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Abstract. We introduce Generative Infinite-Vocabulary Transformers
(GIVT) which generate vector sequences with real-valued entries, in-
stead of discrete tokens from a finite vocabulary. To this end, we propose
two surprisingly simple modifications to decoder-only transformers: 1)
at the input, we replace the finite-vocabulary lookup table with a lin-
ear projection of the input vectors; and 2) at the output, we replace
the logits prediction (usually mapped to a categorical distribution) with
the parameters of a multivariate Gaussian mixture model. Inspired by
the image-generation paradigm of VQ-GAN and MaskGIT, where trans-
formers are used to model the discrete latent sequences of a VQ-VAE,
we use GIVT to model the unquantized real-valued latent sequences of
a β-VAE. In class-conditional image generation GIVT outperforms VQ-
GAN (and improved variants thereof) as well as MaskGIT, and achieves
performance competitive with recent latent diffusion models. Finally, we
obtain strong results outside of image generation when applying GIVT
to panoptic segmentation and depth estimation with a VAE variant of
the UViM framework.
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1 Introduction

After becoming the dominant architecture in natural language processing shortly
after their introduction, Transformers [72] have also recently become very pop-
ular in computer vision [18, 40, 63]. Dosovitskiy et al . [18] showed that by split-
ting images into sequences of patches, linearly embedding those patches, and
then feeding the resulting sequence of features to a transformer encoder leads
to powerful image classifiers that outperform CNN-based architectures at large
model and data scale. This strategy is now standard for many discriminative
vision task including classification [18], detection [40], and segmentation [63].
It is less obvious how to apply generative transformer decoders to image gen-
eration since they were designed to consume and predict discrete tokens from
some fixed, finite vocabulary. Such a structure naturally fits natural language,
for which decoder-only models enable powerful sequential generative modeling
and efficient training [52,72].
∗Work done as Student Researcher at GDM. ◦Significant technical contributions.
Code and model checkpoints: https://github.com/google-research/big_vision.

https://github.com/google-research/big_vision
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Fig. 1: Selected 512×512 samples from GIVT-Causal-L for 10 ImageNet classes (130,
130, 138, 144, 933, 145, 360, 207, 829, 248).

To harness these capabilities for images, recent works [6,7,20,39,46,54] have
employed a two-stage approach which first trains a Vector-Quantized Variational
Autoencoder (VQ-VAE) [49] to map images to a sequence of discrete tokens,
and then trains a transformer decoder to model the latent discrete-token dis-
tribution. An advantage of such a VQ-VAE-based image tokenization is that
it enables interleaved multimodal generative models, simply by concatenating
the vocabularies of the different modalities including text and images [1, 2, 29].
However, this approach also has several issues. First, the non-continuous nature
of VQ requires differentiable approximations to enable stochastic gradient-based
optimization [49]. Second, a VQ-VAE with a small vocabulary can make the
latent modeling easy but also makes the latent code less informative, which pre-
vents control of the low-level details in image generation, and impacts quality
when using the tokens for dense prediction [33, 42] or low-level discriminative
tasks [1, 29]. A large vocabulary, on the other hand, can lead to low vocabulary
utilization [46] so that high-fidelity VQ-VAE setups typically rely on a range
of advanced techniques, such as entropy losses [7] or codebook-splitting [33].
Furthermore, large vocabularies lead to correspondingly large embedding ma-
trices and hence memory consumption, which can be an issue particularly in
multimodal contexts.

In this work, we show—to our knowledge for the first time—how to com-
pletely remove quantization from generative transformers for visual data.
Indeed, practitioners seem to agree that this would be hardly possible, since
transformer decoders are strongly linked to discrete representations in many
heads. Surprisingly, we not only show that simple modifications enable
transformer decoders to directly generate sequences of unquantized
vectors, but also that this approach leads to better image genera-
tion quality and representation learning capabilities than VQ-based
approaches. We call such transformers Generative Infinite-Vocabulary Trans-
former (GIVT).1 Concretely, we make two changes compared to the standard
1 We discuss the relation between continuous latents and infinite vocabulary in Sec. A.
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Fig. 2: We compare the standard
discrete-token generative transformer
(left) to our continuous, infinite-
vocabulary variant (GIVT, right), using
the same decoder-only architecture.
At the input, GIVT linearly embeds a
sequence of real-valued vectors instead
of discrete tokens via lookup. At the
output, GIVT predicts the parameters of
a multivariate, continuous distribution
rather than a categorical distribution.
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Fig. 3: GIVT-Causal training and in-
ference. Left: During training, we sam-
ple a sequence of real-valued latent vec-
tors from the VAE encoder, and train
GIVT via teacher forcing. Right: During
inference, we sample a sequence of vec-
tors (left-to-right) and feed it to the VAE
decoder. We note that we also explore
MaskGIT-like GIVT models not shown
here. No component uses a quantizer.

transformer decoder architecture [52,72], see Fig. 2: 1) at the input, rather than
using a sequence of discrete tokens to look up a finite vocabulary of embeddings,
GIVT linearly embeds a sequence of real-valued vectors; and 2) at the output,
rather than predicting a categorical distribution over a finite vocabulary, GIVT
predicts the parameters of a d-variate Gaussian Mixture Model (GMM). We
train GIVT in the same way as standard transformer decoders: with a causal
attention mask and teacher forcing [72], and alternatively also explore fast pro-
gressive masked-bidirectional-modelling as in MaskGIT [6,7, 13].

Similar to the two-stage approach with VQ-VAEs and analogous the two-
stage approach of latent-diffusion models [51,55], we first learn a lower-dimensional
latent space with a Gaussian-prior β-VAE [24,30], and then model it with GIVT.
We emphasize that training both β-VAE and GIVT only relies on standard tech-
niques from the deep-learning toolbox, and not the advanced training techniques
of the VQ-VAE literature like auxiliary losses [7,49] on the latent representation,
codebook reinitialization [37], or dedicated optimization algorithms [27,33].
Our main contributions can be summarized as follows:

1. We show that GIVT outperforms VQGAN [55] (and follow-up variants) and
MaskGIT [7] in class-conditional image generation, often by a large margin
and/or at significantly lower computational cost. GIVT is also competitive
with strong latent diffusion baselines, particularly at high resolution.

2. We derive variants of standard sampling techniques for the continuous case,
such as temperature sampling, beam search, and classifier-free guidance (CFG)
[25], and showcase their effectiveness.
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3. We demonstrate that GIVT matches or outperforms prior sequential image
generation models in representation learning at significantly lower computa-
tional cost.

4. GIVT achieves comparable performance with the VQ-based UViM approach
[33] in dense prediction tasks like semantic segmentation and monocular
depth estimation.

We emphasize that advances in transformer decoder-based models for visual
data generation as GIVT directly benefit form advances in scaling and inference
efficiency for large language models. Conversely, and unlike for diffusion models,
improvements in models as ours are straight-forward to transfer to multimodal
interleaved modeling [1, 2, 29] which is becoming increasingly popular.

2 Related work

VQ-VAE for visual data tokenization Following the success of pixel-
space autoregressive modeling [8,43,50,59,71] for image generation, moving the
autorgressive modeling to the latent space of VQ-VAEs [49,54] emerged as a more
efficient alternative. The use of GANs and perceptual losses for VQ-VAE training
as well as modern causal [20,73,77] and masked [6,7,39] transformers for latent
modeling led to substantial quality improvements. Another active area leveraging
VQ-VAEs is interleaved multimodal generative modeling of images and text [1,2,
29]. Further, VQ-VAEs are a popular choice to tokenize the label space of dense
prediction vision tasks [33, 42]. Finally, some language-inspired techniques for
self-supervised learning from images rely on VQ-VAE representations [3,39,75].

Discretized mixtures of distributions replace the dense prediction of the
logits of a categorical distribution with a continuous mixture model which is
subsequently discretized. This approach was proposed in [59] for pixel-space au-
toregressive modeling, to reduce the number of model parameters and to improve
learning efficiency, and is also popular in neural compression [10,44,45].

Continuous outputs in NLP A popular approach to handle large vocab-
ularies in machine translation is to predict language tokens via their word em-
beddings with a continuous distribution, instead of token IDs with a categorical
distribution [34, 35, 38, 64, 65]. Decoding is usually done in greedy fashion with
embedding lookup and hence does not produce diverse samples. Further, the
models consume and predict word embeddings form a fixed, finite set.

VAEs with learned priors A rich body of literature studies improving VAEs
with learned priors: Inverse autoregressive flows emerged as a popular choice [9,
31]. Other approaches use normalizing flows [70] or a mixture of variational
posteriors with pseudo-inputs [66]. For VAEs with discrete (non-VQ) latents,
learned priors based on Restricted Boltzmann Machines were studied [57,69].

Time-series modeling with Transformers A variety of works has recently
explored transformers for time-series modeling/forecasting. Those works either
use a regression loss [11, 22, 36, 48, 79], quantile forecasting [19, 41], or resort to
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discretizing/binning the data [53]. Somewhat related, [47,74] regress continuous
speech features from discrete tokens. None of these models predict a continuous
distribution like GIVT that allows for autoregressive generation.

3 Generative infinite-vocabulary transformers

As mentioned in Sec. 1, our method is conceptually similar to recent works that
train decoder-only transformer models on the discrete codes of VQ-VAEs [6, 7,
20, 76], with the crucial difference being that we do not quantize (i.e., do not
use VQ). We now describe the components of our method.

3.1 VAE training

We first train a continuous-latent β-VAE [24] with Gaussian encoder and prior
as originally proposed by [30]. Given an input image x, the encoder E predicts
mean µ, and covariance σ of a multivariate normal distribution with diago-
nal covariance matrix, and samples a representation z from N (µ, σ) using the
reparametrization trick [30]. The VAE decoder then maps the latent sequence
back to an image. Since we use a Gaussian encoder distribution, the KL-term in
the evidence lower bound (ELBO) [30] can be computed in closed form as de-
scribed in [30, Sec. F.1]. As for the reconstruction/likelihood term in the ELBO,
we rely on a mixture of MSE, perceptual loss and GAN loss for image generation
following [7, 20], or the categorical cross-entropy for dense prediction tasks [33].
Our encoder spatially-downsamples x, whereby we obtain z with spatial dimen-
sions h×w and feature dimension d, with h=dH/16e, w=dW/16e, given a H×W
input x. To compute the KL-term, the associated µ and σ with shapes w×h×d
are flattened into whd vectors.

The hyperparameter β multiplying the KL-term controls how strongly z is
regularized. As we shall see in Sec. 5, this regularization of the VAE is important
to be able to model the resulting (true) latent distribution p(z) well.

3.2 GIVT training

We next train a GIVT to predict p(z) or p(z|c) (when a conditioning signal c is
available, e.g ., in class-conditional generation). The representation z is reshaped
into a hw-length sequence of d-dimensional real-valued vectors (or “soft tokens”).
Note how this differs from the standard VQ-VAE-based setup, where the latent
transformer decoder models a hw-length sequence of integers denoting code-
book indices. To accommodate this difference, we make two small changes to
the standard transformer decoder-only architecture (see Fig. 2): We replace the
embedding lookup tables at the input with a single linear layer to project from
d to the transformer hidden dimension. At the output, we do not predict a cat-
egorical distribution, and instead let the transformer predict the parameters of
a continuous distribution. Assuming channel-wise independence of the mixture
components, we model this continuous distribution with a k-mixture GMM. The
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Table 1: Results on class-conditional 256×256 ImageNet, where GIVT-Causal mod-
els outperform their quantization-based counterparts at much smaller model size (VQ-
GAN) or substantially shorter sequence length (ViT-VQGAN). We report FID as well
as precision and recall (where available). We use the standard ADM evaluation suite,
where FID is calculated w.r.t. the training set. +A: GIVT variants with adapter, CG:
Classifier guidance acceptance rate or scale, CFG = w: Classifier-free guidance with
weight w [25], DB-CFG = w: Our distribution based CFG variant (Sec. 3.4), Top-k :
Top-k sampling [21] (“mixed” refers to multiple k), t: Temperature sampling by scal-
ing the predicted σ of our models with t, tC : Choice temperature for MaskGIT. Steps
number of inference steps. Additional comments: †Numbers obtained by us from public
code, ?Inference uses activation caching.

Model Inference Steps FID↓ Precision↑ Recall↑

GANs BigGAN-deep [5] 6.95 0.87 0.28
StyleGAN-XL [60] 2.30 0.78 0.53

Diffusion ADM [14] 250 10.94 0.69 0.63
Models ADM-G [14] CG = 1.0 250 4.59 0.82 0.52

LDM-4 [55] 250 10.56 0.71 0.62
LDM-4-G [55] CFG = 1.5 250 3.60 0.87 0.48
DiT-XL/2 [51] 250 9.62 0.67 0.67
DiT-XL/2-G [51] CFG = 1.5 250 2.27 0.83 0.57

Masked MaskGIT [7] tC = 4.5 16 4.92† 0.84† 0.49†

Modeling GIVT-MaskGIT (Ours) tC = 35 16 4.64 0.85 0.49
GIVT-MaskGIT (Ours) tC = 60, DB-CFG = 0.1 16 4.53 0.87 0.47

Sequence VQGAN [20] Top-k = Mixed 256? 17.04
Models VQGAN [20] Top-k = 600, CG = 0.05 256? 5.20

ViT-VQGAN-L [76] 1024? 4.17
ViT-VQGAN-L [76] CG = 0.5 1024? 3.04
GIVT-Causal (Ours) t = 0.9 256? 5.67 0.75 0.59
GIVT-Causal (Ours) t = 0.95, DB-CFG = 0.4 256? 3.35 0.84 0.53
GIVT-Causal-L+A (Ours) t = 0.9 256? 3.46 0.77 0.61
GIVT-Causal-L+A (Ours) t = 0.95, DB-CFG = 0.4 256? 2.59 0.81 0.57

GIVT model hence predicts 2kd+ k parameters per soft token (kd mean and kd
variance parameters for the mixture components, and k mixture probabilities).
Experimentally, we found it beneficial to normalize the mixture probabilities
with a softmax activation, and the variance parameters with softplus.

We use the standard cross-entropy loss (which is equivalent to the negative
log-likelihood) on the distribution p̃ predicted by GIVT, and minimize LT =∑

c Ez [− log p̃(z|c)], assuming the the classes or conditioning signal c uniformly
distributed (see App. C.1 for details on the loss). We train two types of GIVT
models, as described next.

GIVT-Causal Here, GIVT is trained to predict every d-dimensional vector
in the hw sequence of latents conditioned on all previous vectors. Thereby, the
self-attention layers are masked to be temporally causal [20, 72] (which enables
sequential generation at inference time and is unrelated to causal inference).
This training strategy is also called teacher forcing and is analogous to the latent
modeling in VQ-GAN [20]. For class-conditional image generation we prepend a
[CLS] vector to the input sequence, i.e., a learned vector for each class c.
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GIVT-MaskGIT As in MaskGIT [7], we mask a subset of the input se-
quence randomly during training and then gradually uncover the masked tokens
during inference. The only changes compared to [7] are related to our real-valued
tokens: since we have infinitely many tokens, there is no obvious choice to define
a special mask token (when using VQ, one can just extend the vocabulary to
contain special tokens, such as [MASK]). Instead, given z and a mask M indicat-
ing for every location whether it is masked, we first replace the locations in z
corresponding toM with zeros (to remove information), and then embed it with
a single dense layer, as above. Additionally, we concatenate one of two learned
special vectors in the feature dimension, a [MASK] vector for masked locations,
and a [UNMASK] vector otherwise (we half the dimension of the embedded inputs
and special tokens s.t. the final hidden dimension remains unchanged).

3.3 Towards end-to-end training: Adapters

An interesting consequence of using an unquantized VAE and modeling the
resulting latent sequence with a continuous rather than a categorical distribution
is that the VAE and GIVT can be jointly trained or fine-tuned end-to-end (using
the reparametrization trick [30]). However, this setup comes with its own set
of challenges (e.g ., it encompasses multiple losses which have to be balanced
appropriately) and we leave it for future work. Instead, we explore a simple
alternative to better match the latent distributions of the VAE and the one
predicted by GIVT: We use a small invertible flow model [15, 16], or “adapter”,
to map the VAE latent sequences to a new latent space of identical dimensions.
We rely on a “volume preserving” additive coupling layer-based model which has
a diagonal Jacobian [15]. GIVT is then trained jointly with the adapter to predict
the sequences in this transformed latent space induced by the adapter (using the
same loss). At inference time, samples drawn from GIVT are first processed by
the inverted adapter, and then decoded to an image with the VAE decoder.
Note that the adapter does not require additional losses thanks to invertibility
and adds a negligible compute and model parameter overhead (less than 0.1%)
compared to the GIVT model (see Sec. 4 and App. B for details).

3.4 Inference

Given a VAE and GIVT trained as above, during inference we sample form GIVT
either sequentially (see Fig. 3) or as in MaskGIT [7] and decode the sampled
sequence into an image. We now investigate the various inference schemes for
discrete transformers, and derive their continuous counterparts.

Temperature Sampling, Nucleus Sampling, Beam Search In sequence
models for text (see [26] for an overview and discussion) and VQ-GAN-based
approaches, it is common to adapt and tune the sampling algorithm. We start
with temperature sampling, which for discrete models adapts the softmax tem-
perature of the categorical distributions predicted at each decoding step. For
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GIVT, we instead scale the covariance matrices of the predicted Gaussian dis-
tributions and call this strategy “variance scaling”. As we will see in Sec. 4, this
simple change can have a significant impact on sample quality.

Nucleus sampling [26] proposes to collect the largest logits such that its cu-
mulative probability after normalization exceeds a threshold (for example 0.8),
and to sample from this reduced-support distribution. In GIVT, when predicting
a single mixture, this can be approximated by truncating the predicted distri-
butions per dimension (thereby choosing a higher-density support). This has a
similar effect to variance scaling and therefore do not pursue this strategy.

We also consider beam search, which is the same for GIVT as it is for discrete
transformer decoders. For every sample, we maintain B beams, and at every step
we sample a number of candidates for every beam (we call these “fans” here).
We then compute the cumulative log probability for all beams and fans up to
the current sampling step, and select the B beams with the highest cumulative
log probability. Finally, there is no analogous concept for top-k sampling [21] in
GIVT, because it predicts continuous distributions.

Distribution-Based Classifier-Free Guidance In the diffusion literature,
classifier-free guidance (CFG) [25] has been employed with great success. Con-
cretely, conditional diffusion models are trained with an additional null class ∅
to learn the unconditional data distribution. Then, during inference, the condi-
tional log density is “moved away” from the unconditional one: given a guidance
weight w, the updated (diffusion) score estimate is is obtained as

ε̃(z, c) = (1 + w)ε(z, c)− wε(z, ∅), (1)

where ε estimates the gradient of the log density of the data distribution, ε(z, c) ∝
∇z log p̃(z|c) (see [25, Sec. 2]). From this, we now derive a CFG variant for our
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GIVT, since we directly predict a density. We term this approach “Density-Based
CFG” (DB-CFG). Eq. 1 can be written as

ε̃(z, c) ∝ (1 + w)∇z log p̃(z|c)− w∇z log p̃(z|∅)
∝ ∇z log

(
p̃(z|c)1+wp̃(z|∅)−w

)
,

i.e., ε̃ estimates the log of the density pCFG(z|c) ∝ p̃(z|c)1+wp̃(z|∅)−w (see Fig. 6).
Thus, we want to adapt our models to sample from pCFG. We follow [25] and train
GIVT with an additional null class ∅. During inference, we evaluate GIVT twice
at every step, once conditional on the actual label c and once conditional on ∅. To
implement classifier-free guidance, we then have to sample from an unnormalized
version of pCFG(z) derived from the two GIVT predictions. To this end, we turn
to rejection sampling, which requires: 1) an unnormalized density; 2) a good
proposal distribution p′, that is close to the true target distribution; and 3) a
scaling factor K to bound the likelihood ratio between p′ and the unnormalized
target density.

p(z|c)
p(z| )
pCFG(z|c), w = 0.1
pCFG(z|c), w = 0.5

Fig. 6: Visualization of our Density-
Based Classifier-Free Guidance (DB-
CFG). We show the conditional
and unconditional PDFs predicted
by GIVT, and the resulting CFG
PDF for two values of w. Note how
the CFG distributions become more
peaked. We use rejection sampling to
sample from pCFG.

The distributions we mix are GMMs and
finding a good proposal distribution can
be challenging. Instead, we first sample the
mixture index from p̃(z|c) and apply DB-
CFG to the corresponding mixture com-
ponents from p̃(z|c) and p̃(z) (the compo-
nents are multivariate Gaussians with diag-
onal covariance). We find empirically that
the unconditional components (i.e., distri-
butions predicted using the ∅ label) tend
to have larger variance than the condi-
tional ones (as visualized in Fig. 6). It is
thus sensible to pick sample proposals from
N (µc, 2σc), where µc, σc are the parameters
predicted by GIVT when given the label c.
We empirically find that drawing 1000 sam-
ples is enough to find at least one valid sam-
ple 99.9% of the time. For the remaining
<0.1%, fall back to sampling from N (µc, σc).

We emphasize that the overhead of DB-CFG is small: it requires two forward
passes (per inference step) instead of one to predict the conditional and uncon-
ditional distribution. We then draw 1000 samples from those in parallel on an
accelerator, which is very fast. We refer to App. 3.4 for Python code.

4 Experiments

4.1 Image generation

We use ImageNet1k [56] and explore class-conditional generation (where we con-
dition our GIVT on class labels) for 256px and 512px, and unconditional gener-
ation for 256px.
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Fig. 7: Left: Impact of DB-CFG (Sec. 3.4) and variance scaling (Sec. 3.4) on sampling
FID of our class-conditional 256×256GIVT-Causal models. DB-CFG values in [0.3, 0.8]
and variance scaling parameter t in [0.9, 1.0] lead to low FID. Right: Average standard
deviation of the GMM predicted by GIVT-Causal for class 130, averaged over 128
samples: conditional predictions have lower standard deviation; spikes can be observed
when the line changes in the raster scan over the latent feature vectors.

β-VAE We closely follow the setup of MaskGIT [7]. We use their VAE ar-
chitecture, built of ResBlocks (as detailed in App. C; encoder and decoder have
a combined 53.5M parameters), remove the VQ layer and related losses, and
replace it with a linear layer predicting µ, σ (Sec. 3.1). We use the same weights
for reconstruction, perceptual, and GAN-loss, as well as identical optimizer pa-
rameters, as in [7, 46]; we only vary the latent dimension d and weight β of the
KL-term. By default, we set the token dimension to d = 16 (i.e., the VAE pre-
dicts 16 means and variances per token) and β = 5 ·10−5. We note that our VAE
is trained on 256× 256 images, and we also use it for our 512× 512 experiments
without retraining (like [7]).

GIVT For GIVT-Causal, we follow the original transformer decoder archi-
tecture [72] in decoder-only mode, but remove biases from attention layers, MLP
blocks, and LayerNorms, and replace ReLU by GELU as is common practice.
For GIVT-MaskGIT, we simply remove the attention mask during training and
feed masked inputs instead of shifted ones. We use the BERT-Large configu-
ration [13] by default (304M parameters), and also explore a larger backbone
with 1.67B parameters, denoted with the suffix “-L” (see App. B for details). For
model variants with adapter (suffix “+A”), we use a stack of 8 bijective iRevNet
blocks [28] (with hidden channel dimension 4d, resulting in 112k additional pa-
rameters for d = 16), applied to the w×h× d representation before reshaping it
into a sequence. We configure our GIVT models to predict a 16-mixture GMM
with factorized components (i.e. the mixture components are multivariate Gaus-
sians with diagonal covariance), and explore predicting a single, multivariate
Gaussian modeling the full covariance matrix of the tokens as an alternative.
For the conditional generation experiments, we use a learned embedding which
we prepend to the embedded token sequence. To train GIVT, we use Adam
with a cosine schedule (500 epochs; with linear warmup of 50 epochs), set the
learning rate and weight decay to 10−3 and 10−4, respectively, the optimizer β2
parameter to 0.95, the dropout probability to 0.2 for GIVT-causal and 0.4 for
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GIVT-MaskGIT, and the batch size to 8192. We use the same data augmen-
tation as during VAE training (see [7, 46]), and sample from the VAE encoder
distribution for every batch (an additional source of randomness besides data
augmentation).

We implement GIVT in JAX [4] and use distrax [12] to implement the cand
compute the log-probabilities.

GIVT-MaskGIT inference Following [7], we fix the number of inference
steps to 16 and employ the cosine schedule (i.e. letting r = i/16 at step i,
the fraction of masked tokens is given by cos(π/2r)). We also sort tokens by
likelihood at each step and sample using a “choice temperature” tC .

Exploring the VAE latent space To better understand the interplay be-
tween the feature dimension d, the KL regularization β, the reconstruction qual-
ity of the VAE, and the sampling quality of the GIVT, we train VAEs with
latent dimension in {4, 8, 16, 32} and β in {2.5 · 10−5, 5 · 10−5, 10−4, 2 · 10−4} us-
ing the VAE-training setup described at the beginning of this section. For each
of the resulting VAEs we train a GIVT-Causal with the smaller BERT-Base [13]
dimensions and a range of values for the number of mixtures k.

Evaluation For the VAEs we report “reconstruction FID”, the FID obtained
when reconstructing the 50k ImageNet validation images. For our GIVT variants
and baselines, we report the sampling FID [23] when sampling a balanced set
of 50k images covering all ImageNet classes. In both cases, we rely on the well-
established ADM TensorFlow Suite [14], which uses the entire ImageNet training
set as a reference. Furthermore, we also report Precision and Recall [58]. Finally,
we evaluate the representation learning capabilities by training a linear classifier
on an average-pooled intermediate representation of unconditional GIVT-Causal
as in prior work [8, 76] (see App. F for details).

4.2 Panoptic segmentation and depth estimation

We build on the UViM framework [33], which uses a VQ-VAE to compress the
label space of computer-vision dense-prediction tasks, and an encoder-decoder
transformer taking the RGB image as an input and predicting the associated
dense labels as discrete codes in the VQ-VAE latent space. Here, we replace
the VQ-VAE with a β-VAE and use a GIVT encoder-decoder to model the
continuous latent code. For the VAE, we use the same transformer-based au-
toencoder architecture (6-layer encoder and 12-layer decoder) and cross-entropy
loss as [33]. We set d = 16, k = 1, and KL weight β = 2.5 · 10−4 for panoptic
segmentation and β = 2·10−4 for depth estimation. To build an encoder-decoder
GIVT model the same way as in [33], we employ the causal variant described for
ImageNet generation and insert a cross-attention layer after each self-attention
layer. Following [33], we use the ImageNet-21k-pretrained ViT-L/16 from [62]
as the encoder, set the image resolution to 512px, and adopt the preprocessing
and optimization hyper-parameters from [33]. We use the UViM variant without
encoder and decoder context [33]. Finally, we consider variance scaling and beam
search, selecting the parameters on a held-out subset of the training set as [33].
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Table 2: Results on class-conditional 512×512 ImageNet. We use the standard ADM
evaluation suite for metrics, where FID is calculated w.r.t. the training set. GIVT-
MaskGIT obtains competitive FID scores with only 16 inference steps and outperforms
its VQ-counterpart. GIVT-Causal-L+A outperforms the best DiT variant, DiT-XL/2-
G. †Values obtained by us from public code. ?Inference uses activation caching.

Model Inference Steps FID↓ Precision↑ Recall↑

ADM [14] 250 23.20 0.73 0.60
ADM-G [14] CG = 1.0 250 7.72 0.87 0.42
DiT-XL/2 [51] 250 12.03 0.75 0.64
DiT-XL/2-G [51] CFG = 1.5 250 3.04 0.84 0.54

MaskGIT [7] tC = 4.5 16 7.80† 0.86† 0.46†

GIVT-MaskGIT (Ours) tC = 140 16 4.86 0.88 0.48

GIVT-Causal-L (Ours) t = 0.9 512? 8.35 0.79 0.61
GIVT-Causal-L+A (Ours) t = 0.9, DB-CFG = 0.9 512? 2.92 0.84 0.55

5 Results

5.1 Image generation

VAE latent space In Fig. 4 we show how varying the weight β of the KL term
affects 1) the VAE reconstruction FID and 2) the sampling FID of a Base-size
GIVT-Causal trained on the corresponding latent sequence. For 1), increasing
β leads to worse reconstruction FID since the VAE can store less information
in the latent. It shifts more of the modeling effort to the VAE decoder, so that
the decoder becomes gradually more generative, which affects sampling quality
(see [67, Sec. 7] [55] for more discussion).

For 2), we see the opposite trend: increasing β leads to decreased (better)
sampling FID for GIVT models trained on the latent sequence. Arguably, this
is because the VAE latent sequence more closely follows the Gaussian prior, and
hence becomes easier for the GIVT to model. Finally, increasing the number of
mixtures k initially reduces the sampling FID substantially, reaching a plateau
at k = 16. We hence set k = 16 and β = 5 ·10−5 by default, and use a VAE with
β = 10−5 for the larger (-L) GIVT models. We emphasize that it is common in
the literature to explore and tune hyper-parameters such as β or analogously the
vocab size and commitment loss in VQ [20, Table 5] [55, Table 8] [51] [46, Fig. 3].

Sampling FID In Table 1 we show the sampling FID for four model classes
on class-conditional 256× 256 ImageNet: GANs, diffusion-based approaches, as
well as masked and sequence modeling approaches. GIVT-MaskGIT outperforms
MaskGIT [7] which has comparable model size and inference cost, and DB-
CFG leads to an additional improvement. In absence of guidance techniques,
our GIVT-Causal models outperform all diffusion baselines as well as VQGAN
by a large margin. Using guidance techniques, GIVT-Causal obtains FID of 3.35
compared to 5.20 for VQGAN with a more than 4.5× smaller model (0.3B for
GIVT vs. 1.4B parameters), and also outperforms the 32% larger LDM-4-G.
Our larger GIVT-Causal-L+A obtains 16% and 17% reduction in FID without
and with guidance, respectively, compared to ViT-VQGAN which has the same
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Table 3: UViM based on GIVT-Causal and VQ-VAE evaluated on panoptic segmen-
tation (COCO Panoptic 2017) and depth estimation (NYU Depth v2). We report the
panoptic quality (PQ) and RMSE for the VAE/VQ-VAE reconstructions of the vali-
dation set label maps (recon.) and the inference metrics on the actual dense prediction
tasks (inference). GIVT obtains metrics comparable to the VQ-based UViM.

COCO Pan. (PQ↑) NYU Depth v2 (RMSE↓)

recon. inference recon. inference

UViM [33] 66.0 39.0 0.183 0.459
GIVT (ours) 71.0 40.2 0.195 0.474

generative transformer size but a 4× larger sequence length (resulting in more
than 4× slower sampling) and a 10× larger VAE.

We present sampling FID for 512×512 ImageNet in Table 2. GIVT-MaskGIT
obtains a 38% lower FID than MaskGIT with comparable model size and infer-
ence cost. GIVT-Causal-L+A outperforms DiT-XL/2, the best available DiT
model, both without and with guidance (albeit with a larger model).

Finally, we present unconditional results in App. E. This task is considerably
harder, but GIVT-Causal beats the diffusion-based ADM [14] by a large margin.

Ablations and visualizations Fig. 5 compares the effect of model configura-
tion (number of mixtures k, adapter) and sampling algorithm (variance scaling,
beam search, DB-CFG) on FID. For every model configuration, all the sampling
algorithms lead to solid improvements in FID, with DB-CFG being the most
effective one across all configurations. Increasing k from 1 to 16 overall leads
to somewhat larger improvements than keeping k = 1 and adding an adapter.
Moreover, combining adapter with k = 16 results in compounding improvements
across sampling algorithms.

Fig. 7 (left) shows the impact of the variance scaling and CFG parameters
on the sampling FID. In Fig. 7 (right), we visualize the predicted standard devi-
ation as a function of the GIVT-Causal inference step. The standard deviation
gradually decreases, meaning that the predictions later in the sampling process
become more certain. Furthermore, the unconditional predictions generally have
a higher standard deviation, as expected.

For GIVT-MaskGIT, predicting a single Gaussian with full covariance matrix
per latent vector, rather than assuming a diagonal covariance, only led to very
modest gains of about 3%. A GMMwith factorized component densities therefore
seems to be the more effective alternative. Furthermore, a full covariance matrix
makes DB-CFG less tractable than the diagonal covariance (because the high
dimensional multivariate distribution has more regions of low density).

Samples Fig. 1 shows ten 512 × 512 samples from GIVT-Causal-L+A, and
App. I shows samples for other GIVT-Causal variants and GIVT-MaskGIT. We
can see that the model produces high-fidelity, coherent samples. To study sample
diversity, we show multiple samples from different models for a fixed class.

In Fig. 15 in App. I, one can see two samples from our VAE (obtained by de-
coding latents sampled from the prior), which show a soup of image textures. We
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then show different steps of the GIVT-MaskGIT inference, and observe similar
behavior as in the VQ-based model ( [7, Fig. 2]).

Table 4: ImageNet linear probing accu-
racy of unconditional GIVT-Causal and gen-
erative models from the literature. GIVT-
Causal matches VIM+ViT (ViT-VQ-GAN) [76]
which has more than 2× the model parame-
ters and 4× the sequence length (and hence
FLOPs). Type: (Latent) generative model type.
#Param.: Number of parameters of the full (la-
tent) generative model.
Model Type #Tok. #Param. Acc.↑

BigBiGAN [17] 344M 61.3
iGPT-L [8] dec.-only 1024 1362M 60.3
VIM+CNN [76] dec.-only 1024 650M 61.8
VIM+ViT [76] dec.-only 1024 650M 65.1
MAGE ViT-L [39] enc.-dec. 256 404M 78.9

GIVT-Causal (Ours) dec.-only 256 304M 65.1

Representation learning Ta-
ble 4 shows the ImageNet lin-
ear probing accuracy of uncon-
ditional GIVT-Causal and gener-
ative models from the literature
(we chose the model variants clos-
est in terms of model size and
compute). GIVT-Causal matches
VIM+ViT (ViT-VQGAN) [76]
which has more than 2× the
model parameters and 4× the
sequence length (and hence FLOPs).
GIVT-Causal is only outper-
formed by MAGE [39], whose la-
tent encoder-decoder architecture
is better suited for representation
learning than decoder-only models. An investigation of the probing accuracy as
function of the layer index can be found in App. F.

5.2 Panoptic segmentation and depth estimation

Table 3 compares the performance of a GIVT-based UViM variant with a VQ-
VAE-based baseline (both without encoder/decoder context) on COCO Panop-
tic 2017 [32] and NYU Depth v2 [61]. We report the panoptic quality metric
(PQ) [32] and RMSE, respectively, and find that our GIVT-based model out-
performs the baseline in panoptic segmentation and performs slightly worse in
depth estimation. In App. I we show visual results.

6 Conclusion

In this paper, we proposed simple modifications to standard transformer decoder-
only models enabling them to generating real-valued vectors. To our knowledge,
this is the first decoder-only model amenable to generating sequences of real-
valued vectors. In the context of image generation with VQ-GAN or Mask-
GIT, this side-steps training difficulties such as low codebook usage in VQ-
VAEs and corresponding mitigations like entropy losses or codebook-splitting
algorithms, by enabling the use of standard VAEs which are much easier to train.
Furthermore, our method avoids large embedding matrices because the feature
representations can directly be consumed and predicted by our GIVT model.
Our simple, quantization-free approach outperforms its VQ-based counterparts
in class-conditional image generation and image representation learning, often by
significant margins. GIVT also obtains strong performance in dense prediction
tasks when applied to UViM. We hope that future work explores applications of
GIVT to other modalities such as audio and time-series modeling.
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