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This supplementary is organized into two sections. First, in Sec. A, we present
additional discussion on off-the-shelf-optimizations and benchmark settings. In
Sec. B, we present additional results, both qualitative and quantitative. Project
page: qualcomm-ai-research.github.io/object-centric-diffusion.

A Additional Discussion

A.1 Off-the-shelf optimizations of ToMe

Pairing token locations from inversion Many inversion-based image/video
editing pipelines rely on sharing attention maps between inversion and gener-
ation stages (e.g . FateZero [8], Plug-and-Play [12]). As such, when applying
ToMe [2, 3], it is important that locations of destination (dst) and unmerged
(unm) tokens are paired in the two stages, at each corresponding attention layer
and diffusion step. If that is not the case, tokens or attention maps coming
from inversion are not compatible with the ones available at generation time. In
practice, we compute which tokens to be merged during inversion, and merge the
tokens at the same locations in generation attention maps. By doing so, we make
sure the tokens that remain after merging correspond to the same locations (or,
token indices), and hence, the attention maps from inversion and generation can
rightly be fused. We found this strategy to be of primary importance, as testified
by Fig. 3 (d-e) in the main paper.
Re-sampling destination tokens per-frame ToMe for stable diffusion [3]
samples dst tokens randomly in a single image. When extending this to multiple
frames, we initially sample the same random locations in each frame, finding this
strategy to be sub-optimal. Instead, if we re-sample different random locations
in each frame (or, in each temporal window in our spatio-temporal implementa-
tion), it allows us to preserve different information in each frame (or, window)
after merging. We found this to be beneficial, especially at higher merging rates
(e.g . see Fig. 3 (e to f) in the main paper).
How to search for destination match In the original ToMe for stable diffu-
sion [3], for each source (src) token, we search its corresponding match within a
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Temporally-Global Search

Temporally-Windowed Search

Fig.A.1: Qualitative ablation on searching dst match Each src token may search
for its corresponding match within a pool of dst tokens. This pool can be comprised of
either the whole spatio-temporal extent (i.e., all frames) as in Temporally-Global Search,
or only the same temporal window as the corresponding src token as in Temporally-
Windowed Search. Among these two strategies, the latter allows more flexibility, pro-
viding more-consistent generations with better fidelity.

pool of dst tokens coming from the full spatial extent of the given image (H×W ).
The naive transposition of this strategy to our video use-case allows, for any src
token, its candidate match to be searched within a pool of dst tokens coming
from the full spatio-temporal extent of the video (T × H × W ). We find that
this strategy for searching dst match, named hereby Temporally-Global Search,
can lead to generation artifacts. Differently, we consider restricting the temporal
extent of the dst pool to be the same temporal-window (st ×H ×W ) as the src
token, as in our Temporally-Windowed Search. As shown in Fig. A.1, the latter
gives better reconstructions in general, whilst allowing more flexibility to con-
trol where merges are happening, temporally. This way, the user can also better
trade-off the temporal-redundancy, smoothness and consistency by controlling
the spatio-temporal window size.
Merging queries, keys or values? In our early experiments, we consider
applying ToMe to all queries (with unmerging, as in [3]), keys and values. We
however find that, with extreme reduction rates, merging queries can easily break
the reconstructions. As such, we limit ToMe to operate on keys and values only.
We also observe that in dense cross-frame attention modules, merging queries
only provide a slight latency reduction.
Capped merging in low-res UNet stages As observed in [3], the high res-
olution UNet [11] stages are the most expensive in terms of self-attention (or,
cross-frame attention) modules, and the ones that can benefit the most by ap-
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plying ToMe. Contrarily to the original formulation which does not optimize
low-resolution layers, we do apply ToMe in all layers as we observe it has a
meaningful impact on latency. We however cap the minimum #tokens preserved
after merging in low-resolution layers, in order to avoid degenerate bottlenecks
(e.g . collapsing to a single representation). Specifically, we maintain at-least 4
and 16 tokens per-frame after merging at 8× 8 and 16× 16 resolutions, respec-
tively.

A.2 Benchmark settings

Evaluation metrics We consider two metrics for quantitative evaluation: CLIP-
score and Temporal-consistency, similar to prior work [8,15]. CLIP-score is com-
puted as the cosine similarity between CLIP [9] visual embedding of each frame
and CLIP text embedding of the corresponding edit prompt, aggregated over all
frames and sequences. It measures the semantic fidelity of the generated video.
Temporal-consistency is computed as the cosine similarity between the CLIP
visual embeddings of each consecutive pairs of frames, aggregated over all pairs
and sequences. It conveys the visual quality of the generated video, measuring
how temporally coherent frames are. We highlight that, despite their use is due in
fair comparisons due to their popularity, both these fidelity metrics are far from
perfect. For instance, we find the CLIP score to be sensitive to global semantic
discrepancies, yet it often overlooks generation artifacts and smaller pixel-level
details. Furthermore, Temporal-Consistency can be simply exploited by a fake
video repeating a frame over time. For these reasons, extensive visual compar-
isons are still required to assess different models, and future research should be
encouraged towards more informative quantitative protocols for video editing.
Sequence-prompt pairs We present the sequence-prompt pairs considered in
our evaluation of inversion-based pipelines in Table A.1. Most sequences here are
from DAVIS [7] dataset, with the exception of a few in-the-wild videos introduced
in [8]. The Benchmark setting corresponds to the original quantitative evalua-
tion of FateZero [8], which includes 9 sequence-prompt pairs. We also present the
sequence-prompt pairs used to evaluate our Object-Centric Sampling (see Table
5 in the main paper), categorized based on the foreground object size: Large,
Medium and Small. In Table A.2, we show the 125 sequence-prompt pairs used
in ControlNet-based pipelines, provided by the authors of ControlVideo [15].
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Table A.1: Sequence-prompt pairs used to evaluate inversion-based
pipelines: Most sequences here are from DAVIS [7], except for a few in-the-wild videos
used in [8]. The Benchmark pairs correspond to the original FateZero [8] quantita-
tive evaluation setting. We also show the sequence-prompt pairs used to evaluate our
Object-Centric Sampling, separately for Large, Medium and Small objects.

Sequence Source prompt Target prompts
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blackswan
a black swan with a red beak
swimming in a river near a
wall and bushes.

– a white duck with a yellow beak swimming in a
river near a wall and bushes.

– a pink flamingo with a red beak walking in a
river near a wall and bushes.

– a Swarovski crystal swan with a red beak swim-
ming in a river near a wall and bushes.

– cartoon photo of a black swan with a red beak
swimming in a river near a wall and bushes.

car-turn a silver jeep driving down a
curvy road in the countryside.

– a Porsche car driving down a curvy road in the
countryside.

– watercolor painting of a silver jeep driving down
a curvy road in the countryside.

kite-surf
a man with round helmet surf-
ing on a white wave in blue
ocean with a rope.

– a man with round helmet surfing on a white wave
in blue ocean with a rope in the Ukiyo-e style
painting.

train
(in-the-wild)

a train traveling down tracks
next to a forest filled with
trees and flowers and a man
on the side of the track.

– a train traveling down tracks next to a forest
filled with trees and flowers and a man on the
side of the track in Makoto Shinkai style.

rabbit
(in-the-wild)

a rabbit is eating a water-
melon.

– pokemon cartoon of a rabbit is eating a water-
melon.

L
ar

ge
ob

je
ct

blackswan
a black swan with a red beak
swimming in a river near a
wall and bushes.

– a white duck with a yellow beak swimming in a
river near a wall and bushes.

– a pink flamingo with a red beak walking in a
river near a wall and bushes.

– a Swarovski crystal swan with a red beak swim-
ming in a river near a wall and bushes.

bear a brown bear walking on the
rock against a wall.

– a red tiger walking on the rock against a wall.
– a yellow leopard walking on the rock against a

wall.

M
ed

iu
m

ob
je

ct

breakdance
a man wearing brown tshirt
and jeans doing a breakdance
flare on gravel.

– a woman with long-hair wearing green-sweater
and jeans doing a breakdance flare on gravel.

– a spiderman wearing red-blue spidersuit doing a
breakdance flare on gravel.

– a chimpanzee wearing a black jeans doing a
breakdance flare on gravel.

boat a white color metal boat cruis-
ing in a lake near coast.

– a heavily-rusted metal boat cruising in a lake
near coast.

– a light-brown color wooden boat cruising in a
lake near coast.

car-turn a silver jeep driving down a
curvy road in the countryside.

– a Porsche car driving down a curvy road in the
countryside.

Sm
al

l
ob

je
ct

mallard a brown mallard running on
grass land close to a lake.

– a white duck running on grass land close to a
lake.

– a golden chicken running on grass land close to
a lake.

– a gray goose running on grass land close to a
lake.

lucia
a woman wearing a black dress
with yellow handbag walking
on a pavement.

– a woman wearing a white pant-suit with yellow
handbag walking on a pavement.

– a woman wearing a black dress and a hat with
red handbag walking on a pavement.

– a batman wearing a black bat-suit walking on a
pavement.

soapbox two men driving a soapbox
over a ramp.

– two robots driving a mars-rover over a ramp.
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Table A.2: Sequence-prompt pairs used to evaluate ControlNet-based
pipelines: All sequences are from DAVIS [7]. These pairs correspond to the origi-
nal ControlVideo [15] quantitative evaluation setting. [continued...]

Sequence Source prompt Target prompts

blackswan a black swan mov-
ing on the lake.

– A black swan moving on the lake
– A white swan moving on the lake.
– A white swan moving on the lake, cartoon style.
– A crochet black swan swims in a pond with rocks and vegetation.
– A yellow duck moving on the river, anime style.

boat a boat moves in the
river.

– A sleek boat glides effortlessly through the shimmering river, van gogh
style.

– A majestic boat sails gracefully down the winding river.
– A colorful boat drifts leisurely along the peaceful river.
– A speedy boat races furiously across the raging river.
– A rustic boat bobs gently on the calm and tranquil river.

breakdance-
flare

a man dances on the
road.

– A young man elegantly dances on the deserted road under the starry night
sky.

– The handsome man dances enthusiastically on the bumpy dirt road, kick-
ing up dust as he moves.

– A man gracefully dances on the winding road, surrounded by the pic-
turesque mountain scenery.

– The athletic man dances energetically on the long and straight road, his
sweat glistening under the bright sun.

– The talented man dances flawlessly on the busy city road, attracting a
crowd of mesmerized onlookers.

bus a bus moves on the
street.

– A big red bus swiftly maneuvers through the crowded city streets.
– A sleek silver bus gracefully glides down the busy urban avenue.
– A colorful double-decker bus boldly navigates through the bustling down-

town district.
– A vintage yellow bus leisurely rolls down the narrow suburban road.
– A modern electric bus silently travels along the winding coastal highway.

camel a camel walks on
the desert.

– A majestic camel gracefully strides across the scorching desert sands.
– A lone camel strolls leisurely through the vast, arid expanse of the desert.
– A humpbacked camel plods methodically across the barren and unforgiv-

ing desert terrain.
– A magnificent camel marches stoically through the seemingly endless

desert wilderness.
– A weathered camel saunters across the sun-scorched dunes of the desert,

its gaze fixed on the horizon.

car-
roundabout

a jeep turns on a
road.

– A shiny red jeep smoothly turns on a narrow, winding road in the moun-
tains.

– A rusty old jeep suddenly turns on a bumpy, unpaved road in the coun-
tryside.

– A sleek black jeep swiftly turns on a deserted, dusty road in the desert.
– A modified green jeep expertly turns on a steep, rocky road in the forest.
– A gigantic yellow jeep slowly turns on a wide, smooth road in the city.

car-shadow a car moves to a
building.

– A sleek black car swiftly glides towards a towering skyscraper.
– A shiny silver vehicle gracefully maneuvers towards a modern glass build-

ing.
– A vintage red car leisurely drives towards an abandoned brick edifice.
– A luxurious white car elegantly approaches a stately colonial mansion.
– A rusty blue car slowly crawls towards a dilapidated concrete structure.

car-turn a jeep on a forest
road.

– A shiny silver jeep was maneuvering through the dense forest, kicking up
dirt and leaves in its wake.

– A dusty old jeep was making its way down the winding forest road, creak-
ing and groaning with each bump and turn.

– A sleek black jeep was speeding along the narrow forest road, dodging
trees and rocks with ease.

– A massive green jeep was lumbering down the rugged forest road, its
powerful engine growling as it tackled the steep incline.

– A rusty red jeep was bouncing along the bumpy forest road, its tires
kicking up mud and gravel as it went.

cows a cow walks on the
grass.

– A spotted cow leisurely grazes on the lush, emerald-green grass.
– A contented cow ambles across the dewy, verdant pasture.
– A brown cow serenely strolls through the sun-kissed, rolling hills.
– A beautiful cow saunters through the vibrant, blooming meadow.
– A gentle cow leisurely walks on the soft, velvety green grass, enjoying the

warm sunshine.
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Table A.2: Sequence-prompt pairs used to evaluate ControlNet-based
pipelines: All sequences are from DAVIS [7]. These pairs correspond to the origi-
nal ControlVideo [15] quantitative evaluation setting. [continued...]

Sequence Source prompt Target prompts

dog a dog walks on the
ground.

– A fluffy brown dog leisurely strolls on the grassy field.
– A scruffy little dog energetically trots on the sandy beach.
– A majestic black dog gracefully paces on the polished marble floor.
– A playful spotted dog joyfully skips on the leaf-covered path.
– A curious golden dog curiously wanders on the rocky mountain trail.

elephant an elephant walks
on the ground.

– A massive elephant strides gracefully across the dusty savannah.
– A majestic elephant strolls leisurely along the lush green fields.
– A mighty elephant marches steadily through the rugged terrain.
– A gentle elephant ambles peacefully through the tranquil forest.
– A regal elephant parades elegantly down the bustling city street.

flamingo a flamingo wanders
in the water.

– A graceful pink flamingo leisurely wanders in the cool and refreshing
water, its slender legs elegantly stepping on the soft sand.

– A vibrant flamingo casually wanders in the clear and sparkling water, its
majestic wings spread wide in the sunshine.

– A charming flamingo gracefully wanders in the calm and serene water, its
delicate neck curving into an elegant shape.

– A stunning flamingo leisurely wanders in the turquoise and tranquil water,
its radiant pink feathers reflecting the shimmering light.

– A magnificent flamingo elegantly wanders in the sparkling and crystal-
clear water, its striking plumage shining brightly in the sun.

gold-fish golden fishers swim
in the water.

– Majestic golden fishers glide gracefully in the crystal-clear waters.
– Brilliant golden fishers swim serenely in the shimmering blue depths.
– Glittering golden fishers dance playfully in the glistening aquamarine

waves.
– Gleaming golden fishers float leisurely in the peaceful turquoise pools.
– Radiant golden fishers meander lazily in the tranquil emerald streams.

hike a man hikes on a
mountain.

– A rugged man is trekking up a steep and rocky mountain trail.
– A fit man is leisurely hiking through a lush and verdant forest.
– A daring man is scaling a treacherous and jagged peak in the alpine

wilderness.
– A seasoned man is exploring a remote and rugged canyon deep in the

desert.
– A determined man is trudging up a snowy and icy mountain slope, braving

the biting cold and fierce winds.

hockey
a player is play-
ing hockey on the
ground.

– A skilled player is furiously playing ice hockey on the smooth, glistening
rink.

– A young, agile player is energetically playing field hockey on the lush,
green grass.

– An experienced player is gracefully playing roller hockey on the sleek,
polished pavement.

– A determined player is passionately playing street hockey on the gritty,
urban asphalt.

– A talented player is confidently playing air hockey on the fast-paced,
neon-lit table.

kite-surf a man is surfing on
the sea.

– A muscular man is expertly surfing the gigantic waves of the Pacific
Ocean.

– A handsome man is gracefully surfing on the crystal clear waters of the
Caribbean Sea.

– A daring man is fearlessly surfing through the dangerous, choppy waters
of the Atlantic Ocean.

– An athletic man is skillfully surfing on the wild and untamed waves of
the Indian Ocean.

– A young man is confidently surfing on the smooth, peaceful waters of a
serene lake.

lab-coat three women stands
on the lawn.

– Three stunning women are standing elegantly on the lush green lawn,
chatting and laughing.

– Three young and vibrant women are standing proudly on the well-
manicured lawn, enjoying the sunshine.

– Three fashionable women in colorful dresses are standing gracefully on
the emerald green lawn, taking selfies.

– Three confident women with radiant smiles are standing tall on the soft,
green lawn, enjoying the fresh air.

– Three beautiful women, each dressed in their own unique style, are stand-
ing on the lush and verdant lawn, admiring the scenery.
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Table A.2: Sequence-prompt pairs used to evaluate ControlNet-based
pipelines: All sequences are from DAVIS [7]. These pairs correspond to the origi-
nal ControlVideo [15] quantitative evaluation setting.

Sequence Source prompt Target prompts

longboard
a man is playing
skateboard on the
alley.

– A young man is skillfully skateboarding on the busy city street, weaving
in and out of the crowds with ease.

– An experienced skateboarder is fearlessly gliding down a steep, curvy road
on his board, executing impressive tricks along the way.

– A daring skater is performing gravity-defying flips and spins on his board,
effortlessly navigating through a challenging skatepark course.

– A talented skateboarder is carving up the smooth pavement of an empty
parking lot, creating beautiful patterns with his board and body.

– A passionate skater is practicing his moves on a quiet neighborhood street,
with the sound of his board echoing through the peaceful surroundings.

mallard-water a mallard swims on
the water.

– A vibrant mallard glides gracefully on the shimmering water.
– A beautiful mallard paddles through the calm, blue water.
– A majestic mallard swims elegantly on the tranquil lake.
– A striking mallard floats effortlessly on the sparkling pond.
– A colorful mallard glides smoothly on the rippling surface of the water.

mbike-trick a man riding motor-
bike.

– A young man riding a sleek, black motorbike through the winding moun-
tain roads.

– An experienced man effortlessly riding a powerful, red motorbike on the
open highway.

– A daring man performing gravity-defying stunts on a high-speed, blue
motorbike in an empty parking lot.

– A confident man cruising on a vintage, yellow motorbike along the pic-
turesque coastal roads.

– A rugged man maneuvering a heavy, dusty motorbike through the rugged
terrain of a desert.

rhino a rhino walks on the
rocks.

– A massive rhino strides confidently across the jagged rocks.
– A majestic rhino gracefully navigates the rugged terrain of the rocky

landscape.
– A powerful rhino marches steadily over the rough and rocky ground.
– A colossal rhino plods steadily through the craggy rocks, undeterred by

the challenging terrain.
– A sturdy rhino confidently traverses the treacherous rocks with ease.

surf a sailing boat moves
on the sea.

– A graceful sailing boat glides smoothly over the tranquil sea.
– A sleek sailing boat cuts through the shimmering sea with ease.
– A majestic sailing boat cruises along the vast, azure sea.
– A vintage sailing boat bobs gently on the calm, turquoise sea.
– A speedy sailing boat races across the glistening, open sea.

swing a girl is playing on
the swings.

– A young girl with pigtails is joyfully swinging on the colorful swings in
the playground.

– The little girl, giggling uncontrollably, is happily playing on the old-
fashioned wooden swings.

– A blonde girl with a big smile on her face is energetically playing on the
swings in the park.

– The girl, wearing a flowery dress, is gracefully swaying back and forth on
the swings, enjoying the warm breeze.

– A cute little girl, dressed in a red coat, is playfully swinging on the swings,
her hair flying in the wind.

tennis a man is playing
tennis.

– The skilled man is effortlessly playing tennis on the court.
– A focused man is gracefully playing a game of tennis.
– A fit and agile man is playing tennis with precision and finesse.
– A competitive man is relentlessly playing tennis with his opponent.
– The enthusiastic man is eagerly playing a game of tennis, sweat pouring

down his face.

walking a selfie of walking
man.

– A stylish young man takes a selfie while strutting confidently down the
busy city street.

– An energetic man captures a selfie mid-walk, showcasing his adventurous
spirit.

– A happy-go-lucky man snaps a selfie as he leisurely strolls through the
park, enjoying the sunny day.

– A determined man takes a selfie while briskly walking towards his desti-
nation, never breaking stride.

– A carefree man captures a selfie while wandering aimlessly through the
vibrant cityscape, taking in all the sights and sounds.
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B Additional results

B.1 Qualitative comparisons

We show additional qualitative comparisons for inversion-based pipelines in
Fig. B.1. Here, we mainly focus on shape editing, and present multiple edited
frames of each sequence using FateZero [8], Tune-A-Video [13], TokenFlow [4] and
Frame SDEdit [6]. Tune-A-Video requires 1-shot finetuning on a given sequence,
whereas TokenFlow and Frame SDEdit are based on stable diffusion [10] check-
points. FateZero and our implementation rely on Tune-A-Video checkpoints for
shape editing, without needing any further finetuning for their respective pro-
posed improvements. Frame SDEdit shows no consistency among frames, being
an image editing pipeline. Among video editing pipelines, ours show the best
fidelity and temporal-consistency, while also generating outputs faster (see la-
tency measurements given in Table 1 and Fig. 5 in the main paper). Notably,
thanks to Object-Centric Sampling, our pipeline gives more-faithful background
reconstructions, as such regions are expected to be un-edited based on the given
shape editing prompts.

In Fig. B.2, we show additional qualitative comparisons for ControlNet-based
pipelines sucha as ControlVideo [15] and Text2Video-Zero [5]. Here, all meth-
ods are conditioned on Depth-maps, while using SD [10] checkpoints without
further finetuning. OCD shows comparable performance with its baseline Con-
trolVideo, while being significantly faster (see latency measurements given in
Table 2 in the main paper). It is also more temporally-consistent compared to
Text2Video-Zero which uses sparse instead of dense cross-frame attention, while
having comparable latency.
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a black swan with a red beak swimming in a river near a wall and bushes.

a white duck with a yellow beak swimming in a river near a wall and bushes.

a silver jeep driving down a curvy road in the countryside.

a Porsche car driving down a curvy road in the countryside.
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a man wearing brown tshirt and jeans doing a breakdance flare on gravel

a spiderman wearing red-blue spidersuit doing a breakdance flare on gravel
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a woman wearing a black dress with yellow handbag walking on a pavement

a batman wearing a black bat-suit walking on a pavement

Fig. B.1: Qualitative comparison on blackswan, car-turn, breakdance-flare
and lucia sequences [7]: We show shape editing results of our method (Optimized-
FateZero + OCD), in comparison with FateZero [8], Tune-A-Video [13], TokenFlow [4]
and SDEdit [6]. Our results show better semantic quality (e.g . alignement with target
prompt) and visual fidelity (e.g . temporal consistency, faithful background), while also
being more efficient (Table 1 in the main paper). Best viewed zoomed-in.
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A sailing boat moves on the sea

A majestic sailing boat cruises along the vast, azure sea
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A flamingo wanders in the water

A charming flamingo gracefully wanders in the calm and serene water, its 
delicate neck curving into an elegant shape
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Fig. B.2: Qualitative comparison on surf and flamingo sequences [7]: We
show shape editing results of our method (Optimized-ControlVideo + OCD), in com-
parison with ControlVideo [15] and Text2Video-Zero [5]. All methods use Depth con-
ditioning. Our results show comparable quality with baseline ControlVideo while being
significantly faster (Tab 2 in the main paper), and better temporal consistency com-
pared to Text2Video-Zero. Best viewed zoomed-in.
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Table B.1: Additional FateZero [8] baselines: We report CLIP metrics of fi-
delity (Temporal-consistency, CLIP-score) and latency (inversion, generation, UNet [11]
time). The difference between inversion and UNet time corresponds to other overheads,
dominated by memory access. Fewer diffusion steps (e.g . 5) and pooling operations can
also gain significant speed-ups, but break reconstructions (not always visible in fidelity
metrics).

Model CLIP metrics ↑ Latency (s) ↓

Tem-con Cl-score Inv Gen UNet

FateZero [8] 0.961 0.344 135.80 41.34 20.63
+ diff. steps=5 0.968 0.306 14.84 4.98 2.17
+ diff. steps=20 0.961 0.341 61.82 18.41 8.03

+ avg. pool (4,4) 0.958 0.335 9.91 11.80 7.08
+ max pool (4,4) 0.959 0.275 9.96 11.91 6.91

Optimzed-FateZero 0.966 0.334 9.54 10.14 7.79
+ OCD 0.967 0.331 8.22 9.29 6.38

B.2 Quantitative comparisons

Other baselines for latency reduction We discuss simple baselines for re-
ducing latency in Table B.1 and Table B.2. We report both fidelity (Temporal-
consistency, CLIP-score) and latency (inversion, generation, UNet [11] time).
Here, UNet time corresponds to just running UNet inference without any addi-
tional overheads (e.g . memory access), which we use to highlight the cost of such
overheads. For ControlVideo [15] baselines, we show results with either Depth
or Canny-edge conditioning.

In both inversion and ControlNet-based settings, we devise our optimized-
baselines by reducing diffusion steps 50→20 and applying token merging, which
give reasonable reconstructions. This is our default starting point for implement-
ing OCD. Going further, we also consider diff. steps=5, which fails to retain
details in reconstructions. Instead of token merging, we can also apply pooling
strategies on key-value tokens. Despite giving similar speed-ups, these result in
sub-par performance compared to ToMe, especially in shape editing (although
not always captured in quantitative numbers). In ControlVideo setup, we can
choose to do merging on both UNet and ControlNet [14] models, resulting in
further speed-ups with a minimal drop in fidelity. We further observe that we
can re-use the same control signal for multiple diffusion steps, allowing us to run
ControlNet at a reduced rate (Reduced/Single inference in Table B.2).
Cost of memory access vs. computations Inversion-based editing pipelines
rely on guidance from the inversion process during generation (e.g . based on
latents [12] or attention maps [8]). When running inference, such features need
to be stored (which may include additional GPU→RAM transfer), accessed and
reused. This cost can be considerable, especially for resource-constrained hard-
ware. This cost measured in latency, is shown in Table B.1, as the difference
between inversion and UNet times. Alternatively, it can also be seen as the stor-
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Table B.2: Additional ControlVideo [15] baselines: We report CLIP metrics of
fidelity (Temporal-consistency, CLIP-score) with either Depth or (Canny-edge) condi-
tioning, and latency (generation, UNet [11] time). The difference between generation
and UNet time corresponds to other overheads, dominated by ControlNet [14]. Fewer
diffusion steps (e.g . 5) and pooling operations can also gain significant speed-ups, but
break reconstructions (not always visible in fidelity metrics). We also observe that Con-
trolNet inference need not be done at the same frequency as denoising, which can lead
to further speed-ups.

Model CLIP metrics ↑ Latency (s) ↓

Tem-con Cl-score Gen UNet

ControlVideo [15] 0.972 (0.968) 0.318 (0.308) 152.64 137.68
+ diff. steps=5 0.978 (0.971) 0.309 (0.295) 19.58 13.58
+ diff. steps=20 0.978 (0.971) 0.316 (0.304) 64.61 54.83

+ avg.pool (2,2) 0.977 (0.968) 0.309 (0.295) 30.53 20.56
+ max.pool (2,2) 0.972 (0.973) 0.225 (0.212) 30.32 20.53

Optimized-ControlVideo 0.978 (0.972) 0.314 (0.303) 31.12 21.42
+ OCD 0.977 (0.967) 0.313 (0.302) 25.21 15.61
+ OCD (UNet, ControlNet) 0.976 (0.969) 0.306 (0.297) 25.13 15.41

+ ControlNet Red. Inf. 0.977 (0.968) 0.313 (0.301) 23.62 15.47
+ ControlNet Sin. Inf. 0.973 (0.964) 0.307 (0.293) 22.35 15.48

Table B.3: Memory requirement for attention maps: In FateZero [8] setting, we
show additional baselines and the corresponding storage requirements which directly
affect the memory-access overhead. FateZero stores attention maps of all UNet [11]
blocks for all diffusion steps. Our contributions help reduce this cost. It can potentially
enable attention maps to be kept on GPU memory itself (w/o having to move between
GPU and RAM), further improving latency. Each float is stored in 16bits.

Model Disk-space (GB) ↓

FateZero 74.54
+ diff. steps=5 7.45
+ diff. steps=20 29.82

+ pool (4,4) 3.06
Optimized-FateZero 5.05

+ OCD 4.22

age requirement as given in Table B.3. On FateZero [8], we observe that the
storage cost is indeed significant, and affects the latency more than the com-
putations. With OCD, we directly reduce the cost for attention computation,
storage and access.
Expected savings of Object-Centric Sampling We run a control experi-
ment to observe the expected latency reductions when using our Object-Centric
Sampling, at different object sizes (∆) and Blending step ratios (γ), given in
Table B.4. Here, we consider hypothetical inputs, so that we can ablate the set-
tings more-clearly. The baseline sees inputs of size ∆ = 64 × 64, and runs all
diffusion steps at full-resolution (γ = 1.0). In our Object-Centric Sampling, we
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Table B.4: Control experiment on Object-Centric Sampling: We evaluate the
latency savings at different hypothetical object sizes (∆) and blending step ratios (γ).
The baseline is with ∆ = 64 × 64 and γ = 1.0 (with total 20 diffusion steps). We can
get the most savings at a smaller object size and blending step ratio. It is worth noting
that this control experiment does not correspond to actual sequence-prompt pairs, and
is just intended to give the reader an idea about expected savings.

Blending steps
Latency (s) @ #tokens (∆) ↓

ratio (γ) 64× 64 48× 48 32× 32 16× 16

Inv Gen Inv Gen Inv Gen Inv Gen

1.00 12.31 10.39 - - - - - -
0.50 - - 9.56 8.67 9.05 7.60 8.25 7.01
0.25 - - 8.03 7.94 7.11 6.00 5.90 4.96
0.05 - - 6.82 7.17 5.85 4.99 4.43 3.80

0 10 20 30 40 50 60 70 80 90 100

Prompt alignment

Temporal consistency

Overall edit quality

Prompt alignment

Temporal consistency

Overall edit quality

OCD (ours) Optimized-FateZero Blended Latent Diffusion

local-edit (shape/attribute) global-edit (style)

Fig. B.3: User study: (Top) Preferences for Object-Centric Diffusion (ours)
w.r.t. Optimized-FateZero or Blended Latent Diffusion [1] on FateZero benchmark
(Bottom) Preferences for local vs. global edits. In both cases, OCD is better preferred.

use γ = 0.25 by default, whereas ∆ depends on objects in a given sequence. As
expected, we can obtain the most savings with fewer blending steps and when
foreground objects are smaller in size. A user may refer to this guide to get an
idea about the expected savings.
User preference study We conduct a user study to measure the editing quality
of OCD w.r.t. (1) Optimized-FateZero and (2) Blended Latent Diffusion [1].
The study consists of randomized A/B preferences tests, where observers were
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asked to assess video edits in overall quality as well as temporal consistency
and alignment with edit prompt. Based on 1143 responses collected from 37
participants, we find that OCD is likely preferred by users in all assessments.
More specifically, this study testifies the benefit of OCD w.r.t. the optimized
baseline beyond computational savings, as its edits are preferred 77% of the time,
and rewarded by users in temporal consistency (75%) and prompt alignment
(66%).
Other methods with disentangled diffusion sampling Both OCD and
Blended Latent Diffusion (BLD) [1] use saliency masks to disentangle foreground
and background during diffusion sampling. Although BLD focuses on local ed-
its, its design does not imply any efficiency gains (as it processes background,
but discards during blending). On the contrary, our proposal trades-off compu-
tational cost in the background, allowing for a better foreground edit at a re-
duced latency. Such a change in scope results in several key differences. In OCD,
background and foreground latents undergo two separate (even, parallelizable)
sampling processes, operating at different resolutions and sampling rates, be-
fore being blended at a certain pre-defined step. Differently, latents in BLD are
blended at every step of the same diffusion process, and its latency is by design
lower bounded by that of a standard diffusion process. To compare it with our
approach, we included BLD edits in the user study in Fig. B.3, where we observe
OCD is preferred most of the times in terms of temporal consistency (65.35%)
and prompt alignment (60.71%) while also being faster (17.51s vs 19.68s). In
metrics, OCD is comparable to BLD both in temporal consistency (0.967 vs
0.968) and clip score (0.331 vs 0.329) respectively.
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