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1 Introduction

In the supplementary material we include parts that were left out from the main
paper due to page limitations:

– Leveraging SIFT and affine constraints in optimal planar motion estimation
for refinement, by incorporating the novel constraint in [5].

– Histogram voting – affine features vs SIFT features.
– The effect on the number of inliers when using SIFT features.

Equations with roman numerals refer to this document, otherwise they refer to
the main paper.

2 Extension to least-squares optimal planar motion
solvers

In [5] a non-minimal optimal relative planar motion solver was proposed. They
use point-based correspondences, yielding a matrix equation of the form (17)
utilizing the epipolar constraint (8) alone. In this case, N point correspondences
creates a matrix of size N×4. They proceed by devising an algorithm to minimize
the least squares error

min
e∈C

∥Me∥22, (i)

where C is the set of vectors e ∈ R
4 of unit length fulfilling the trace con-

straint (7). It is straight-forward to generalize this to SIFT and affine correspon-
dences. Using N SIFT correspondences the matrix M has size 2N × 4, due to
the added SIFT constraint (16) and analogously, with affine correspondences, a
matrix of size 3N × 4 is obtained, due to the additional two constraints

a1vie1 + (a3ui + vj)e2 + a3e3 = 0, (ii)
(a2vi + uj)e1 + a4uie2 + a4e3 + e4 = 0, (iii)

reported in [4]. No additional changes are needed to the algorithm in order to
make it utilize the extra information embedded in SIFT descriptors and affine
correspondences.
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2.1 Experiments

Synthetic data

Sensitivity to noise. We evaluate the non-minimal solver with the modifications
proposed in Sec. 2. The results are shown in Fig. 1. Unsurprisingly, the point-
based solver, which uses less information, performs worse than the competing
methods, and initially the affine correspondences give better results than using
SIFT features. This is likely due to the fact that three instead of two equations
are used for affine correspondences; however, the differences quickly become neg-
ligible and around 15 correspondences, the methods perform almost identical.

Nonplanar motion. The results for the non-minimal solvers are shown in Fig. 2.
Similar to the previous comparison, both the affine and SIFT-based approach
quickly converge, and only initially, there is a slight favor for the affine corre-
spondences.

Timings. As the non-minimal solvers simply scale with the size of the coefficient
matrix M , cf . (i), they are omitted.

Real data We now show the results obtained on the Malaga Urban dataset [2].
Here we use the default settings of GC-RANSAC [1] as in the main paper, with
the exception that the non-minimal solver is used for refinement. The results
shown in Fig. 3 compare the 5 PT solver from Nister using Stewenius algorthm
as the non-linear refinement with the three planar methods using Hajder al-
gotihm [5] as refinement. Note that, instead of using the 95 % of the data for
refinement as in [5], we employ the GC-RANSAC default setting of 5 % of the
data for fair comparison. In general, Hajder algorithm performs worse than the
Stewenius solver used in the main paper, which is the main reason it was not
included. We believe that the nonplanar differences, alignment of cameras, etc.,
do not work in favour of a pure planar motion model, and that some non-linear
refinement extending the results outside the model is necessary for it to work
well in practice. From what we can see at the experiment, however, is that our
method is superior in execution time to the the competing methods, which is the
general trend. This excludes the processing time of features, which would—in
line with the main paper—further distinguish our method from the affine-based
solver.

2.2 Histogram voting

In the main paper, we mentioned histogram voting and argued that it can be
applied to the 1 AC solver [4] and the proposed 1 SIFT solver. Since there are
two parameters we use histogram voting on the rotational component θ alone,
and then select the corresponding values for ϕ. This results in a nice Gaussian
distribution on the KITTI dataset [3], see Fig. 4, and we can simply use the
median and not explicitly compute the histogram, as proposed in [6].
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Fig. 1: Sensitivity to noise. Relative planar pose estimation in a synthetic environment.
The angular errors (veritcal axis; in degrees) of the estimated rotation and translation
as a function of the number of features (point-based, SIFTs, and affine correspondences)
averaged over 5 000 runs per number of features used (horizontal axis). The state-of-
the-art solver in [5] is used with modifications proposed in Sec. 2. Better seen in color.
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Fig. 2: Nonplanar motion. Relative planar pose estimation in a synthetic environment.
The median angular error (veritcal axis; in degrees) of the estimated rotation is shown
as functions function of the number of features used. The state-of-the-art solver in [5]
is used with modifications proposed in Sec. 2. Better seen in color.
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Fig. 3: Malaga experiments. Cumulative density functions deploying the performance
of four different solvers in terms of angular error and GC-RANSAC processing time
(excluding pre-processing time) for the Malaga dataset. A method being accurate (or
fast) is equivalent to its curve being on the left side of the plot.
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Real data We compare the proposed 1 SIFT solver and the 1 AC solver using
histogram voting on the KITTI dataset is shown in Fig. 5. For fair comparison,
the solution is refined using the Stewenius algorithm as in the main paper. In
general, both algorithms have a similar performance in terms of accuracy, but
our method outperforms Guan solver in computational terms, being around 3×
faster—excluding the pre-processing times, which leads to an even more signif-
icant improvement. However, the accuracy obtained by the histogram voting
framework in both cases is far from the one achieved by the traditional GC-
RANSAC pipeline. On the other hand, with median times around 0.13 and 0.37
milliseconds respectively for our and Guan solvers, we report that this framework
is around 40× faster.

The accuracy is not in line with the results in [4]; however, they do not supply
code, nor detail their implementation, and we have not been able to reproduce
their results. It is fair to believe, however, that if their implementation differs
and is indeed superior to our simple histogram voting implementation, that our
SIFT-based solver would perform equally well and in less time when integrated.

3 Effect on the number of inliers when using SIFT
features

One might think that the number of inliers is smaller when the scale and ori-
entation are taken into consideration; however, this is not the case, as is seen
in Tab. 1. E.g., comparing our proposed solver to Choi’s solver there is not a
significant difference. This is primarily because we use the same metric (distance
to the epipolar line) to separate inliers from outliers, and these are only taking
the pixel coordinates into account.
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Fig. 4: Histogram voting. Example of histogram obtained on the KITTI dataset with
the proposed SIFT-based algorithm.
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Fig. 5: Histogram voting experiments. Cumulative density functions deploying the per-
formance of the single correspondence solvers within a histogram voting framework,
in terms of angular error and processing time (excluding pre-processing time) for the
KITTI dataset. A method being accurate (or fast) is equivalent to its curve being on
the left side of the plot.

Table 1: Inliers (%) on the KITTI dataset.

Seq 00 01 02 03 04 05 06 07 08 09 10 All

Nister (5PC) 72.26 73.72 68.15 85.40 75.42 73.60 63.35 79.94 72.69 63.14 68.12 72.34
Choi (2PC) 72.20 73.50 68.08 85.40 75.52 73.65 63.11 79.85 72.69 63.22 68.12 72.30
Guan (1AC) 77.02 75.96 71.70 85.47 81.14 78.74 71.12 81.54 77.09 68.00 71.13 76.26
Our (1SIFT) 72.25 73.55 68.09 85.41 75.51 73.43 63.20 80.13 72.62 63.22 68.12 72.32
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4 Code for generating the elimination ideal

In order to generate Eq. (16) of the main paper, the following Macaulay2 code
was used:

KK = ZZ / 30097;
R = KK[e1,e2,e3,e4,u1,v1,u2,v2,q,s1,s2,c1,c2,a1,a2,a3,a4,MonomialOrder=>GRevLex];
eq1 = e1*v1*a1 + e2*u1*a3 + e2*v2 + e3*a3;
eq2 = e1*v1*a2 + e1*u2 + e2*u1*a4 + e3*a4 + e4;
eq3 = q^2 - a1*a4 + a2*a3;
eq4 = -q*s2 + s1*a4 + c1*a3;
eq5 = -q*c2 + s1*a2 + c1*a1;
I = ideal {eq1,eq2,eq3,eq4,eq5};
I = eliminate(I,{a1,a2,a3,a4});
<< gens I << "\n"
exit();
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