Supplementary Material

This Supplementary Material contains the following parts:

1. Dataset Statistics

The summary of datasets used in this paper.

2. Additional Results on Zero-shot WSI Tumor Subtyping

Additional results on zero-shot WSI tumor subtyping for KEP variants pretrained on Quilt1M and KEP variants with CNN-based visual encoders.

3. Additional Ablation Results

Additional ablations on the weight parameter α in the loss function.

4. Discussion

Details and discussion about the soft version of max-min positive similarity, frozen knowledge encoder, and robustness towards text prompts.

5. Text Prompts

The list of text prompts used in this paper.

1 Dataset Statistics

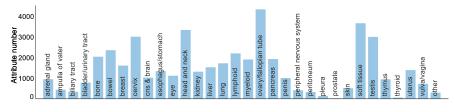


Fig. S1: The disease distribution in PathKT.

Table S1: Statistics of the dataset for knowledge encoder pretraining. Syn., Def., His. and Cyt. denote synonyms, definitions, histological and cytological features.

Attributes	Syn.	Def.	His.	Cyt.	All
# Tissue # Disease entity	$32 \\ 3,348$	$32 \\ 4,661$	$30 \\ 3,558$	$30 \\ 1,117$	$32 \\ 4,718$
# Attributes	30,950	10,097	3,558	1,117	50,470

 Table S2:
 Statistics of test datasets. Classification and subtyping suggest zero-shot

 patch-level image classification and WSI tumor subtyping, respectively.

Task	Dataset	#images	#types	tissue
	Arch-PubMed	1923	-	Multiple
Retrieval	Arch-book	1306	_	Multiple
	PathPair	9,358	1676	Multiple
	BACH	400	4	Breast
	NCT-CRC-HE-100K	100K	9	Colorectal
	KatherColon	7,180	9	Colon
Classification	LC25000	25K	5	Lung, Colon
Classification	RenalCell	36,687	5	Renal
	SICAP	12,081	4	Prostate
	SkinCancer	129,369	16	Skin
	WSSS4LUAD	4,693	3	Lung
	TCGA-BRCA-common	150	2	Breast
Subtyping	TCGA-BRCA-rare	41	4	Breast
	TCGA-NSCLC	150	2	Lung
	TCGA-RCC	225	3	Renal

 $\mathbf{2}$

2 Additional Results on Zero-shot WSI Tumor Subtyping

In this section, we provide additional results on zero-shot WSI tumor subtyping for the KEP variants that are pretrained on Quilt1M, as shown in Fig. S2. It can be seen that KEP-16 achieves better performance than QuiltNet on BRCA and NSCLC datasets. KEP-CTP can further improve the performance, especially on the RCC dataset.

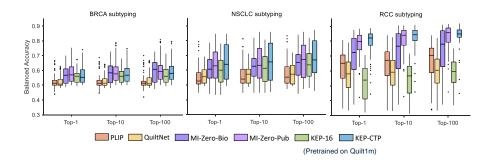


Fig. S2: The performance comparison of tumor subtyping on TCGA-BRCA, TCGA-NSCLC, and TCGA-RCC WSIs. The upper, center and lower line of each box denote the first, median, and third quartile of the performance distribution, respectively. The scattered points represent outliers. KEP-16 and KEP-CTP are trained on Quilt1M with the visual encoder initialized by BiomedCLIP [9] and CTransPath [7], respectively.

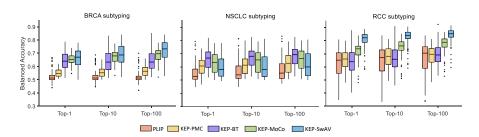


Fig. S3: The performance comparison of tumor subtyping on TCGA-BRCA, TCGA-NSCLC, and TCGA-RCC WSIs. The upper, center and lower line of each box denote the first, median, and third quartile of the performance distribution, respectively. The scattered points represent outliers. KEP-PMC is trained on OpenPath with the visual encoder initialized by PMC-CLIP [4], KEP-BT, KEP-MoCo, and KEP-SwAV are trained on OpenPath with the visual encoder initialized by PathSSL-BT, PathSSL-MoCo, and PathSSL-SwAV [3], respectively.

Furthermore, we change the backbone of KEP's visual encoder to convolutional neural networks and initialize it with PMC-CLIP [4] and PathSSL [3]. PMC-CLIP refers to a visual-language model pretrained on medical image-text pairs crawled from PubMed papers. PathSSL consists of PathSSL-BT, PathSSL-MoCo, and PathSSL-SwAV, which are self-supervised models pretrained on TCGA pathology images with different SSL strategies, including Barlow Twins [8], MoCo v2 [2], and SwAV [1]. Except for the visual encoder, all training details are consistent with the main text.

Fig. S3 shows the performance comparison between PLIP and different KEP variants pretrained on OpenPath. It can be seen that almost all KEP variants outperform PLIP on all datasets, suggesting that our pretraining approach can seamlessly generalize to CNN-based visual encoders with the same parameter configuration. In particular, KEP-MoCo and KEP-SwAV significantly improve the subtyping performance on breast and renal tumors.

3 Additional Ablation Results

Table S3 shows that KEP achieves the best performance on KatherColon dataset when the loss weight α is set to 0.3.

Table S3: Experimental results of the ablation study on the loss weight α . Bold fonts suggest the best performance.

α	0.01	0.05	0.1	0.3	0.5	0.7	0.9
Median	0.531	0.524	0.531	0.563	0.556	0.496	0.481
Q1	0.478	0.480	0.472	0.505	0.497	0.447	0.428
Q3	0.589	0.587	0.571	0.610	0.595	0.540	0.533

4 Discussion

Soft Version of Max-min Positive Similarity.

$$S_i^+ = \max_p \min_q \left\langle \mathbf{z}_p^i, \mathbf{z}_q^i \right\rangle \approx \tau \log \left(\sum_{p=1}^k e^{\frac{\min_q \left\langle \mathbf{z}_p^i, \mathbf{z}_q^i \right\rangle}{\tau}} \right)$$
(S1)

$$\min_{q} \left\langle \mathbf{z}_{p}^{i}, \mathbf{z}_{q}^{i} \right\rangle \approx -\tau \log \left(\sum_{q=1}^{k} e^{-\frac{\left\langle \mathbf{z}_{p}^{i}, \mathbf{z}_{q}^{i} \right\rangle}{\tau}} \right)$$
(S2)

$$S_i^+ \approx \tau \log \left(\sum_{p=1}^k \frac{1}{\sum_{q=1}^k e^{-\frac{\langle \mathbf{z}_p^i, \mathbf{z}_q^i \rangle}{\tau}}} \right)$$
(S3)

Frozen Knowledge Encoder. Here, we discuss the advantages of the frozen knowledge encoder. Although the visual-language pretraining can start in a well-defined pathology embedding space curated by the knowledge initialization of

the text encoder, the free text from the training pairs may impair the knowledge structure built from the pathology knowledge tree, leading to overfitting on the training image-text pairs. As a consequence, the frozen knowledge encoder across the entire training period holds two advantages: (i) the text embedding from this branch acts as a frozen knowledge continuously distilling to the active text encoder, which, therefore, can substantially keep the entire alignment procedure in the well-structured knowledge embedding space; (ii) the additional contrastive loss between the active text encoder and this branch serves as a regularization term to prevent the overfitting problem.

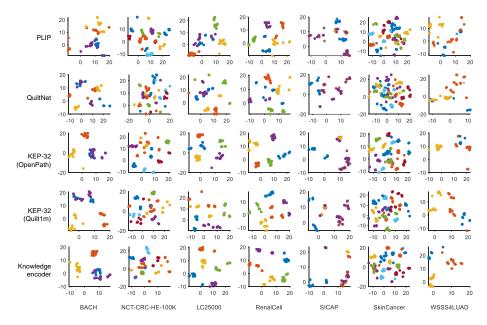


Fig. S4: The UMAP visualization of prompt embeddings on different datasets. Each color represents a class of the dataset and consists of 100 points corresponding to the random 100 prompts for each category. NCT-CRC-HE-100K and KatherColon share the same text prompts. KEP-32 (OpenPath) and KEP-32 (Quilt1M) denote the prompt embeddings generated from the text encoder pretrained on the dataset of OpenPath and Quilt1M, respectively. Knowledge encoder denotes the prompt embeddings from the frozen knowledge encoder.

Robustness towards Text Prompts. To show the robustness of our approach towards different text prompts, we use UMAP [6] to visualize the prompt embeddings for each class, as shown in Fig. S4. It can be concluded that the prompt embeddings of PLIP and QuiltNet suffer from high similarities between different classes, especially in the dataset of BACH, LC25000, SICAP, and WSSS4LUAD, which therefore causes large ambiguities for zero-shot classification. In contrast, the embeddings generated by our proposed frozen knowledge encoder (denoted

as Knowledge encoder), are well-separated in most datasets, With the knowledge guidance, the text encoder of KEP, denoted by KEP-32, also outputs well-separated prompt embeddings of different classes, suggesting that pathology knowledge can substantially improve the structure of text embedding space.

5 Text Prompts

In this section, we list all text prompts used in this paper. The templates are shown in Tab. S4. The synonyms for the patch-level dataset are shown in Tab. S5-S11. The class names for TCGA WSIs are exhibited in Tab. S12-S14.

Table S4: Prompt templates used in this paper, which are consistent with CONCH [5], CLASSNAME is replaced by the names/synonyms of classes.

CLASSNAME. a photomicrograph showing CLASSNAME. a photomicrograph of CLASSNAME. an image of CLASSNAME. an image showing CLASSNAME. an example of CLASSNAME. CLASSNAME is shown. this is CLASSNAME. there is CLASSNAME. a histopathological image showing CLASSNAME. a histopathological image of CLASSNAME. a histopathological photograph of CLASSNAME. a histopathological photograph showing CLASSNAME. shows CLASSNAME. presence of CLASSNAME. CLASSNAME is present. an H&E stained image of CLASSNAME. an H&E stained image showing CLASSNAME. an H&E image showing CLASSNAME. an H&E image of CLASSNAME. CLASSNAME, H&E stain. CLASSNAME, H&E.

Table S5: Class names of BACH.

Class	Names/Synonyms
Benign	breast non-malignant benign tissue; breast benign tissue; non-malignant benign tissue of breast $% \left({{{\mathbf{x}}_{i}}} \right)$
InSitu	breast malignant in-situ carcinoma; breast in-situ carcinoma; malignant carcinoma in-situ of breast
Invasive	breast malignant invasive carcinoma; breast invasive carcinoma; invasive carcinoma of breast
Normal	normal breast tissue; breast normal tissue; breast non-cancerous tissue

 Table S6: Class names of NCT-CRC-HE-100K and KatherColon from CONCH [5].

Class	Names/Synonyms			
ADI	adipose; adipose tissue; adipocytes; fat; fat cells			
BACK	background; penmarking; empty space; background artifacts			
DEB	debris; colorectal adenocarcinoma debris and necrosis; necrosis; necrotic debris			
LYM	lymphocytes; lymphoid aggregate; immune cells; lymphoid infiltrate; inflammatory cells			
MUC	mucus; mucin; mucus pool; mucin pool			
MUS	smooth muscle; smooth muscle tissue; muscle; muscularis propria; muscularis mucosa			
NORM	normal colon mucosa; uninvolved colon mucosa; benign colon mucosa; benign epithelium $% \mathcal{A} = \mathcal{A}$			
STR	cancer-associated stroma; tumor-associated stroma; stromal cells; stromal tissue; stroma			
TUM	colorectal adenocarcinoma epithelium; colorectal adenocarcinoma; tumor; adenocarcinoma; malignant epithelium			

Table S7: Class names of LC25000.

Class	Names/Synonyms	
lung_aca	lung adenocarcinoma; adenocarcinoma of the lung; lung cancer, adenocarcinoma	
lung_n	benign lung; benign lung tissues; non-malignant lung tissue	
lung_scc	lung squamous cell carcinoma; squamous-cell carcinoma of the lung; squamous cell lung cancer	
colon_aca colon adenocarcinoma; adenocarcinoma of the colon; colon cancer, adenocar cinoma		
colon_n	benign colon; benign colonic tissue; non-malignant colon tissue	

Table S8: Class names of RenalCell.

Class	Names/Synonyms
blood	red blood cells; red blood corpuscles; red cells; erythroid cells
cancer	non-tumor; normal tissue; non-cancerous tissue
normal	renal cancer; renal tumor; renal neoplasm; renal carcinoma
other	torn adipose necrotic tissue; torn adipose tissue, necrosis; adipose necrotic tissue
	muscle fibrous stroma blood vessels; blood vessels, muscle fibrous stroma; muscle fibers and blood vessels in stroma

Table S9: Class names of SICAP from CONCH [5].

Class	Names/Synonyms			
NC	non-cancerous tissue; non-cancerous prostate tissue; benign tissue; benign glands; benign prostate tissue; benign prostate glands			
G3	gleason grade 3; gleason pattern 3; prostate cancer, gleason grade 3; prostate cancer, gleason pattern 3; prostate adenocarcinoma, well-differentiated; well-differentiated prostatic adenocarcinoma			
G4	gleason grade 4; gleason pattern 4; prostate cancer, gleason grade 4; prostate cancer, gleason pattern 4; prostate adenocarcinoma, moderately differentiated; moderately differentiated prostatic adenocarcinoma			
G5	gleason grade 5; gleason pattern 5; prostate cancer, gleason grade 5; prostate canc gleason pattern 5; prostate adenocarcinoma, poorly differentiated; poorly differentiated ated prostatic adenocarcinoma			
Tumor	${\bf r}$ prostatic adenocarcinoma; adenocarcinoma; prostate cancer; tumor tissue; cancerous tissue			

Table S10: Class names of WSSS4LUAD from CONCH [5].

Class Names/Synonyms		
normal non-tumor; normal tissue; non-cancerous tissue		
stroma tumor-associated stroma; cancer-associated stroma; tumor-associated stromal tissue; cancer-associated stromal tissue		
tumor tumor tissue; tumor epithelial tissue; cancerous tissue		

 Table S11: Class names of SkinCancer.

Class	Names/Synonyms		
necrosis	necrosis; necrotic tissue; necrotic cells		
skeletal	skeletal muscle; skeletal muscle cells; skeletal muscle tissue		
sweatglands	eccrine sweat glands; merocrine glands; skin eccrine sweat glands		
vessel	vessels; blood vessels; vessel		
elastosis	elastosis; elastosis of skin; skin elastosis		
chondraltissue	chondral tissue; chondral tissue of skin; skin chondral tissue		
hairfollicle	hair follicle; hair follicle of skin; skin hair follicle		
epidermis	epidermis; skin epidermis; epidermal cells		
nerves	nerves; nerve fibers; nerve axons		
subcutis	subcutis; subcutaneous tissue; skin subcutis; hypodermis; hypoderm		
dermis	dermis; skin dermis; corium; skin corium		
sebaceousgland	s sebaceous; sebaceous gland; skin sebaceous		
sqcc	squamous-cell carcinoma; cutaneous squamous-cell carcinoma; squamous-cell carcinoma of the skin; squamous-cell skin cancer		
melanoma	melanoma in-situ; malignant melanoma; cutaneous melanoma		
bcc	basal-cell carcinoma; basal-cell cancer; basal-cell tumor		
naevus	naevus; mole; skin nevus		

Table S12: Class names of TCGA-BRCA, which are consistent with CONCH [5].

Class Names/synonyms		
IDC	invasive ductal carcinoma; breast invasive ductal carcinoma; invasive ductal carcinoma of the breast; invasive carcinoma of the breast, ductal pattern; breast IDC	
ILC	invasive lobular carcinoma; breast invasive lobular carcinoma; invasive lobular carcinoma of the breast; invasive carcinoma of the breast, lobular pattern; breast ILC	

Table S13: Class names of TCGA-NSCLC, which are consistent with CONCH [5].

Class N	Names/synonyms
LUAD a	adenocarcinoma; lung adenocarcinoma; adenocarcinoma of the lung; LUAD
	squamous cell carcinoma; lung squamous cell carcinoma; squamous cell carcinoma of the lung; LUSC

Table S14: Class names of TCGA-RCC, which are consistent with CONCH [5].

Class	Names/synonyms
CCRCC	c clear cell renal cell carcinoma; renal cell carcinoma, clear cell type; renal cell carcinoma of the clear cell type; clear cell RCC
PRCC	papillary renal cell carcinoma; renal cell carcinoma, papillary type; renal cell carcinoma of the papillary type; papillary RCC
CHRCC	chromophobe renal cell carcinoma; renal cell carcinoma, chromophobe type; renal cell carcinoma of the chromophobe type; chromophobe RCC

References

- Caron, M., Misra, I., Mairal, J., Goyal, P., Bojanowski, P., Joulin, A.: Unsupervised learning of visual features by contrasting cluster assignments. Advances in Neural Information Processing Systems (NeurIPS) 33, 9912–9924 (2020)
- Chen, X., Fan, H., Girshick, R., He, K.: Improved baselines with momentum contrastive learning. arXiv preprint arXiv:2003.04297 (2020)
- Kang, M., Song, H., Park, S., Yoo, D., Pereira, S.: Benchmarking self-supervised learning on diverse pathology datasets. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). pp. 3344–3354 (2023)
- Lin, W., Zhao, Z., Zhang, X., Wu, C., Zhang, Y., Wang, Y., Xie, W.: Pmc-clip: Contrastive language-image pre-training using biomedical documents. In: International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI) (2023)
- Lu, M.Y., Chen, B., Williamson, D.F., Chen, R.J., Liang, I., Ding, T., Jaume, G., Odintsov, I., Zhang, A., Le, L.P., et al.: Towards a visual-language foundation model for computational pathology. arXiv preprint arXiv:2307.12914 (2023)
- 6. McInnes, L., Healy, J., Melville, J.: Umap: Uniform manifold approximation and projection for dimension reduction. arXiv preprint arXiv:1802.03426 (2018)
- Wang, X., Yang, S., Zhang, J., Wang, M., Zhang, J., Yang, W., Huang, J., Han, X.: Transformer-based unsupervised contrastive learning for histopathological image classification. Medical Image Analysis 81, 102559 (2022)
- Zbontar, J., Jing, L., Misra, I., LeCun, Y., Deny, S.: Barlow twins: Self-supervised learning via redundancy reduction. In: International Conference on Machine Learning (ICML). pp. 12310–12320. PMLR (2021)
- Zhang, S., Xu, Y., Usuyama, N., Bagga, J., Tinn, R., Preston, S., Rao, R., Wei, M., Valluri, N., Wong, C., et al.: Large-scale domain-specific pretraining for biomedical vision-language processing. arXiv preprint arXiv:2303.00915 (2023)

10