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Abstract. Contemporary color difference (CD) measures for photo-
graphic images typically operate by comparing co-located pixels, patches
in a “perceptually uniform” color space, or features in a learned latent
space. Consequently, these measures inadequately capture the human
color perception of misaligned image pairs, which are prevalent in digital
photography (e.g ., the same scene captured by different smartphones).
In this paper, we describe a perceptual CD measure based on the multi-
scale sliced Wasserstein distance, which facilitates efficient comparisons
between non-local patches of similar color and structure. This aligns
with the modern understanding of color perception, where color and
structure are inextricably interdependent as a unitary process of per-
ceptual organization. Meanwhile, our method is easy to implement and
training-free. Experimental results indicate that our CD measure per-
forms favorably in assessing CDs in photographic images, and consis-
tently surpasses competing models in the presence of image misalign-
ment. Additionally, we empirically verify that our measure functions as
a metric in the mathematical sense, and show its promise as a loss func-
tion for image and video color transfer tasks. The code is available at
https://github.com/real-hjq/MS-SWD.

Keywords: Color difference assessment · Sliced Wasserstein distance ·
Multiscale analysis

1 Introduction

Measuring perceptual color differences (CDs) in photographic images is a pre-
requisite in many image processing and computer vision tasks [43]. The pre-
dominant and scientifically well-founded theme is the pursuit of a perceptually
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Fig. 1: Which image is closer to the reference in terms of color appearance? Con-
temporary CD measures that seek co-located comparisons often fail to explain human
judgments. The proposed MS-SWD measure based on the multiscale sliced Wasserstein
distance aligns with human color perception in these four challenging cases of image
misalignment: global motion due to camera movement (first row), local motion due to
object displacement (second row), horizontal flipping (third row), and similar natural
scenes from different viewpoints (last row).

uniform color space. Within such a space, numerical distances of two color points
correspond directly to perceptual differences, regardless of their positions within
the color spectrum. CIELAB and CIELUV, introduced by the Commission In-
ternationale de l’Éclairage (CIE) in 1976, represent two of the pioneering per-
ceptually uniform color spaces [31]. CD metrics (e.g ., CIELAB ∆E⋆

ab) derived
from these color spaces have been rapidly adopted in various industrial sectors.
However, subsequent analysis revealed that these color spaces are insufficient for
accurately quantifying small to medium CDs [18]. In response, more sophisti-
cated metrics (e.g ., CIEDE2000 [29]) were introduced to address various aspects
of perceptual non-uniformity, whose rectified parameters were determined by
fitting chromaticity discrimination (i.e., MacAdam) ellipses [29] obtained from
subjective experiments.
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Traditional CD metrics have demonstrated efficacy in predicting perceived
differences between uniformly colored patches [33]. A straightforward adaptation
for assessing photographic images of natural scenes involves averaging the CDs
between co-located pixels [9]. However, this naïve extension shows a marginal
correlation with human color perception, particularly when various sources of
image misalignment are present (see Fig. 1).

Over the past decades, an extensive body of psychophysical and perceptual
studies [2, 6, 26, 45] has provided a more compelling understanding of color per-
ception: color, structure, and motion are inextricably interdependent as a unitary
process of perceptual organization [22,42]. Drawing inspiration from these scien-
tific insights, researchers have started to incorporate spatial modeling as a crucial
component of CD measures [9, 21, 34, 51–53, 57]. For instance, Zhang and Wan-
dell [57] described a spatial extension of CIELAB ∆E∗

ab by applying lowpass
filtering in an opponent color space as a preprocessing step. Wang et al . [52]
adopted a deep learning approach, training a lightweight neural network for
“color space transform”, followed by a learned Mahalanobis metric for distance
calculation. Again, these models are designed to compare co-located patches or
features, making them susceptible to image misalignment (see Fig. 1).

In this paper, we introduce a perceptual CD measure that facilitates efficient
comparisons between non-local patches of similar color appearance and struc-
tural information. Our measure is primarily inspired by the seminal work of
Elnekave and Weiss [17], who generated natural images by direct patch distribu-
tion matching. In a similar spirit, we compute the perceptual CD between two
photographic images as the statistical distance of their patch distributions across
multiple scales. To compare two images, we start by building two Gaussian pyra-
mids in a perceptually more uniform CLELAB color space. Next, we opt for the
sliced Wasserstein distance (SWD) [38] to calculate the CD between the images
at each scale. Finally, we average these CD values across all scales to obtain the
overall CD estimate. The resulting measure, the multiscale SWD (MS-SWD),
is conceptually simple and respects the modern view that color and structure
interact inextricably in visual cortical processing. Meanwhile, MS-SWD is easy
to implement and training-free.

We validate the proposed MS-SWD on the large-scale SPCD dataset [52].
Remarkably, even without training, MS-SWD excels in evaluating CDs in photo-
graphic images, especially when there is large image misalignment. Additionally,
we empirically show that MS-SWD behaves as a metric in the mathematical
sense, and serves as a valid loss function for perceptual optimization in image
and video color transfer tasks.

2 Related Work

In this section, we present an overview of two areas of research closely related
to our work: CD measures and patch matching methods in computer vision.
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2.1 CD Measures

The development of CD measures has a rich history. In 1976, CIE recommended
the CIELAB color space [39], in which the Euclidean distance, ∆E∗

ab, has been
widely accepted as the de facto CD metric. Shortly after its introduction, re-
searchers realized that CIELAB is not perfectly perceptually uniform. This led
to the proposal of more sophisticated metrics such as CMC (l:c) [12], CIE94 [32],
and CIEDE2000 [29]. These metrics generally assume a standard viewing envi-
ronment, e.g ., using the standard illuminant D65 and the 2◦ standard observer,
with reference to a white background, and do not explicit account for vary-
ing viewing conditions and ambient environments. To address this, metrics like
CIECAM02 [30] and CIECAM16 [27] were developed to predict changes in color
appearance under varying viewing conditions. CIELAB-based methods are best
suited for matching uniformly colored patches.

When assessing CDs in photographic images of natural scenes, humans tend
to compare similar regions, co-located or not, in terms of color appearance and
structural information within a broader spatial context [22,42]. Zhang and Wan-
dell [57] made one of the first attempts to extend CIELAB to S-CIELAB by
incorporating spatial lowpass filtering as front-end preprocessing. Choudhury
et al . [11] designed preprocessing filters based on the contrast sensitivity func-
tions (CSFs) of the human eye. Hong et al . [21] computed the weighted sum
of pixel-wise CDs, prioritizing spatially homogeneous regions that cover large
areas or have large predicted CDs. Similarly, Ortiz-Jaramillo et al . [34] weighted
patch-wise CDs using an image segmentation map computed from local binary
patterns. The effectiveness of these spatially extended CD measures has been
demonstrated only on small-scale private datasets with a few hand-picked im-
ages. Close to ours, Lee et al . [25] enabled non-local CD assessment by histogram
intersection1, which, however, completely throws away spatial information that
is crucial for human color perception. Wang et al . [52] demonstrated on the
large-scale SPCD dataset that these simple spatial extensions may not yield
noticeable performance improvements. As a result, they took a deep learning
approach, and trained CD-Net [52] and CD-Flow [9] directly on SPCD. Inspired
by [17], we tackle CD assessment of photographic images through multiscale
patch distribution matching. MS-SWD enables efficient non-local patch compar-
isons without using any specialized training.

2.2 Patch Matching Methods

Patch matching is a fundamental technique in computer vision with diverse ap-
plications such as image denoising, image stitching, texture synthesis, image and
video completion, 3D reconstruction, and object recognition. In patch matching,
the search for patch nearest neighbors is often computationally intensive due to
the need to explicitly establish bidirectional mappings [5,24,47]. In recent years,

1 Histogram intersection measures the similarity between two normalized histograms
by summing the minimum values of corresponding bins.
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Fig. 2: System diagram of the proposed MS-SWD for perceptual CD assessment.

generative adversarial networks (GANs) and their derivatives have largely over-
taken traditional patch matching methods. SinGAN [41] and InGAN [46] are
representative examples that indirectly match patch distributions of two images
by training patch-based discriminators. To seek a direct (patch) distribution
matching without involving time-consuming training, SWD has been explored
in various image generation tasks, in the raw pixel domain [13, 17, 23], wavelet
domain [38], and VGG feature domain [40]. Our MS-SWD measure draws sig-
nificant inspiration from [17] but for a different purpose (i.e., CD assessment)
with a different motivation (i.e., non-local patch comparison).

3 MS-SWDs as Perceptual CD Measures

In this section, we first introduce the necessary preliminaries - SWD, and then
present in detail our MS-SWD measure for perceptual CD assessment. Fig. 2
shows the system diagram of MS-SWD.

3.1 SWD

Among various statistical distances between two probability distributions, the
Wasserstein distance enjoys several advantages, including 1) intuitive interpre-
tation (as the minimum “cost” of transforming one distribution into another), 2)
sensitivity to distribution shape (by computing the actual geometric distances
between points in the distributions), 3) robustness to support differences (even
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when the supports of the two distributions do not overlap), and 4) smooth gra-
dients for optimization [4]. The 1-Wasserstein distance (also known as the earth
mover’s distance) between two probability distributions µ and ν is defined as

WD(µ, ν) = inf
γ∈Γ (µ,ν)

E(x,y)∼γ∥x− y∥1, (1)

where Γ (µ, ν) denotes the set of all joint distributions (couplings) γ whose
marginals are µ and ν. The Wasserstein distance is notoriously challenging to im-
plement due to its high computational complexity, especially when working with
empirical distributions represented by high-dimensional samples2. To reduce the
computational complexity and improve the scalability and robustness to high di-
mensions, Rabin et al . [38] introduced SWD by projecting the high-dimensional
data onto a lower-dimensional subspace and then calculating the Wasserstein
distance therein. When the projected space is one-dimensional, SWD can be
mathematically expressed as

SWD(U ,V ) = Ew∼U(SN−1)WD(Uw,V w) , (2)

where U ,V ∈ RM×N , M is the number of samples to represent the empirical
distributions, and N is the sample dimension. SN−1 :=

{
w ∈ RN×1 | ∥w∥22 = 1

}
for any N ≥ 2 is the unit hyper-sphere, U

(
SN−1

)
is the uniform distribution

defined over SN−1, and Ew is the expectation over the random unit vector w. In
Eq. (2), the one-dimensional Wasserstein distance can be efficiently calculated
by sorting the projected samples and computing the ℓ1-distance between the
sorted samples [44]. SWD typically reduces the computational complexity from
O(M2.5) [36] to O(M logM).

3.2 MS-SWD for CD Assessment

Let X ∈ RH×W×3 and Y ∈ RH×W×3 be two photographic images that are
possibly misaligned, where H and W are the image height and width, respec-
tively. We first construct two Gaussian pyramids, {X(i)}Ki=1 and {Y (i)}Ki=1 by
iteratively applying a Gaussian filter and downsampling the filtered image by a
factor of R, where X(i),Y (i) ∈ R⌊H/2i−1⌋×⌊W/2i−1⌋×3 and K denotes the num-
ber of scales. We then represent X(i) and Y (i), for 1 ≤ i ≤ K, in the CIELAB
color space, where we observe significant performance gains over the sRGB color
space. Although spatial pre-filtering of X(i) and Y (i) based on CSFs [11, 57]
can also be applied, it does not yield noticeable improvements and is therefore
excluded from our current implementation.

For ease of mathematical description, we also use an alternative notation for
X(i), denoted as X

(i)
col ∈ RM×(N×3), in which we rearrange the M overlapping

image patches of size
√
N×

√
N×3 into columns. The transformation from X(i)

to X
(i)
col can be efficiently achieved using the img2col() operator, a common tool

in image processing for implementing convolutions.
2 This corresponds to solving a large-scale linear programming problem, which is

painfully slow.
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Algorithm 1 MS-SWD for Perceptual CD Assessment
1: Input: A pair of photographic images that are possibly misaligned, (X,Y ), the

number of scales, K, and the number of random projections, P
2: Output: Predicted CD, ∆E(X,Y )
3: Build Gaussian pyramids {X(i)}Ki=1 and {Y (i)}Ki=1, where X(1) = X and Y (1) = Y
4: Convert {X(i)}Ki=1 and {Y (i)}Ki=1 from the sRGB to CIELAB color space
5: ∆E ← 0
6: for i← 1 to K do
7: for j ← 1 to P do
8: w ∼ U(SN×3−1)
9: w ← unflat(w) ▷ “unflat()” converts a vector into a tensor

10: x← flat(Conv2d(X(i),w, 'reflect')) ▷ “flat()” is the inverse of “unflat()”
11: y ← flat(Conv2d(Y (i),w, 'reflect'))
12: ∆E ← ∆E + 1

M
∥ sort(x)− sort(y)∥1

13: end for
14: end for
15: ∆E(X,Y )← 1

KP
∆E

Fig. 3: The sort() operator in MS-SWD enables efficient comparisons of non-local
patches with similar color appearance and structural information. Each curve repre-
sents a different random projection; the patches at the two ends of the curve share the
same rank (i.e., correspondence) after sorting, thus subject to CD calculation.

After generating the Gaussian pyramids {X(i)
col}Ki=1 and {Y (i)

col }Ki=1 in
CIELAB, we calculate the predicted CD, ∆E(X,Y ), between the two images
X and Y by averaging SWD from Eq. (2) across all scales:

∆E(X,Y ) =
1

K

K∑
i=1

SWD
(
X

(i)
col,Y

(i)
col

)
=

1

KP

K∑
i=1

P∑
j=1

WD
(
X

(i)
colw

(j),Y
(i)
col w

(j)
)
,

(3)
where the expectation in Eq. (2) is approximated by the average over a set of
P random unit projections {w(j)}Pj=1. It is important to note that the matrix
multiplication, X(i)

colw
(j) (and Y

(i)
col w

(j)) can be implemented by a single convo-
lution. The computational procedure of MS-SWD for perceptual CD assessment
is given in Algorithm 1, in which we particularly emphasize the importance of
the sort() operator in Step 12. Provided that the two images differ primarily in
color appearance, patches of similar color and structure, whether co-located or
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(a) Reference X (b) Initial Yinit (c) 1 scale (d) 2 scales

(e) 3 scales (f) 4 scales (g) 5 scales (h) 6 scales

Fig. 4: Illustration of multiscale analysis in ensuring pixel-level image fidelity. Images
(c)-(h) are generated by minimizing ∆E(X,Y ) with respect to Y to match (a) the
reference image X, starting from (b) the initial Gaussian noise image Yinit and for
different values of K.

not, are likely to have similar ranks (i.e., correspondences) in the projected space
after sorting, thus subject to CD calculation. This 1) facilitates efficient non-local
patch comparisons without the need to compute patch nearest neighbors [17],
and meanwhile 2) respects the modern view of human color perception [2] that
color and structure are inextricably interdependent as a unitary process of per-
ceptual organization [22,42].

Multiscale analysis is another crucial aspect of our approach, although,
through our internal subjective testing, it seems that human color perception
of photographic images remains fairly stable under varying viewing conditions
related to image scale (e.g ., display resolution and viewing distance). This is be-
cause matching the single-scale patch distribution is unlikely to guarantee image
fidelity at the pixel level. As illustrated in Fig. 4, we begin with a Gaussian noise
image Yinit of the same size as the reference image X, and iteratively refine Yinit

by minimizing Eq. (3) of varying K using gradient-based optimization. With a
limited number of scales, the optimized image fails to recover the structural de-
tails of the reference, and exhibits perceptually annoying distortions (e.g ., object
discontinuity), despite the MS-SWD value being close to zero. Our empirical ob-
servations indicate that for a 256×256 image, using five scales suffices to recover
the reference image within the human perceptual threshold.

4 Experiments

In this section, we first compare the proposed MS-SWD with existing CD mea-
sures on SPCD [52,55]. We then perform a series of ablation studies to validate
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Table 1: Performance evaluation of CD measures on the SPCD dataset. The top
section lists standard CD formulae derived from uniformly colored patches. The second
section contains CD measures adapted for photographic images. The third section
includes general-purpose image quality models. The fourth section consists of just-
noticeable difference measures. The top two methods are highlighted in boldface.

Method Perfectly aligned pairs Non-perfectly aligned pairs All
STRESS↓ PLCC↑ SRCC↑ STRESS↓ PLCC↑ SRCC↑ STRESS↓ PLCC↑ SRCC↑

CIELAB [39] 31.280 0.790 0.774 30.009 0.683 0.577 31.952 0.714 0.665
CIE94 [32] 34.643 0.786 0.772 30.147 0.692 0.572 34.305 0.709 0.654
CIEDE2000 [29] 29.862 0.827 0.821 30.650 0.653 0.561 31.431 0.725 0.685
CIECAM02 [30] 24.779 0.823 0.820 29.339 0.679 0.612 27.151 0.748 0.725
CIECAM16 [27] 23.901 0.818 0.820 29.934 0.661 0.600 26.817 0.743 0.726
S-CIELAB [57] 29.977 0.824 0.819 32.057 0.627 0.522 32.760 0.699 0.657
Lee05 [25] 58.652 0.728 0.735 56.515 0.636 0.637 58.031 0.697 0.710
Hong06 [21] 60.361 0.732 0.811 57.466 0.538 0.462 61.242 0.609 0.634
Ouni08 [35] 29.864 0.826 0.821 30.657 0.653 0.561 31.435 0.722 0.685
PieAPP [37] 41.550 0.502 0.511 39.619 0.483 0.410 41.896 0.467 0.451
LPIPS [56] 40.972 0.767 0.766 46.402 0.272 0.237 64.407 0.448 0.396
FLIP [3] 29.368 0.743 0.714 27.559 0.730 0.638 29.197 0.715 0.663

DISTS [16] 33.417 0.725 0.722 33.244 0.571 0.495 37.236 0.582 0.549
A-DISTS [14] 38.190 0.661 0.663 42.488 0.387 0.365 51.360 0.424 0.384
ST-LPIPS [20] 37.234 0.810 0.813 43.912 0.399 0.362 50.579 0.535 0.512
DeepWSD [28] 31.760 0.539 0.540 43.342 0.055 0.015 49.705 0.136 0.180
Chou07 [10] 52.463 0.780 0.793 37.704 0.645 0.518 49.581 0.667 0.615
Butteraugli [1] 42.691 0.615 0.589 48.764 0.205 0.193 54.801 0.372 0.354
PIM-5 [7] 58.737 0.685 0.695 48.454 0.556 0.482 60.346 0.455 0.480
MS-SWD (Ours) 34.040 0.778 0.755 28.363 0.841 0.805 32.781 0.794 0.772

the key design choices of MS-SWD. Finally, we explore the use of MS-SWD in
guiding image and video color transfer.

4.1 Main Experiments

SPCD Dataset. We conduct the main experiments on SPCD [52,55], which is
the largest image dataset currently available for CD assessment. SPCD comprises
30, 000 photographic image pairs that span diverse real-world picture-taking sce-
narios, featuring great variations in foreground elements, background complex-
ity, lighting and weather conditions, and camera modes. Of these 30, 000 pairs,
10, 005 are non-perfectly aligned, captured by six flagship smartphones, while
the remaining pairs are perfectly aligned with CDs induced through simulated
color alterations.
Implementation Details. MS-SWD does not contain any trainable parame-
ters; all its hyper-parameters are inherited directly from previous studies. These
include the number of scales K = 5, the downsampling factor R = 2, and the
filter size

√
N = 11 with a stride of 1 from the MS-SSIM paper [54], and the num-

ber of random unit projections P = 128 from the GPDM paper [17]. Throughout
all experiments, we resize the images to 256× 256 for testing.
Evaluation Criteria. We employ three evaluation criteria: standardized resid-
ual sum of squares (STRESS) [19], Pearson linear correlation coefficient (PLCC),
and Spearman’s rank correlation coefficient (SRCC). STRESS assesses the pre-
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diction accuracy and statistical significance, and is defined as

STRESS = 100

√√√√∑I
i=1(∆Ei − F∆Vi)2

F 2
∑I

i=1(∆Vi)2
, (4)

where I is the number of test pairs, and F is the scale correction factor between
predicted CDs, ∆E and ground-truth CDs, ∆V :

F =

∑I
i=1(∆Ei)

2∑I
i=1 ∆Ei∆Vi

. (5)

A smaller value of STRESS indicates a tighter fit. PLCC and SRCC measure the
prediction linearity and monotonicity, respectively, with a larger value indicating
better correlation. Before calculating PLCC, we linearize model predictions by
fitting a four-parameter logistic function, as suggested in [50].
SPCD Results. We compare MS-SWD against 19 state-of-the-art methods,
categorized as follows: 1) CD metrics derived from uniformly colored patches,
including CIELAB [39], CIE94 [32], CIEDE2000 [29], CIECAM02 [30], and
CIECAM16 [27]; 2) CD measures designed for photographic images, including
S-CIELAB [57], Lee05 [25], Hong06 [21], and Ouni08 [35]; 3) general-purpose
image quality models, including PieAPP [37], LPIPS [56], FLIP [3], DISTS [16],
A-DISTS [14], ST-LPIPS [20], and DeepWSD [28]; 4) just-noticeable differ-
ence methods, including Chou07 [10], Butteraugli [1], and PIM-5 [7]. We use
the official implementations provided by the original authors for CIECAM02,
CIECAM16, Butteraugli, PIM-5, and the seven general-purpose image quality
models. For the remaining methods, we use the implementations provided by
Jaramillo et al . [34].

From the results in Table 1, we have several key observations. First, the ma-
jority of CD methods exhibit diminished performance for non-perfectly aligned
pairs due to co-located comparisons, even when the misalignment is impercep-
tible to the human eye. Second, CD formulae recommended by CIE, along with
their spatial extensions S-CIELAB and Ouni08, deliver outstanding correlation
with human color perception, especially on perfectly aligned pairs. This pro-
vides a strong indication of the practical applicability of the CIELAB color
space. Third, general-purpose image quality models and just-noticeable differ-
ence measures fail to accurately predict CDs in photographic images. Finally,
the proposed MS-SWD significantly surpasses all competing methods on the
non-perfectly aligned pairs, and achieves the overall best performance in terms
of PLCC and SRCC without training on perceptual CD data. This highlights
the importance of non-local patch comparisons in CD assessment.
Robustness Results to Geometric Transformations. To further verify the
robustness of MS-SWD to geometric transformations, we follow the experimen-
tal procedure in [9], and augment SPCD by 1) randomly shifting one image
relative to the other by up to 5% pixels in both axes, 2) enlarging one image
by a factor of 1.1, and 3) horizontally flipping one image (see the third row of
Fig. 1). These transformations are applied to the non-perfectly aligned pairs in
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Table 2: Performance evaluation of CD measures on the augmented SPCD dataset by
geometric transformations. “Translation” involves randomly shifting one image relative
to the other by up to 5% of pixels in both axes. “Dilation” refers to enlarging one image
by a factor of 1.1. “Flipping” means horizontally flipping one image.

Method Translation Dilation Flipping
STRESS↓ PLCC↑ SRCC↑ STRESS↓ PLCC↑ SRCC↑ STRESS↓ PLCC↑ SRCC↑

CIELAB [39] 38.271 0.386 0.304 38.667 0.361 0.260 42.956 0.168 0.094
CIE94 [32] 37.271 0.435 0.318 37.539 0.419 0.274 41.715 0.210 0.113
CIEDE2000 [29] 38.365 0.377 0.284 38.619 0.362 0.240 42.770 0.170 0.079
S-CIELAB [57] 39.048 0.349 0.253 39.262 0.332 0.216 42.960 0.151 0.065
Lee05 [25] 56.466 0.632 0.633 56.529 0.636 0.637 56.515 0.636 0.637
Hong06 [21] 57.521 0.297 0.206 55.609 0.284 0.177 56.718 0.154 0.098
LPIPS [56] 45.853 0.048 0.018 43.882 0.083 0.109 43.545 0.074 0.104
DISTS [16] 37.303 0.362 0.289 37.519 0.317 0.252 37.287 0.316 0.233
CD-Net [52] 29.737 0.659 0.567 29.848 0.656 0.542 39.325 0.295 0.221
CD-Flow [9] 29.188 0.719 0.569 29.065 0.705 0.584 36.546 0.393 0.263
MS-SWD (Ours) 28.353 0.836 0.798 28.144 0.833 0.793 26.132 0.836 0.788

the SPCD dataset. From the results in Table 2, we find that all competing meth-
ods experience a significant performance drop, except for Lee05 which benefits
from non-local CD assessment by histogram intersection. Although designed to
be aware of geometric transformations, DISTS, CD-Net, and CD-Flow can only
handle mild transformations. In stark contrast, the proposed MS-SWD is ex-
ceptionally robust to geometric transformations, even in the challenging case of
horizontal flipping.
Visualization of CD Maps. We compare the CD maps generated by the
proposed MS-SWD with seven other representative CD measures. Fig. 5 shows
the visualization results for a non-perfectly aligned pair. It is evident that all
competing methods are sensitive to image misalignment, leading to falsely large
CDs along object boundaries. On the contrary, the proposed MS-SWD generates
a more accurate CD map, correcting identifying areas of large CDs (e.g ., the
clouds, buildings, and trees).

4.2 Ablation Studies

Verification as an Empirical Metric. We design computational experiments
to verify that the proposed MS-SWD behaves empirically as a metric, which
holds potential in perceptual optimization of color image processing algorithms.
Non-negativity and symmetry are immediately apparent from Eq. (3). For the
identity of indiscernibles (i.e., ∆E(X,Y ) = 0 ⇐⇒ X = Y ), we resort to
the reference image recovery task [15] as a way of examining pixel-level image
fidelity (see Fig. 4), where we find MS-SWD successfully recovers the reference
image from all structured and non-structured initializations. For the triangle
inequality (i.e., ∆E(X,Y ) ≤ ∆E(X,Z) + ∆E(Z,Y )), we test MS-SWD on
100, 000 randomly selected image triplets of the same content from SPCD, and
find no violations. In conclusion, we empirically establish that MS-SWD behaves
as a metric in the mathematical sense.
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(a) Image A (b) CIELAB (c) CIEDE2000 (d) S-CIELAB (e) Ouni08

(f) Image B (g) FLIP (h) CD-Net (i) CD-Flow (j) MS-SWD

Fig. 5: Comparison of CD Maps for a non-perfectly aligned pair, where a warmer color
indicates a larger pixel-wise (or patch-wise) CD.

Table 3: Ablation analysis of the number of random linear unit projections in MS-
SWD. The default setting is highlighted in boldface.

# of random projections STRESS↓ PLCC↑ SRCC↑ Time (ms)
P = 4 31.849 0.804 0.779 3.7
P = 16 29.186 0.833 0.799 4.2
P = 64 28.425 0.841 0.805 6.2
P = 128 28.363 0.841 0.805 9.5
P = 256 28.318 0.842 0.806 15.3

Number of Random Linear Unit Projections. We investigate the effect
of the number of random linear unit projections in MS-SWD, with P values
selected from {4, 16, 64, 128, 256}. Table 3 shows the results on the non-perfectly
aligned pairs from SPCD, where the average inference time is estimated using
an NVIDIA A100 GPU. It is clear that the CD assessment performance of MS-
SWD remains fairly stable when we decrease P , but excessively small P values
will compromise the ability of MS-SWD to maintain pixel-level image fidelity.
Therefore, we choose P = 128 to balance prediction accuracy, metric property,
and computational complexity.
Learnable Non-Linear Projections. To further enhance MS-SWD, we ex-
plore replacing random linear unit projections with learnable non-linear projec-
tions. Inspired by CD-Net [52], we design a lightweight neural network for non-
linear projection, including a front-end 11×11 convolution layer and a back-end
1× 1 convolution layer with leaky ReLU in between. Training involves minimiz-
ing the PLCC loss using Adam optimizer, initialized with a learning rate of 10−3

and decayed by a factor of 2 every 5 epochs. We train the network for 10 epochs
using a mini-batch size of 30. We randomly partition SPCD into 70%, 10%, and
20% for training, validation, and testing, respectively, while ensuring content in-
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Table 4: Ablation analysis of using learnable non-linear projections in place of random
linear unit projections in MS-SWD.

Method Perfectly aligned pairs Non-perfectly aligned pairs All
STRESS↓ PLCC↑ SRCC↑ STRESS↓ PLCC↑ SRCC↑ STRESS↓ PLCC↑ SRCC↑

CD-Net [52] 20.891 0.867 0.870 22.543 0.818 0.776 21.431 0.846 0.842
CD-Flow [9] 16.613 0.896 0.904 21.374 0.856 0.794 18.473 0.871 0.865
MS-SWD (Learned) 21.870 0.894 0.896 22.359 0.876 0.857 22.364 0.884 0.889

Trainable parameters: CD-Net (0.01M), CD-Flow (60.49M), and MS-SWD (0.05M).

(a) Target (b) Source (c) Output

(d) Target (e) Source (f) Output

Fig. 6: Image color transfer results guided by MS-SWD.

dependence during dataset splitting. This procedure is repeated ten times, and
the average results are reported. As shown in Table 4, our learned MS-SWD
outperforms the most advanced CD-Flow with just 0.08% of its parameters.

4.3 Image and Video Color Transfer

In this subsection, we explore the application of the proposed MS-SWD in the
image and video color transfer task. Our computational algorithm is straight-
forward: given a source color image (or video) X, we aim to transfer its color
appearance to the target grayscale image (or color video) Yinit through the fol-
lowing optimization problem:

Y ⋆ = argmin
Y

∆E(X,Y ), (6)
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Fig. 7: Comparison of video color transfer results. The first row displays five frames
sampled from the target video, with the source image providing the desired color ap-
pearance shown in the bottom right corner of Frame 1.

starting from Yinit. The results of image color transfer are shown in Fig. 6,
demonstrating a successful color mapping from source to target, while preserv-
ing the underlying structure. The video color transfer outcomes are shown in
Fig. 7. Using CIELAB, we transfer the color patterns as well as unwanted struc-
ture details to the target. DISTS fails in this task, often leaving the target largely
unchanged. MS-SWD produces visually appealing video frames in terms of trans-
ferred color appearance, structure preservation, and temporal consistency.

5 Conclusion and Discussion

We have introduced MS-SWD, the multiscale sliced Wasserstein distance de-
signed for measuring perceptual CDs in photographic images. Unlike traditional
co-located comparisons prevalent in CD assessment, MS-SWD enables efficient
comparisons between non-local patches of similar structure and color informa-
tion, making it exceptionally robust to real-world image misalignment. MS-SWD
is training-free using random linear unit projections, which can be replaced by
learnable non-linear projections for improved performance.

We highlight the importance of multiscale analysis in MS-SWD for preserv-
ing pixel-level image fidelity, thereby demonstrating its empirical metric proper-
ties. An intriguing mathematical inquiry remains: whether MS-SWD is indeed
a metric, given specific hyper-parameter configurations. Additionally, exploring
alternative linear and non-linear image pyramids beyond the Gaussian pyramid,
such as the (normalized) Laplacian pyramid [8], steerable pyramid [48], and
VGG feature hierarchy [49], presents an interesting avenue. Last, there is poten-
tial to extend the non-local computation in MS-SWD (via the sort() operator)
to measure other perceptual aspects of human vision (e.g ., image quality).
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