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Abstract. In section 1, we compare IRControlNet with more variants
to prove its effectiveness for IR tasks. Then, we provide more details
about the restoration module and the restoration guidance in section 2,
3, respectively. In section 4, we present more quantitative and qualitative
comparisons for BSR task on synthetic datasets. We also provide a com-
parison regarding inference speed and model complexity among different
BSR methods in section 5. Finally, we provide additional visual results
in different real-world scenarios in section 6.

1 Comparison of IRControlNet and More Variants

More Variants for IRControlNet. For more comprehensive analysis, we con-
struct another two variants. The architecture is illustrated in Fig. 1.

Variant 5. Regarding feature modulation, we simultaneously control the
middle block features, decoder features and skipped features. We use concat
features for simplified denotation.

Variant 6. Regarding feature modulation, we use SFT layer [11] to modulate
the intermediate features. Specifically as follows:

SFT (F|γ,β) = F⊙ (1 + γ) + β (1)

where F denotes feature maps, γ and β denotes the element-wise scale and
shift transformation. Both γ and β are produced by zero-conv, thus they are
initialized to zero at the beginning of training.

Table 1 presents the quantitative results. We can observe that both Variant
5 and 6 achieve better performance in terms of PSNR and SSIM while their
MANIQA scores are worse than IRControlNet. Variant 5 applies more control
on the pretrained model, which enhances the fidelity but damages generation
quality. As for Variant 6, it utilizes SFT layer to modulate the skipped features.
As SFT layer brings more precise control, which also improves the fidelity. In
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Fig. 1: Architectures of our IRControlNet and two model variants.

conclusion, both Variant 5,6 trade the quality for fidelity. IRControlNet achieves
such a trade-off through restoration guidance and utilizes the add-on control to
preserve most of the generation capability.

Variants PSNR↑ SSIM↑ MANIQA↑
IRControlNet 22.9865 0.5200 0.2689

Variant 5: w/ control concat features 23.0449 0.5261 0.2567
Variant 6: w/ SFT modulation 22.9974 0.5292 0.2622

Table 1: Quantitative comparisons of IRControlNet, Variant 5 and 6 on ImageNet1k-
Val with Real-ESRGAN [10] degradation.

Qualitative Comparisons for Variant 2. We present the visual comparisons
for Variant 2 in Fig. 2. It can be observed that IRControlNet can generate more
vivid textures while Variant 2 tends to produce over-smoothed results.

2 More Details of Training RM

During the training of generation module, we follow [14] and modify a widely-
used IR backbone, SwinIR [5], as our restoration module. Specifically, we utilize
the pixel unshuffle [8] operation to downsample the original low-quality input



DiffBIR: Toward Blind Image Restoration with Generative Diffusion Prior 3

Fig. 2: Visual comparisons of Variant 2 and IRControlNet.

Ilq with a scale factor of 8. For upsampling the deep features back to the orig-
inal image space, we perform the nearest interpolation three times, and each
interpolation is followed by one convolutional layer as well as one Leaky ReLU
activation layer. This modified SwinIR will be trained on synthetic LQ-HQ im-
age pairs. Here we adopt a classic first-order degradation model to synthesize
the LQ images.

Ilq = {[(Ihq ⊗ kσ)↓r + nδ]JPEGq}↑r , (2)

where the HQ image Ihq is first convolved with a Gaussian kernel kσ, followed by
a downsampling of scale r. After that, additive Gaussian noise nδ is added to the
images, and then JPEG compression with quality factor q is applied. Finally, the
LQ image is resized back to the original size. Note that the downsampling and
blurring contribute most to the information loss, thus we expand the degradation
ranges of these two operations. Specifically, we randomly sample σ, r, δ and q
from {0.1:12}, {1:12}, {0:15}, {30:100}, respectively.

3 More Details about Restoration Guidance

We provide a detailed explanation for our proposed restoration guidance in this
section. Restoration guidance aims to achieve a trade-off between quality and
fidelity through guiding the denoising process towards the high-fidelity IRM

obtained in the first stage. At time t, the UNet denoiser ϵθ first predicts the
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noise ϵt of the noisy latent zt. Then the predicted noise ϵt is removed from zt to
obatin the clean latent z̃0 through the following equations:

ϵt = ϵθ(zt, c, t, cRM ), (3)

z̃0 =
zt −

√
1− ᾱtϵt√
ᾱt

. (4)

This indicates that we could modify the clean latent z̃0 in each time step, and
then sample zt−1 according to the predefined distribution q(zt−1|zt, z̃0). In this
way, we are able to achieve preferred restoration results without additional train-
ing. To modify z̃0, we define a region-adaptive MSE loss in image space:

L(z̃0) =
1

HWC
||W ⊙ (D(z̃0)− IRM )||22, (5)

W = 1− G(IRM ), (6)

where H,W,C denotes the spatial size of IRM , and W is a weight map. G(IRM )
is the normalized gradient magnitude of IRM , which represents the gradient
intensity of each pixel in IRM . To obtain G(IRM ), we first calculate the gradient
magnitude for each pixel in IRM :

M(IRM ) =
√
Gx(IRM )2 +Gy(IRM )2 (7)

where Gx and Gy denotes the sobel operator in x and y axis, respectively. As
pixels with strong gradient signals are very rare in an image, we then use patch-
level gradient signals for better estimate the gradient intensity. We divide IRM

into multiple equal-sized non-overlapping patches as follows:

{I(1)RM , I
(2)
RM , ..., I

(k)
RM , ...} (8)

∀i, j, I(i)RM ∩ I
(j)
RM = ∅,

⋃
i

I
(i)
RM = IRM

For patch I
(k)
RM , we calculate the sum of the gradient magnitudes of all pixels,

and use the tanh function to map them into the range of [0, 1):

S(I
(k)
RM ) = tanh

∑
i,j

Mi,j(IRM )

 , (i, j) ∈ I
(k)
RM (9)

where (i, j) denotes a pixel in patch I
(k)
RM . As S(I

(k)
RM ) is closer to 1, the corre-

sponding gradient signal is stronger, and vice versa. The final gradient magnitude
can be formulated as below:

Gi,j(IRM ) =
∑
k

I
[
(i, j) ∈ I

(k)
RM

]
S(I

(k)
RM ), (10)

where I
[
(i, j) ∈ P (k)

]
is an indicator function, denoting whether the pixel (i, j)

is located in the patch I
(k)
RM . The whole algorithm is illustrated in Algorithm 1.
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Algorithm 1 Restoration guidance, given a diffusion model ϵθ, and the VAE’s
encoder E and decoder D

Input: Guidance image IRM , text description c (set to empty), diffusion steps T ,
gradient scale s
Output: Output image D(z0)
Sample zT from N (0, I)
for t from T to 1 do

z̃0 ←
zt√
ᾱt
−
√
1− ᾱtϵθ(zt, c, t, E(IRM ))√

ᾱt

W = 1− G(IRM )

L(z̃0) =
1

HWC
||W ⊙ (D(z̃0)− IRM )||22

Sample zt−1 from q(zt−1|zt, z̃0 − s∇z̃0L(z̃0))
end for
return D(z0)

4 More Quantitative and Qualitative Comparisons for
BSR on Synthetic Datasets

The quantitative results on DRealSR [12] and RealSR [2] are presented in Table
2. The comparisons on these two datasets lead to similar observations. When
the guidance scale s is set to 0, DiffBIR significantly outperforms baseline meth-
ods in terms of all IQA metrics. When the guidance scale s is set to 1, DiffBIR
still surpasses the baseline methods in MANIQA and CLIP-IQA. As for eval-
uation in PSNR, DiffBIR performs better than diffusion-based methods and
shows comparable performance to GAN-based methods, indicating that DiffBIR
can achieve a good balance between quality and fidelity. Visual comparisons on
DIV2K-Val [1] are presented in Figure 3. We can observe that only DiffBIR is
able to produce restored results with correct semantic information. For exam-
ple, it correctly recovers details such as the eyes behind the helmet, the lines
of fireworks, and the wings of the penguin. GAN-based methods shows a lack
of generation capability, thus producing over-smoothed results. In comparison,
diffusion-based baseline methods are usually affected by the severe degradation
and fail to generate correct semantics.

5 Quantitative Comparisons for Model Efficiency

We present a quantitative comparison regarding inference speed and model com-
plexity for both diffusion-based and GAN-based methods in Table 3. This com-
parison is performed on a super-resolution task with an input size of 128× 128
and a scale factor of 4. We conduct multiple inferences and calculate the aver-
age inference time. It can be observed that DiffBIR is the most efficient among
DM-based baselines. It’s about 1.8x faster than StableSR and about 1.6x faster
than PASD. Although GAN-based methods are more efficient, they perform sig-
nificantly worse than DM-based methods. The development of diffusion models
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Datasets Metrics FeMaSR
[3]

DASR
[4]

Real-ESRGAN+
[10]

BSRGAN
[15]

SwinIR-GAN
[5]

StableSR
[9]

PASD
[13]

DiffBIR
(s=0)

DiffBIR
(s=0.5)

DiffBIR
(s=1)

PSNR↑ 23.1977 26.3844 24.6878 25.6903 25.3898 23.8669 24.8735 24.2037 24.9891 25.6238
SSIM↑ 0.6239 0.7271 0.6705 0.6765 0.6962 0.6400 0.6529 0.5874 0.6246 0.6544
LPIPS↓ 0.2190 0.1793 0.2290 0.2308 0.2057 0.2355 0.2016 0.2448 0.2328 0.2350
MUSIQ↑ 68.7458 66.0651 67.4608 68.9388 68.1393 69.2621 70.7670 72.3514 71.5339 69.8821

MANIQA↑ 0.3073 0.2048 0.2315 0.2309 0.2375 0.2565 0.2889 0.3915 0.3847 0.3530

DRealSR [12]

CLIP-IQA↑ 0.6327 0.5086 0.5022 0.5328 0.5244 0.5988 0.6151 0.6878 0.6761 0.6440
PSNR↑ 23.1627 25.5503 24.2400 24.9717 24.6244 23.5627 24.5385 23.5237 24.2216 24.7531
SSIM↑ 0.6534 0.7183 0.6793 0.6839 0.7051 0.6549 0.6694 0.5989 0.6346 0.6615
LPIPS↓ 0.2520 0.2397 0.2556 0.2545 0.2340 0.2429 0.2317 0.2646 0.2544 0.2565
MUSIQ↑ 66.1208 59.5565 66.7333 68.0673 67.0964 68.4594 70.0043 72.3909 71.3969 69.5167

MANIQA↑ 0.2652 0.1713 0.2243 0.2329 0.2281 0.2407 0.2746 0.3820 0.3792 0.3504

RealSR [2]

CLIP-IQA↑ 0.5925 0.4300 0.4787 0.5233 0.4920 0.5852 0.5822 0.6868 0.6817 0.6478

Table 2: Quantitative comparisons on synthetic datasets (DRealSR [12] and RealSR
[2]) for BSR task. Red and blue indicate the best and second best performance. The
top 3 results are marked as gray .

is extremely fast. There’re works [6,7] that can already achieve satisfactory gen-
eration performance with only 1∼4 steps, thus the time-consuming problem can
be solved in the future.

Metrics Real-ESRGAN+ [10] BSRGAN [15] SwinIR-GAN [5] FeMaSR [3] DASR [4] StableSR [9] PASD [13] DiffBIR
Inference Time (ms) 46.19 46.42 126.44 89.01 12.69 19278.46 16951.08 10906.51

Model Size (M) 16.69 16.69 11.71 34.05 8.06 1409.11 1675.76 1716.7

Table 3: Quantitative comparisons of inference speed and model complexity.

6 More Visual Comparisons on Real-world Datasets

We provide more visual comparisons for BSR, BID, BFR tasks in Figure 4,
Figure 5 and Figure 6, respectively.
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Fig. 3: Visual comparisons of BSR methods on synthetic dataset (DIV2K-Val [1]).
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Fig. 4: More visual comparisons for BSR on real-world datasets.

Fig. 5: More visual comparisons for BID on real-world datasets.
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Fig. 6: More visual comparisons for BFR on real-world datasets.
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