn and ztn+k

are represented as
follows:

ztn+k
= α(tn+k)z + σ(tn+k)ϵ, ztn = α(tn)z + σ(tn)ϵ.

Note, following our multi-modal guidance scheme described in the main text, the
self-consistency property can be held during distillation and the skipping-step
technique can also be used. In the following, we append the inference pseudo-
code of both Decorruptor-DPM and CM as described in Algorithm 2.

Algorithm 1 Decorruptor-CM Training

1: Input: Given dataset D(p), distance metric d(·, ·), pre-trained model parameter
θ,learning rate η, EMA coeff µ, noise schedule α(t), σ(t), multi-modal guidance
scale: [wI,min, wI,max] and [wT,min, wT,max], skipping interval k, and encoder E(·)

2: Encode paired clean/corrupt data into the latent space: D(p)
z = {(zc1, zco, c) | z =

E(x), (xcl, xco, c) ∈ D(p)}
3: θ− ← θ ▷ Initialization
4: repeat
5: Sample (zcl, zco, c) ∼ D(p)

z , n ∼ U [1, N − k]
6: Sample ϵ ∼ N (0, I), wI and wT

7: ztn+k ← α(tn+k)z + σ(tn+k)ϵ
8: ztn ← α(tn)z + σ(tn)ϵ
9: Minimize Eq. (4)

10: θ ← θ − η∇θL(θ, θ−)
11: θ− ← stopgrad(µθ− + (1− µ)θ)
12: until convergence

B Additional Results

B.1 Detailed Results of Image Corruption Editing

Tables B.1 and B.2 present detailed performance results of Decorruptor on
ImageNet-C [4] and ImageNet-C̄ [12], respectively, using ResNet-50 [3] as the
architecture. As shown in Table B.1, Decorruptor demonstrates significant per-
formance improvement for Noise and Weather corruptions. Moreover, in Fig. B.1,
4×Decorruptor-CM shows performance improvements over the source-only case
in all corruptions except for pixelate and jpeg, and it outperforms DPM in most
corruptions.

DDA [2] also shares the limitation of not being able to properly edit some
corruptions. Addressing this issue is crucial for the effectiveness of the input



Supplementary Material 3

Algorithm 2 Decorruptor-DPM/CM Inference
1: Input: Text and image guidance scales ωT and ωI , Given text cT and corrupted

image cI , Noise schedule α(t), σ(t), Decoder D(·)
2: ts: Diffusion timesteps (20 for DPM, 4 for CM), T : maximum timesteps (1000)
3: ϵθ: Pre-trained DPM or CM
4: Sample ẑT ∼ N (0; I), z ← ϵθ(ẑT , cT , cI , T )
5: for t← ts . . . 1 do ▷ sequence of timesteps
6: ẑt ∼ N (α(t)z;σ2(t)I)
7: Eq (7), (9) for DPM, CM ▷ multi-modal guidance
8: z ← ϵθ(ẑt, cT , cI , t)
9: end for

10: x̂0 ← D(z) ▷ decoding latent to decorrupted image
11: return x̂0

updating TTA [17] method. As illustrated in Table B.2, Our Decorruptor shows
consistent improvement for all corruptions in ImageNet-C̄. Commonly, ensem-
bling more edited images always presents performance improvement for all cor-
ruptions in ImageNet-C and ImageNet-C̄.
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Fig. B.1: Bar graph of comparisons for performances between DDA and our Decor-
ruptors on ImageNet-C using ResNet50.

B.2 Comparisons with EM-Based TTA Methods

In Table B.3, we present additional comparisons of our computational costs
in terms of accuracy and memory compared to existing EM-based TTA meth-
ods. As a result, adding Decorruptor-4×CM resulted in significant improvements
across all approaches and datasets. In terms of efficiency, DDA incurs an addi-
tional runtime of 19.5s, whereas 4×CM adds an additional runtime of 0.14s,
which is only about three times the runtime of EM-based methods (0.05s).
Decorruptor shows significant improvements compared to the state-of-the-art
EM-based method DeYO (48.6% → 51.6%) and can be applied to other down-
stream tasks (e.g ., VideoTTA), demonstrating its strong superiority.
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Table B.1: Detailed results on ImageNet-C at severity level 5 regarding accuracy (%).
The bold value signifies the top-performing result.

Noise Blur Weather Digital
ImageNet-C Gauss. Shot Impul. Defoc. Glass Motion Zoom Snow Frost Fog Brit. Contr. Elastic Pixel JPEG Avg.
ResNet-50 (Source-only) 6.1 7.5 6.7 14.4 7.6 11.8 21.4 16.2 21.4 19.1 55.1 3.6 14.5 33.3 42.1 18.7
• Decorruptor-DPM 37.1 39.7 36.7 23.3 8.9 11.5 21.4 38.7 34.4 31.5 56.3 23.5 22.4 30.6 41.0 30.5
• Decorruptor-CM 30.3 33.4 30.7 19.5 7.4 11.6 20.8 33.2 29.8 28.5 56.0 22.1 17.9 30.6 40.2 27.5
• 4×Decorruptor-CM 41.2 44.3 42.2 23.1 7.8 12.1 22.0 43.7 37.8 35.2 58.9 30.6 20.3 31.9 40.4 32.8
• 8×Decorruptor-CM 44.1 46.7 44.9 24.0 8.0 12.4 22.5 46.2 40.3 36.4 59.7 32.6 20.6 33.2 41.1 34.2

Table B.2: Detailed results on ImageNet-C̄ at severity level 5 regarding accuracy (%).
The bold value signifies the top-performing result.

ImageNet-C̄ Blue. Brown. Caustic. Checker. Cocentric. Inverse. Perlin. Plasma. Single. Sparkles Avg.
ResNet-50 (Source-only) 23.7 41.3 37.7 32.7 4.2 9.3 46.3 9.9 4.6 48.1 25.8
• Decorruptor-DPM 38.6 53.5 45.3 45.4 31.5 26.6 54.8 34.0 30.6 58.1 41.8
• Decorruptor-CM 37.4 51.5 43.5 44.2 27.1 21.3 53.1 29.3 26.8 56.7 39.1
• 4×Decorruptor-CM 45.6 57.4 48.2 51.5 42.2 28.2 57.5 39.8 39.6 61.2 47.1
• 8×Decorruptor-CM 47.2 58.2 49.2 53.4 43.2 29.4 58.6 41.2 40.4 62.2 48.3

B.3 Quantitative Video Corruption Editing Results

In this section, we elaborate on the results obtained by applying Decorruptor-
CM for video corruption editing. As shown in Fig. B.2, Decorruptor-CM out-
performed DDA in corruption editing. For a 3-second input video, Decorruptor
takes about 10 seconds, while DDA takes nearly 20 minutes. This demonstrates
that Decorruptor is both highly effective and efficient for video corruption edit-
ing. For our experiments, we referred to the performance chart of ViTTA (see
Table 2 in Lin et al . [8]). The UCF-101C [8] dataset includes 3,783 corrupted
videos for each type of corruption, covering a total of 12 different corruptions.
The entire process of video decorruption was conducted using eight A40 GPUs
and took about three days. The network used in the experiments was TANet [9].
Instead of using an ensemble, we assessed the performance solely using the gener-
ated dataset when combining the model update method with our approach. The
results are described in Table B.4. Ensembling with the source resulted in an av-
erage performance improvement of approximately 13% compared to source-only
inference. These findings suggest that our Decorruptor-CM can be effectively
applied to video domains. Additionally, by applying our method with the TTA
methodology, we observed an average performance improvement of about 3%
compared to ViTTA, particularly showing robust decorruption results against
noise.

B.4 Corruption Granularity

Our proposed Decorruptor-DPM and CM methodologies also exhibit superior
decorruption capabilities across all levels of severity when compared with DDA [2].
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Table B.3: Comparisons with TTA methods.

Source + DPM + 4×CM EATA + DPM + 4×CM SAR + DPM + 4×CM

Runtime (s/sample) 0.004 + 0.42 + 0.14 0.047 + 0.42 + 0.14 0.054 + 0.42 + 0.14
Memory (MB) 2,340 + 4,602 + 4,958 2,704 + 4,602 + 4,958 2,702 + 4,602 + 4,958
IN-C acc (%) 18.0 31.2 33.8 47.8 47.5 51.6 44.0 47.4 49.6
IN-C̄ acc (%) 25.0 41.6 47.7 54.0 57.6 59.7 49.9 55.9 58.8

Table B.4: Quantitative results for the UCF101-C dataset. Here, ‘Ours-Only’ refers
to results obtained from inference using only input updates. We further provide the
results of combining our methodology with the baseline TTA method.

Update Methods Gauss Pepper Salt Shot Zoom Impulse Defocus Motion JPEG Contrast Rain H265.abr Avg
Source-Only 17.92 23.66 7.85 72.48 76.04 17.16 37.51 54.51 83.40 62.68 81.44 81.58 51.35

Data Ours-Only 42.43 54.24 33.01 85.83 75.83 56.25 37.82 58.33 85.77 74.83 85.85 81.97 64.34
NORM [14] 45.23 42.43 27.91 86.25 84.43 46.31 54.32 64.19 89.19 75.26 90.43 83.27 65.77
DUA [13] 36.61 33.97 22.39 80.25 77.13 36.72 44.89 55.67 85.12 30.58 82.66 78.14 55.34
TENT [17] 58.34 53.34 35.77 89.61 87.68 59.08 64.92 75.59 90.99 82.53 92.12 85.09 72.92

Model SHOT [7] 46.10 43.33 29.50 85.51 82.95 47.53 53.77 63.37 88.69 73.30 89.82 82.66 65.54
T3A [5] 19.35 26.57 8.83 77.19 79.38 18.64 40.68 58.61 86.12 67.22 84.00 83.45 54.17

ViTTA [8] 71.37 64.55 45.84 91.44 87.68 71.90 70.76 80.32 91.70 86.78 93.07 84.56 78.33
All ViTTA + Ours 77.05 79.03 64.18 93.25 86.54 78.32 65.72 78.30 91.76 86.41 92.25 83.58 81.37

GT

Corrupted

DDA

Ours
(CM)

(a) Contrast (b) Rain (c) Gaussian

Fig. B.2: Results of corruption editing for corrupted videos in UCF101-C.

Notably, as depicted in Fig. B.3 (b), CM shows comparable results with DPM
only with 4 NFEs while effectively preserving the object-centric regions of a
given image. Note that background colors sometimes change due to the stochas-
tic nature of the diffusion model.

B.5 Further Use-Cases

Furthermore, as depicted in Fig. B.4, although such image degradations were
not specifically learned in our U-Net fine-tuning stage, our Decorruptor-DPM
shows the editing capabilities of corruptions like haze and low-light conditions.
The datasets used for these examples are the Reside SOTS [6] and LOL [18]
datasets, respectively.
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Fig. B.3: Visualization of corruption editing results based on the granularity of severity
for various corruptions.

B.6 Additional Results of the Ensemble

As shown in Table 3 of Section 5.2 in the main text, the addition of an ensemble
in Decorruptor-CM led to performance improvement. However, without careful
consideration, increasing the number of edited images required for an ensemble
results in drawbacks in terms of runtime and memory consumption. Therefore,
the number of edited images also becomes a crucial hyperparameter. We illus-
trated the performance variations with the change in the number of images used
for the ensemble in ImageNet-C and ImageNet-C̄ in Figures B.5 and B.6, re-
spectively. The results indicate a consistent performance increase regardless of
the architecture as the number of edited images increases, and the performance
tends to converge around 4 ensembles.
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Fig. B.4: Further applications of our Decorruptor model in image restoration tasks.
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Fig. B.5: The accuracy (%) according to the number of edited images for ensembling
in ImageNet-C.
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Fig. B.6: The accuracy (%) according to the number of edited images for ensembling
in ImageNet-C̄.
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B.7 Diverse Corruption Scenarios, Image Sizes, and Domains

In this section, we consider a realistic scenario where an image with various mixed
corruptions is encountered at test time. We evaluate the editing performance
for this situation using Decorruptor-CM with 4 NFEs. As shown in Fig. B.7, we
confirm that corruption editing is feasible in mixed corruption scenarios for both
(a) in-domain images and (b) out-of-domain images (e.g ., panorama images). We
use a mixed corruption severity level of 5 for each type of corruption. In each
figure, the left side presents the corrupted images, while the right side displays
the edited counterparts.

Brightness + Shot noise

Gaussian noise + Contrast

Spatter + Saturate

(a) Clean Images (ID)

Size: 
(256, 256)

(b) Panorama Images (OOD)

Size: 
(1920, 653)

Brightness + Shot noise

Gaussian noise + Contrast

Spatter + Saturate

Fig. B.7: Visualization of experimental results on (a) in-domain and (b) out-of-domain
corruption editing performance. We confirmed that our proposed method robustly per-
forms corruption editing even in scenarios with mixed corruption at test time.

C Ablation Studies

C.1 Image Guidance Scaling on Consistency Model

For the ablation study, we trained Decorruptor-CM under three conditions: (a)
using our multi-modal guidance, (b) using a fixed image guidance, and (c) with-
out using image guidance. Each experiment involved training the model for 12K
iterations, consuming 24 GPU hours on an A40 GPU. Fig. C.1 highlights the
importance of our multi-modal guidance scale. We demonstrate corruption edit-
ing performance for checkerboard, Brownian noise, and Gaussian noise. As seen
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(a) Ours (w/ multi-modal guidance conditioning) (c) Not using image guidance scale scheduling 

(b) Fixed image guidance scale scheduling Corrupted Images

Fig. C.1: Ablation studies on (a) using the image guidance scale as conditioning, (b)
fixed image guidance scale as 1.3, and (c) not using image guidance scale conditioning
during distillation.

in (a), applying the proposed method by combining it with a text-guidance scale
demonstrated the highest performance in corruption editing. In (b), we observe
that abnormal images are generated when image guidance scale scheduling is not
used for distillation. In (c), editing is minimal when the guidance scale is fixed
during distillation, with the images remaining close to the original semantics.
Thus, we confirm the importance of a learnable image guidance scale during the
distillation stage for effective corruption editing. It is worth noting that guidance
scheduling is considered not in CM inference, but only in DPM inference.

C.2 Using Other Fast Diffusion Schedulers

(a) DPM-Solver++ w/ Decorruptor-DPM 

Corrupted

1 NFE

4 NFEs

8 NFEs

16 NFEs

(b) LCMScheduler w/ Decorruptor-CM 

Brightness Contrast Motion Blur Zoom Blur Frost Pixelate Fog Brightness Contrast Motion Blur Zoom Blur Frost Pixelate Fog

Corrupted

1 NFE

4 NFEs

8 NFEs

16 NFEs

Fig. C.2: For several corruptions, (a) a combination of DPM and fast scheduler, (b)
results of corruption editing according to the number of NFEs through CM. Note, we
used the proposed multi-modal guidance scale conditioning method for the distillation
of CM.
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We conducted experiments based on the type of scheduler using the DPM-
Solver++ sampler [10], traditionally utilized for fast sampling. The results, as
shown in Fig.C.2 (a), indicate that the sample quality of edited images dra-
matically decreases with smaller NFEs, with catastrophic failure occurring at 1
NFE. Conversely, as shown in Fig.C.2 (b), our Decorruptor-CM demonstrated
comparable corruption editing performance at 1 NFE to that at 4 NFEs and
showed better editing quality as the NFE increased. This suggests that our pro-
posed Decorruptor-CM enables fast, high-performance corruption editing. Each
experiment was conducted with a fixed random seed.

D Failure Cases

Degraded Edited

(b) Realistic raindrop degradations

Degraded Edited

(a) Realistic fog degradations

Fig.D.1: Failure cases of our model in scenarios involving realistic image degradations.

Although our method consistently outperforms other baselines, noticeable
improvements were not observed in editing blur and pixelation corruptions. Fur-
thermore, as illustrated in Fig. D.1, our model exhibits limitations in corruption
editing when faced with more realistic degradations, such as fog or raindrops,
which could not be accurately modeled in our corruption modeling scheme. While
including paired datasets in the pre-training stage can address such realistic
degradations, finding methods to edit such images at test time without hav-
ing realistic paired images (i.e., clean and corrupted) during training remains a
challenging problem for TTA researchers.
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