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6 Appendix

6.1 Full experiment results

In addition to our main paper examples, we test our method across a diverse
range of 44 pre-trained models. These models vary in scale, architecture, de-
velopment year, and purpose. Our method consistently reduces computation
signi�cantly in all cases, with minimal or no loss in accuracy.

Pool of models Models in our experiments include:

1. ConvNeXtv2 [66]: atto, femto, pico, nano, tiny , base, large, huge
2. DaViT [14]: tiny , small , base
3. MaxViT [59]: tiny , small , base, large
4. SwinT [41]: tiny , small , base, large
5. ResNet [25]: 18 , 34 , 50 , 101 , 152
6. E�cientNet [57]: b0 , b1 , b2 , b3 , b4
7. E�cientViT [2]: b0 , b1 , b2 , b3
8. E�cientViT [40]: m1 , m2 , m3 , m4 , m5
9. E�cientFormerv2 [35]: s0 , s1 , s2 , l
10. MobileNetv3 [27]: small100 , large100

All these models are trained in their original ways with the input size of 224×224
for the ImageNet-1k classi�cation task. Some models are pre-trained with larger
datasets [66]. The model weights of ResNet is provided by torchvision [44], all
other models are provided by timm [65] and their complexities are measured by
the pro�ling tool of DeepSpeed [49]. Each model can employ a smaller one as its
saver, as described in Sec. 3.3.

All models were trained using their original procedures with an input size of
224 × 224 for the ImageNet-1k classi�cation task. Some models are pre-trained
on larger datasets [66]. ResNet weights are available from torchvision [44], while
weights for other models are accessed via timm [65]. We assessed their com-
plexities using DeepSpeed's pro�ling tool [49]. According to the methodology
described in Sec. 3.3, each model could utilize a smaller one as its saver.

Compression e�ect Tab. 5 complements Tab. 1, providing extensive exper-
imental results that reinforce our primary �ndings discussed in Sec. 4.1. Typ-
ically, larger models exhibit more substantial compression potential and can
maintain their performance even after signi�cant reductions. In contrast, com-
pressing smaller models presents challenges, as their corresponding saver models
are relatively larger in proportion. The smallest models, E�cientViTm0 and
MobileNetv3small100 , are not used as base models due to the absence of smaller
eligible savers. Moreover, for e�ective zero-loss compression, saver models need
to closely approximate the accuracy of their base models; otherwise, a trade-o�
between performance and compression is inevitable.
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Base Model Saver Model Required MACs(%) when Acc. Drop ≤ Max Performance
Name GFLOPs. Acc. Name GFLOPs. Acc. 1% 0.5% 0.01% 0% Avg. GMACs Acc.

ConvNeXtV2huge [66] 114.92 86.25% E�cientFormerV2l [35] 2.51 83.53%
13.21
(-88.5%)

19.41
(-83.1%)

31.17
(-72.9%)

67.34
(-41.4%)

70.70
(-38.5%)

86.25%
(+0.00%)

MaxViTlarge [59] 42.80 84.82% E�cientFormerV2l [35] 2.51 83.53%
3.46
(-91.9%)

5.48
(-87.2%)

7.81
(-81.8%)

9.04
(-78.9%)

11.24
(-73.7%)

84.92%
(+0.09%)

ConvNeXtV2large [66] 34.36 85.76% E�cientFormerV2l [35] 2.51 83.53%
5.16
(-85.0%)

7.15
(-79.2%)

11.00
(-68.0%)

15.15
(-55.9%)

17.49
(-49.1%)

85.78%
(+0.02%)

Swinlarge [41] 34.02 86.24% E�cientFormerV2l [35] 2.51 83.53%
5.56
(-83.7%)

7.22
(-78.8%)

10.95
(-67.8%)

14.46
(-57.5%)

18.70
(-45.0%)

86.26%
(+0.02%)

MaxViTbase [59] 23.39 84.80% E�cientFormerV2l [35] 2.51 83.53%
2.95
(-87.4%)

4.13
(-82.3%)

5.33
(-77.2%)

6.74
(-71.2%)

7.28
(-68.9%)

84.86%
(+0.06%)

ConvNeXtV2base [66] 15.35 84.87% E�cientFormerV2s2 [35] 1.22 82.15%
2.74
(-82.1%)

3.57
(-76.8%)

4.85
(-68.4%)

5.44
(-64.6%)

6.35
(-58.6%)

84.92%
(+0.05%)

DaViTbase [14] 15.22 84.48% E�cientFormerV2s2 [35] 1.22 82.15%
2.40
(-84.3%)

3.16
(-79.2%)

4.40
(-71.1%)

5.19
(-65.9%)

6.50
(-57.3%)

84.53%
(+0.04%)

Swinbase [41] 15.13 85.14% E�cientFormerV2s2 [35] 1.22 82.15%
2.81
(-81.4%)

3.70
(-75.6%)

4.79
(-68.3%)

9.06
(-40.1%)

9.40
(-37.9%)

85.15%
(+0.00%)

ResNet152 [25] 11.51 78.24% E�cientViTm2 [40] 0.20 70.78%
4.17
(-63.8%)

4.91
(-57.3%)

6.30
(-45.3%)

8.79
(-23.7%)

9.92
(-13.8%)

78.27%
(+0.03%)

MaxViTsmall [59] 11.31 84.33% E�cientFormerV2s2 [35] 1.22 82.15%
2.01
(-82.2%)

2.51
(-77.8%)

3.53
(-68.8%)

3.86
(-65.9%)

4.29
(-62.1%)

84.42%
(+0.08%)

DaViTsmall [14] 8.58 84.00% E�cientFormerV2s2 [35] 1.22 82.15%
1.65
(-80.8%)

2.06
(-76.0%)

2.92
(-66.0%)

3.25
(-62.1%)

3.54
(-58.7%)

84.06%
(+0.05%)

Swinsmall [41] 8.51 83.25% E�cientNetb3 [57] 0.96 78.63%
2.58
(-69.6%)

3.11
(-63.5%)

4.09
(-51.9%)

4.41
(-48.2%)

5.67
(-33.4%)

83.34%
(+0.09%)

ResNet101 [25] 7.80 77.26% E�cientViTb0 [2] 0.10 71.35%
2.10
(-73.1%)

2.53
(-67.5%)

2.93
(-62.5%)

3.46
(-55.7%)

4.43
(-43.3%)

77.38%
(+0.12%)

MaxViTtiny [59] 5.37 83.36% E�cientFormerV2s2 [35] 1.22 82.15%
1.29
(-76.0%)

1.52
(-71.7%)

1.82
(-66.0%)

1.96
(-63.5%)

2.57
(-52.2%)

83.58%
(+0.22%)

ConvNeXtV2tiny [66] 4.46 82.94% E�cientNetb2 [57] 0.66 77.89%
1.65
(-62.9%)

1.98
(-55.6%)

2.54
(-42.9%)

3.50
(-21.4%)

4.54
(+2.0%)

82.96%
(+0.01%)

DaViTtiny [14] 4.41 82.71% E�cientFormerV2s2 [35] 1.22 82.15% -
1.23
(-72.1%)

1.37
(-68.9%)

1.42
(-67.9%)

2.06
(-53.3%)

83.23%
(+0.51%)

Swintiny [41] 4.35 80.89% E�cientNetb0 [57] 0.39 77.70%
0.91
(-79.0%)

1.15
(-73.5%)

1.42
(-67.4%)

1.54
(-64.5%)

2.07
(-52.3%)

81.09%
(+0.19%)

ResNet50 [25] 4.09 75.85% E�cientViTb0 [2] 0.10 71.35%
0.93
(-77.2%)

1.11
(-72.9%)

1.31
(-67.9%)

1.36
(-66.7%)

1.87
(-54.2%)

76.15%
(+0.30%)

E�cientViTb3 [2] 3.88 83.14% E�cientNetb0 [57] 0.39 77.70%
1.33
(-65.6%)

1.59
(-59.0%)

2.08
(-46.4%)

3.17
(-18.4%)

3.89
(+0.3%)

83.16%
(+0.01%)

ResNet34 [25] 3.66 73.2% MobileNetV3small100 [27] 0.06 67.65%
1.11
(-69.7%)

1.35
(-63.0%)

1.57
(-57.3%)

1.63
(-55.6%)

2.01
(-45.1%)

73.36%
(+0.16%)

E�cientFormerV2l [35] 2.51 83.53% MobileNetV3large100 [27] 0.22 75.78%
0.99
(-60.6%)

1.17
(-53.4%)

1.49
(-40.6%)

2.51
(+0.1%)

2.51
(+0.1%)

83.53%
(+0.00%)

ConvNeXtV2nano [66] 2.45 81.87% MobileNetV3large100 [27] 0.22 75.78%
0.88
(-63.9%)

1.04
(-57.5%)

1.34
(-45.2%)

1.76
(-28.2%)

2.45
(+0.3%)

81.87%
(+0.00%)

ResNet18 [25] 1.81 69.53% MobileNetV3small100 [27] 0.06 67.65%
0.19
(-89.4%)

0.28
(-84.3%)

0.37
(-79.5%)

0.41
(-77.2%)

0.84
(-54.0%)

70.31%
(+0.78%)

E�cientViTb2 [2] 1.55 81.91% MobileNetV3large100 [27] 0.22 75.78%
0.64
(-58.9%)

0.74
(-52.5%)

0.95
(-38.6%)

1.65
(+6.2%)

1.65
(+6.2%)

81.91%
(+0.00%)

E�cientNetb4 [57] 1.50 79.40% MobileNetV3large100 [27] 0.22 75.78%
0.46
(-69.4%)

0.54
(-63.8%)

0.64
(-57.7%)

0.66
(-56.1%)

0.78
(-48.4%)

79.66%
(+0.26%)

ConvNeXtV2pico [66] 1.37 80.31% MobileNetV3large100 [27] 0.22 75.78%
0.52
(-61.9%)

0.61
(-55.4%)

0.71
(-48.0%)

0.81
(-40.6%)

1.05
(-23.1%)

80.38%
(+0.07%)

E�cientFormerV2s2 [35] 1.22 82.15% MobileNetV3large100 [27] 0.22 75.78%
0.57
(-53.2%)

0.64
(-47.2%)

0.82
(-33.0%)

1.02
(-16.2%)

1.05
(-13.8%)

82.17%
(+0.01%)

E�cientNetb3 [57] 0.96 78.63% MobileNetV3large100 [27] 0.22 75.78%
0.33
(-66.0%)

0.38
(-61.0%)

0.43
(-55.4%)

0.45
(-53.2%)

0.55
(-42.4%)

79.01%
(+0.38%)

ConvNeXtV2femto [66] 0.78 78.49% MobileNetV3large100 [27] 0.22 75.78%
0.31
(-60.2%)

0.36
(-53.4%)

0.42
(-46.7%)

0.43
(-44.6%)

0.51
(-34.9%)

78.76%
(+0.27%)

E�cientNetb2 [57] 0.66 77.89% MobileNetV3large100 [27] 0.22 75.78%
0.27
(-59.4%)

0.30
(-53.9%)

0.34
(-47.8%)

0.36
(-45.5%)

0.46
(-30.9%)

78.29%
(+0.39%)

E�cientFormerV2s1 [35] 0.63 79.69% MobileNetV3large100 [27] 0.22 75.78%
0.34
(-46.7%)

0.38
(-39.9%)

0.43
(-31.4%)

0.50
(-21.4%)

0.58
(-8.6%)

79.76%
(+0.06%)

E�cientNetb1 [57] 0.57 77.57% E�cientViTb0 [2] 0.10 71.35%
0.26
(-54.9%)

0.28
(-50.2%)

0.33
(-42.4%)

0.35
(-38.8%)

0.38
(-33.3%)

77.64%
(+0.06%)

ConvNeXtV2atto [66] 0.55 76.64% MobileNetV3large100 [27] 0.22 75.78% -
0.23
(-57.6%)

0.26
(-52.8%)

0.26
(-51.7%)

0.39
(-29.6%)

77.33%
(+0.68%)

E�cientViTm5 [40] 0.52 77.08% MobileNetV3large100 [27] 0.22 75.78%
0.23
(-55.7%)

0.25
(-51.2%)

0.28
(-44.9%)

0.29
(-43.0%)

0.38
(-27.1%)

77.55%
(+0.47%)

E�cientViTb1 [2] 0.51 79.12% MobileNetV3large100 [27] 0.22 75.78%
0.30
(-40.8%)

0.34
(-33.4%)

0.37
(-26.8%)

0.40
(-22.6%)

0.45
(-11.5%)

79.20%
(+0.08%)

E�cientNetb0 [57] 0.39 77.70% E�cientViTb0 [2] 0.10 71.35%
0.21
(-45.6%)

0.23
(-39.5%)

0.29
(-25.2%)

0.33
(-14.6%)

0.36
(-7.2%)

77.71%
(+0.01%)

E�cientFormerV2s0 [35] 0.38 76.24% E�cientViTb0 [2] 0.10 71.35%
0.18
(-51.0%)

0.20
(-46.0%)

0.22
(-41.3%)

0.23
(-38.8%)

0.26
(-30.6%)

76.38%
(+0.13%)

E�cientViTm4 [40] 0.30 74.32% MobileNetV3small100 [27] 0.06 67.65%
0.16
(-47.3%)

0.18
(-40.3%)

0.21
(-29.2%)

0.23
(-21.6%)

0.26
(-12.9%)

74.34%
(+0.02%)

E�cientViTm3 [40] 0.26 73.38% MobileNetV3small100 [27] 0.06 67.65%
0.14
(-46.2%)

0.16
(-39.7%)

0.18
(-30.8%)

0.19
(-26.6%)

0.21
(-18.3%)

73.45%
(+0.06%)

MobileNetV3large100 [27] 0.22 75.78% MobileNetV3small100 [27] 0.06 67.65%
0.14
(-33.6%)

0.16
(-26.5%)

0.19
(-12.2%)

0.22
(+2.8%)

0.22
(+3.4%)

75.78%
(+0.00%)

E�cientViTm2 [40] 0.20 70.78% MobileNetV3small100 [27] 0.06 67.65%
0.09
(-54.5%)

0.10
(-48.3%)

0.12
(-40.9%)

0.12
(-38.8%)

0.15
(-22.6%)

71.13%
(+0.35%)

E�cientViTm1 [40] 0.16 68.32% MobileNetV3small100 [27] 0.06 67.65% -
0.06
(-64.1%)

0.06
(-60.7%)

0.07
(-59.6%)

0.11
(-31.9%)

69.41%
(+1.09%)

E�cientViTb0 [2] 0.10 71.35% MobileNetV3small100 [27] 0.06 67.65%
0.08
(-16.5%)

0.09
(-8.7%)

0.10
(-0.6%)

0.10
(+3.7%)

0.11
(+11.5%)

71.46%
(+0.10%)

Table 5: Compression e�ect while TinySaver applied to all models in the pool
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(xxix) ConvNeXtV2femto - MobileNetV3large100
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(xxxiv) EfficientViTm5 - MobileNetV3large100
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(xxxvi) EfficientNetb0 - EfficientViTb0
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0.0 0.2 0.4 0.6 0.8 1.0

(xxxviii) EfficientViTm4 - MobileNetV3small100
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(xl) MobileNetV3large100 - MobileNetV3small100

0.0 0.2 0.4 0.6 0.8 1.0
70%

75%

80%

85%

90%

95%

100%
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(xliv) EfficientViTm0 - MobileNetV3small100

Fig. 6: Accuracy vs early exit ratio on the ImageNet-1k training/validation set.
The intersection of solid lines denotes the ratio where the saver and base model have
the equivalent accuracy on the validation set. The intersection of dashed lines are for
the training set. Every plot is labelled as Base - Saver.
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Performance and early exit ratio Fig. 6 expands on Fig. 3, illustrating
how accuracy varies as more samples are processed by the saver model. In all
test cases, the saver model initially excels on the training set. Cat. I samples
are �ltered based on saver's con�dence and the saver can perform exceptionally
well with high-con�dence samples. While base models struggle with these same
samples, leading to poorer performance when Cat. I is small. Additionally, data
augmentation complicates early performance for base models. However, as Cat. I
expands to include more samples, the situation changes. Finally, if we set saver's
threshold as 0 and let all samples be Cat. I, the base will apparently outperform
the saver.

On the validation set, the signi�cant initial advantage of the saver model
decreases, but it remains more accurate until a later intersection point. This
consistent trend across all plots demonstrates the reliability of models when
they are highly con�dent, which is the source of compression e�ect.

Nonetheless, the base model's underperformance on the training set results
in a relative overcon�dence in the saver model. Although the validation set is
not directly impacted, this discrepancy could adversely a�ect the accuracy of
saver selection, particularly in multi-exit systems like ESN, which rely on exit
policies derived from training data. Introducing more data augmentation on the
training set may help reduce the discrepancy between training and validation
performances.

6.2 Speed test

In our experiments, we use original pre-trained models, which are implemented
di�erently by each author. Their heterogeneity makes them unevenly supported
on di�erent platforms. Therefore, it's di�cult to compare FLOPs reduction and
actual speedups directly. However, for a given deployment scenario, we can re-
place FLOPs with measured latency while identifying the best saver model. The
speed test on a PC with i9-11900F and one RTX 3090 is below. We ran in-
ference on IN-1k val set, and recorded the model throughput. All TinySaver
enabled models were con�gured to have no accuracy loss. Tab. 6 shows the re-
sults. Though models exhibit varing e�ciency on di�erent deployment scenarios,
we can still observe that TinySaver can signi�cantly improve the throughput of
the base model.

6.3 Exit Sequence Network (ESN)

The design of the ESN comprises three components: (1) Embedding units that
transform features at various scales into a format compatible with the subsequent
sequential model. (2) A sequential feature bus designed to aggregate features
from all preceding steps and transmit them to subsequent stages. (3) Head units,
responsible for outputting results like regular attached exits.

To ensure e�ciency, the overall scale of the ESN should be kept moderate,
thereby minimizing the introduction of overhead. While over-simpli�ed networks
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Base Model
Saver

Original→Ours Avg. throughput img/s
bs=1,CPU bs=1 bs=128 bs=512

ConvNextv2h
Swinb ConvNextv2l Swinb OOM

1.9→6.4 55.0→98.5 96.9→307.8

Swinb
E�cientFormerV2l ConvNextv2b DaViTt DaViTt

9.9→17.7 97.2→117.5 487.0→659.7 496.3→688.8

E�cientNetb2
ConvNextv2a ConvNextv2a E�cientViTm5 E�cientViTm5

51.9→81.4 150.9→229.4 2172.1→2649.7 2237.5→3344.4

E�cientFormerV2s2
ConvNextv2n ConvNextv2n E�cientViTb2 E�cientViTb2

34.0→42.0 83.8→222.3 562.1→1339.9 570.8→1542.8

Table 6: Average throughput of models with TinySaver enabled on di�erent deploy-
ment scenarios

might not be able to keep its functions. Careful tuning should be required for
the best practice of ESN. We illustrate the detail of ESN in Fig. 7

Feature embedding In our approach, both saver and base models are con-
sidered well-trained and remain unchanged during ESN training. Their features,
treated as a sequence of tokens, need embedding prior to joining the attention
layer. In our ESN design, we employ small networks each containing a global av-
erage pooling layer and a linear layer, to embed intermediate backbone features.

Sequential feature bus The primary objective of this part is to ensure the
delivery of the most informative feature for each head unit. The sequential ex-
ecution is mandatory, aligning with the step-by-step nature of the dynamic in-
ference process. For this purpose, we have chosen to implement a transformer
decoder network recognized for its e�ectiveness across a broad of applications.
Meanwhile, the �rst step, i.e. features from the saver model, are critical in our
system. The transformer allows for direct referencing of these features without
requiring intermediary states. This is another reason to select transformers. Con-
trasting with the commonly used Feature Pyramid Network (FPN) [37], our Exit
Sequence Network (ESN) does not accept backward connections from deeper lay-
ers. This is required by EE to inference progressively in practice. Therefore, our
implementation uses mask to maintain causality.

Exiting heads Exiting heads are responsible for generating the output. We
also brings the saver model's output, making ỹn = ỹS + ∆ỹn. The weight of
ESN heads are initialized as zero and only need to learn ∆ỹn. Therefore, the
intermediate outputs combine the information from the saver and base model
and their performance is lower bounded by the saver model.



Tiny Models are the Computational Saver for Large Models 27

Exit Sequence 
Network (ESN)

Saver Model Feat. Base Model Feat.

Saver Model Output

Masked Multi-head Attention

Masked Multi-head Attention

Feed Forward

Head 1 Head 2

Feat. Emb Feat. Emb Feat. Emb Feat. Emb Feat. Emb

Head N-2 Head N-1...

+ + + +

Step

N-2
Step

N-1
Step

0
Step

1
Step

2
Output 1 Output 2 Output N-2 Output N-1

Fig. 7: Detailed ESN

6.4 Con�guration and training details of ESN

Fig. 7 shows detailed structure of our prototype design of the ESN. We extract
intermediate features from each residual block's output, integrating them with
saver features into the ESN of multi-head causal attention layers. Subsequently,
single-layer classi�ers at each exit generate predictions, all supervised by the loss
function detailed in Sec. 6.4. Tab. 7 includes the hyper-parameter of training
ESN. We run a basic grid search of suitable attention layer numbers and dims.

Fig. 7 illustrates the detailed structure of our ESN prototype. We extract
intermediate features from the output of each backbone segment and combine
them with features from the saver into the ESN, which includes multi-head
causal attention layers. Then, single-layer classi�ers at each exit are responsi-
ble for generating predictions, trained by the loss function detailed in Sec. 6.4.
Additionally, Tab. 7 lists the hyperparameters used for training the ESN, where
we conducted a basic grid search to identify optimal numbers of attention layers
and their dimensions.

Loss function In traditional Early Exit (EE) models, the training usually
employs the original loss function or knowledge distillation. However, in our ap-
proach, a signi�cant portion of inputs is processed solely by the saver model,
meaning intermediate exits do not in�uence these particular inputs. Addition-
ally, lightweight networks have limited capacity for knowledge representation,
suggesting the utility of reducing the burden on such networks from samples
unlikely to reach intermediate exits. Consequently, we adjust the weight of sam-
ples in the loss function based on the saver model's con�dence levels. The loss
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con�g value

optimizer AdamW
learning rate 6.25× 10−4

learning rate schedule cosine decay
warmup epochs 20
augmentation AutoAugment [9]
mixup 0.8
cutmix 1.0
training epochs 10
num attn heads 8
num attn layers {0, 1, 2, 3}
dim {8, 32, 128, 512}

Table 7: Con�gurations for training ESN

function applied at the nth exit is outlined in Eq. (11), re�ecting this adaptation
to reduce the load on intermediate exits while maintaining e�ective learning.

Ln =

M∑
m=0

2(1−max
i

(ỹ
(m,i)
S ))L(ỹ(m)

n ) (11)

Where maxi(ỹ
(m,i)
S ) is the con�dence of the saver model. L(ỹ(m)

n ) is the regular
loss function per sample and we use cross entropy in the experiment of this
paper.
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