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We provide supplementary material for the main paper. The content is pre-
sented according to the following list.

– In Sec. A, we present the experimental details and more comparisons with
the state-of-the-art method L3D++ [5] and LIMAP [8].

– In Sec. B, we provide additional evaluations on the best proposal selection
module, evaluate the equality of invalid and valid best proposals, visualize all
best proposals, present evaluations on consistency percentage, and give the
results by initializing our iterative algorithm with random best proposals.

– In Sec. C, we give the details on the line track building module and compare
three build-in strategies of LIMAP [8] for generating line tracks.

– In Sec. D, we provide the details on joint optimization and visualize line
maps with and without the imposition of coplanarity constraints.

– In Sec. E, we show an application of line map for line-assisted visual local-
ization and perform performance comparisons using line maps generated by
LIMAP [8] and our method, respectively.

– In Sec. F, we show an application of line map for SfM poses refinement, and
perform performance comparisons using line maps generated by L3D++ [5],
LIMAP [8] and our method, respectively.

– In Sec. G, we explain current limitations and future work.

A Experimental Details

A.1 Datasets

We consider both the synthetic dataset Hypersim [12] and the real dataset Tanks
and Temples [7] for quantitative and qualitative experiments.

Hypersim [12] is a photorealistic synthetic dataset for holistic indoor scene
understanding. The images of the first 8 scenes are used for evaluation and each
image is resized to a maximum dimension of 800. We use COLMAP [14] to
triangulate SfM points and build point tracks given Ground Truth (GT) camera
poses. We use a visible GT point cloud for quantitative evaluation, which is
generated by GT depth maps and GT poses using LIMAP library [8].
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Tanks and Temples [7] is a benchmark for image-based 3D reconstruction.
Images in training data are used for evaluation, except for the scene Ignatius as
it has almost no line structures. We use their GT point cloud for quantitative
evaluation. Since the provided GT point cloud is focused on the main object,
we follow the suggestion of LIMAP [8] and compute an axis-aligned bounding
box of the GT points, extend it by 0.1 meters in all three dimensions, and only
evaluate the lines inside this region.

A.2 Hyperparameters

Our hyperparameters are as follows: we use nv = 20, K = 10 for line matching,
ts = 1.5, tc = 30% for best proposal selection, ta = 2 degrees, tp = 2 pixels, and
to = 0 for line track building. We default to using GlueStick line matcher [11]
for searching top K line matches. It is also easy to substitute other customized
line detectors and matchers.

A.3 Additional Comparisons with L3D++ [5] and LIMAP [8]

In the main paper, we use the open-source implementations of L3D++ [5] and
LIMAP [8] for evaluation. We only evaluate the line tracks that have at least 4
support images, which is the same as the evaluation pipeline of LIMAP [8]. For
the sake of fairness, when evaluating LIMAP [8], we use its four build-in meth-
ods (i.e., Line+Line, Multiple Points, Line+Point, and Line+VP) for proposal
generation, use its default greedy strategy for line track building, and jointly
optimize points, lines, and vanishing points. We use the default line matcher of
L3D++ [5], which is based on weak epipolar constraints. We use the default line
matcher of LIMAP [8], which is GlueStick [11] and the same as our default. All
methods use the same nv and K for line matching.

Considering fairness, we additionally modify the code of L3D++ [5] to use
the same top K line matches as our approach and LIMAP’s, derived from Glue-
Stick line matcher [11]. The corresponding results are detailed in Tabs. 1 and 2.
Consistent with our primary observation in the main paper, within the Hypersim
dataset [12], the length recall of our method is significantly higher than other
methods, almost double theirs, albeit with a slightly lower inlier percentage
compared to L3D++ [5]. In the Tanks and Temples dataset [7], our method sig-
nificantly outperforms all competitors in terms of both scene completeness and
accuracy, while also showcasing longer line tracks, demonstrating its superiority.

B Additional Evaluations on Best Proposal Selection

B.1 Additional Evaluation on Best Proposals

We evaluate all (i.e., valid + invalid) best proposals and the valid best propos-
als selected by non-iterative method [8] or our iterative method on Hypersim
dataset [12]. The corresponding results are reported in Tab. 3. Note that for
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Table 1: Line reconstruction using the same detected LSD/DeepLSD lines and top
K line matches generated from GlueStick line matcher on Hypersim [12]. The length
recall at τ (Rτ), inlier percentage at τ (Pτ), and average supports are reported.

Line type Method R1 R5 R10 P1 P5 P10 # supports

LSD
L3D++ [5] 30.2 168.9 224.1 64.5 84.8 89.4 17.5 / 20.9

[16]
LIMAP [8] 36.2 209.1 278.2 62.1 82.3 87.4 16.8 / 19.7
Ours 58.2 303.1 388.0 62.7 83.5 88.5 19.9 / 21.8

DeepLSD
L3D++ [5] 38.8 193.8 252.6 68.6 85.2 89.4 16.3 / 19.2

[9]
LIMAP [8] 32.8 180.6 237.6 64.9 81.5 86.0 18.7 / 26.2
Ours 79.7 375.5 464.6 64.8 83.3 88.1 20.5 / 21.6

Table 2: Line reconstruction using the same detected LSD/DeepLSD lines and top
K line matches generated from GlueStick line matcher on train split of Tanks and
Temples [7]. The length recall at τ (Rτ), inlier percentage at τ (Pτ), and average
supports are reported.

Line type Method R5 R10 R50 P5 P10 P50 # supports

LSD
L3D++ [5] 460.2 1050.3 3612.5 43.6 56.8 86.4 9.2 / 10.2

[16]
LIMAP [8] 593.2 1400.3 4990.1 44.1 57.0 86.5 8.9 / 10.0
Ours 935.0 2162.4 7147.2 45.4 58.3 85.9 13.1 / 13.6

DeepLSD
L3D++ [5] 425.4 983.0 3402.9 44.3 57.3 86.2 9.1 / 10.1

[9]
LIMAP [8] 542.7 1259.9 4617.8 44.0 54.9 81.3 11.1 / 13.9
Ours 986.9 2255.7 7379.0 47.3 58.5 83.7 15.1 / 15.7

Table 3: Best proposals evaluation on Hypersim [12] with DeepLSD [9] lines. The
length recall at τ (Rτ), inlier percentage at τ (Pτ), and average supports are reported.

Best proposal type Method R1 R5 R10 P1 P5 P10 # supports

Valid + Invalid Non-iterative [8] 879.7 4966.2 7023.7 46.8 63.8 70.7 1 / 1
Iterative (Ours) 1116.4 6258.6 8419.1 50.2 66.9 72.6 1 / 1

Valid Non-iterative [8] 878.8 4958.2 7006.7 48.9 66.6 73.6 1 / 1
Iterative (Ours) 1110.3 6200.3 8287.0 63.9 83.5 89.4 1 / 1

the non-iterative method, there exist trivial supporting 2D line segments, which
are matched 2D line segments generating the supported proposals. We ignore
trivial supporting 2D line segments in all scenarios involving supporting 2D line
segments. The “# supports” is “1 / 1” because each best proposal is outputted
as a 3D line segment corresponding to a line track whose unique track element is
the 2D line segment to which the best proposal belongs. As depicted in Tab. 3,
after filtering out invalid best proposals, both the non-iterative method and our
method achieve a significant enhancement in the inlier percentage, albeit at a
slight sacrifice in length recall. This demonstrates the unreliability of invalid best



4 X. Bai et al.

(a) Valid + invalid best
proposals from non-
iterative method [8]

(b) Valid best propos-
als from non-iterative
method [8]

(c) Valid + invalid best
proposals from our iter-
ative method

(d) Valid best propos-
als from our iterative
method

Fig. 1: Best proposals on the scene ai_001_001 [12] with DeepLSD [9] lines. The
length recall and inlier percentage at 1mm are as follows. (a): R1 = 847.7, P1 = 49.2.
(b): R1 = 846.3, P1 = 53.3. (c): R1 = 1009.8, P1 = 49.5. (d): R1 = 1002.4, P1 = 69.3.

proposals. Furthermore, unlike the non-iterative method, our iterative approach
substantially improves both length recall and inlier percentage, affirming the ef-
fectiveness of the proposed iterative algorithm in selecting more accurate best
proposals.

B.2 Visualization of Best Proposals

Fig. 1 illustrates all best proposals and valid best proposals selected by non-
iterative method [8] or our iterative method on the scene ai_001_001 of Hy-
persim dataset [12], along with the length recall and inlier percentage at 1mm
on the best proposals. Our method achieves the highest length recall and inlier
percentage both on all best proposals and valid best proposals, and significantly
reduces the noise on valid best proposals, again demonstrating its effectiveness.

B.3 Additional Evaluation on Consistency Percentage

We evaluate the average consistency percentage (refer to Section 4.2 in the main
paper for its definition) on valid best proposals on Hypersim dataset [12]. The
corresponding results are reported in Tab. 4. As illustrated in Tab. 4, our iterative
method significantly improves the consistency percentage, demonstrating it can
enhance the consistency of the support relationships.

Table 4: Average consistency percentage at 1◦/5mm, 5◦/10mm, and 10◦/50mm on
the valid best proposals on Hypersim [12] with DeepLSD [9] lines.

Method CP1◦/5mm CP5◦/10mm CP10◦/50mm

Non-iterative [8] 10.1 25.4 56.4

Iterative (Ours) 30.7 64.3 96.9
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B.4 Initialization with Random Best Proposals

In the main paper, we commence our proposed iterative algorithm (Eq. (4) in
the main paper) by initializing it with the best proposals selected through the
non-iterative method [8] (Eq. (1) in the main paper). Additionally, in Tab. 5, we
present the results of line reconstruction utilizing randomly selected best pro-
posals for initialization. All results are presented without joint optimization. As
illustrated in Tab. 5, the direct utilization of random best proposals for gener-
ating line tracks produces the worst length recall and average supports (refer to
the 1st row in Tab. 5). Nonetheless, the inlier percentage remains relatively high,
because we filter out poor 3D line segments after generating line tracks. Follow-
ing the execution of our iterative algorithm with the random best proposals as
input, a significant enhancement is observed in length recall and average sup-
ports, albeit with a slight compromise in inlier percentage (refer to the 2nd row
in Tab. 5). This demonstrates the efficacy of our iterative algorithm in improving
performance even when initialized with random best proposals. Importantly, it
is noteworthy that despite the utilization of random best proposals for initializa-
tion, the attained length recall and average supports surpass those of L3D++ [5]
and LIMAP [8] as depicted in Tab. 1 of the main paper. However, commencing
our proposed iterative algorithm by initializing it with the best proposals ob-
tained from the non-iterative method [8] achieves higher length recall and inlier
percentage compared with random initialization, demonstrating the sensitivity
of our iterative algorithm to initialization.

Table 5: Line reconstruction using different initial best proposals for our iterative
algorithm on Hypersim [12] with DeepLSD [9] lines. The length recall at τ (Rτ), inlier
percentage at τ (Pτ), and average supports are reported.

Initial best proposals type Method R1 R5 R10 P1 P5 P10 # supports

Random w/o iteration 17.5 87.1 114.3 69.7 85.6 89.8 9.1 / 9.3
Random w/ iteration 43.1 224.1 299.4 65.1 80.9 85.7 22.1 / 23.5

From non-iterative method [8] w/o iteration 54.44 303.3 414.7 61.9 80.1 85.9 16.9 / 17.7
From non-iterative method [8] w/ iteration 63.3 340.3 452.7 65.8 82.9 87.7 20.5 / 21.6

C Details on Line Track Building

Given the best proposal of all 2D line segments, we first build line tracks by clus-
tering 2D line segments according to their best proposals. Secondly, we estimate
the new 3D line segment for each line track. Lastly, we execute track remerging
and filtering to refine line tracks.
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C.1 3D Line Segment Estimation of Line Track

Given a line track and its corresponding best proposals, we apply the Principal
Component Analysis (PCA) method for all directions of the best proposals and
use the principal eigenvector and mean 3D endpoints of the best proposals to fit
a 3D infinite line. Then we project the 3D endpoints of all these best proposals
onto the fitted 3D infinite line and take the third outermost endpoints on both
sides as the two new 3D endpoints. After joint optimization, we use the same
method to get the new 3D line segment from the optimized 3D infinite line.

C.2 Track Remerging and Filtering

Given all line tracks, we follow [8] to iteratively remerge two line tracks by a
stricter similarity threshold and re-estimate the new line track. The 2D collinear-
ity constraints of line track elements are also used in this step to avoid two non-
collinear 2D line segments belonging to the same new line track. Lastly, we also
filter line tracks based on reprojection error.

C.3 Additional Comparisons with LIMAP [8]

In the main paper, for LIMAP [8], we use its default greedy strategy to generate
line tracks. The greedy strategy is the version of removing our 2D collinear-
ity constraints. Besides the greedy strategy, LIMAP [8] also provides two other
built-in strategies (exhaustive and avg) to merge the best proposals for gener-
ating line tracks. The exhaustive strategy tries to avoid merging two groups if
there are two best proposals from different groups that exhibit overlap but lack
collinearity. The avg strategy tries to avoid merging two groups if the respective
average 3D line segments of the two groups are not collinear. Although all of
exhaustive, avg, and our strategies try to impose constraints for generating line
tracks, an important difference is that our 2D collinearity constraints are directly
established by image observations, while the constraints of exhaustive and avg
strategies are established in 3D space. Therefore, our 2D collinearity constraints
are more consistent with image observations.

We substitute our strategy with the greedy, exhaustive, or avg strategy of
LIMAP [8] in our line track building module. The corresponding evaluations
are reported in Tab. 6. All experiments are without joint optimization. Our
method is better on length recall at all thresholds, while our inlier percentage
is slightly lower than the greedy method at 1mm and 5mm. As discussed in the
main paper, our method decreases the average number of supports across all
line tracks because the inconsistent track elements were assigned to different
consistent line tracks.

D Details on Joint Optimization

D.1 Parameterization

In optimization, we optimize 3D infinite lines formed by each initial 3D line
segment. For 3D infinite line, Plücker coordinates [8] (d,m) is used for com-
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Table 6: The results of using different line track building methods on Hypersim [12]
with DeepLSD [9] lines. The length recall at τ (Rτ), inlier percentage at τ (Pτ), and
average supports are reported.

Method R1 R5 R10 P1 P5 P10 # supports

Greedy [8] 36.5 188.4 242.2 68.3 83.3 86.9 22.3 / 33.2
Exhaustive [8] 51.7 275.8 363.8 64.4 81.9 87.1 18.5 / 21.9
Avg [8] 38.7 203.2 262.0 67.6 83.1 87.1 21.8 / 32.1
Collinearity2D (Ours) 63.3 340.3 452.7 65.8 82.9 87.7 20.5 / 21.6

putation where d is the normalized direction of the 3D line and m = p × d
is the moment (p is any point along the line), and orthonormal representa-
tion [8] (U ,W ) ∈ SO(3)×SO(2) (4 DoF) is used in optimization to avoid over-
parameterization. For 3D infinite plane, Hesse form (nπ, dπ) is used for compu-
tation where nπ is the normalized normal vector of the plane and dπ = nπ ·p is
the shortest distance from the origin to plane (p is any point on the plane), and
closest point plane representation [4] (3 DoF) is used in optimization to avoid
over-parameterization. For 3D vanishing points, we parameterize them with a
3-dimensional homogeneous vector (2 DoF). Therefore, the variables of the final
problem exhibit 3NP + 4NL + 3NΠ + 2NV P degrees of freedom in total.

D.2 Details on All Energy Terms

For EP , EL, EPL and ELV P , we use the same formulation as LIMAP [8]. Our
contribution lies in introducing EPΠ and ELΠ , which encodes the coplanarity
constraints overlooked by classical 3D line mapping methods [5, 6, 8].
Data Term for the Point Tracks (EP ). This term is the sum of the squared
reprojection error for all point tracks.
Data Term for the Line Tracks (EL). This term is the sum of the squared
reprojection error for all line tracks, which can be written as follows:

EL =
∑
L∈L

∑
k

w2
∠(Lk, lk) · e2perp(Lk, lk), (1)

w∠(Lk, lk) = exp (α(1− cos (∠(Lk, lk)))), (2)

where L denotes all 3D infinite lines formed by the corresponding initial 3D line
segments, lk is the detected 2D line segment (i.e., kth line track element), Lk

is the projected 2D infinite line of the 3D infinite line L, eperp(Lk, lk) computes
the root of the sum of the squared perpendicular distance of two endpoints of lk
to Lk. α equals 10.0 in our system.
3D Point-Line Association Term (EPL). This term is the sum of the squared
distance between a 3D point and the associated 3D infinite line, weighted by the
number of 2D connections among supports of the corresponding 3D point-line
association.
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3D Point-Plane Association Term (EPΠ). This term is the sum of the
squared distance between a 3D point and the associated 3D plane, weighted by
the number of image supports of the corresponding point track.
3D Line-Plane Association Term (ELΠ). This term is the sum of the
squared distance between a 3D point on the 3D infinite line and the associ-
ated 3D plane, and the squared cosine of the angle between the direction of the
3D infinite line and the normal vector of the associated 3D plane, weighted by
the number of image supports of the corresponding line track. As discussed in the
main paper, we use our proposed coordinate-independent method to determine
the 3D point on the 3D infinite line during optimization.
3D Line-VP Association and VP Orthogonality Regularization Term
(ELV P ). A part of this term is the squared sine of the direction angle between the
3D infinite line and the associated 3D vanishing point, weighted by the number
of 2D connections among supports for each 3D line-VP association. Another part
of this term is the sum of the squared cosine of the angle between two 3D nearly
orthogonal vanishing points.

All soft associations are optimized with robust Huber loss using Ceres [1].

D.3 Details on Establishing 3D Association

We follow the method of LIMAP [8] for establishing initial 3D point-line associ-
ations, line-VP associations, and VP orthogonality regularization. However, due
to the incorporation of coplanarity constraints, we must explore an appropriate
method for establishing initial point-plane and line-plane associations.
3D Point-Line Association. To build the initial 3D point-line association, we
identify the pair of the point track and the line track that has at least 3 connected
edges on the 2D point-line association graphs among their 2D supports.
3D Point-Plane Association. We first detect 3D planes from the point cloud
[2], which consists of SfM points and sampled points extracted from the initial
line map. Then we utilize the inlier points of each 3D plane to build the initial
3D point-plane association.
3D Line-Plane Association. Same as the above method, we utilize the inlier
points of each plane to build the initial 3D line-plane association. A difference is
that the sampled points of a 3D line segment may be associated with different
planes. In this case, we establish associations between the line and each plane,
reflecting the reality that a single line can intersect with multiple planes.
3D Line-VP Association and VP Orthogonality Regularization. To
build the initial line-VP association, we identify the pair of the VP track and
the line track that has at least 3 connected edges on the 2D line-VP association
graphs among their 2D supports. The VP track is built by line tracks and 2D
line-VP associations. For the initial VP orthogonality regularization, we collect
pairs of VPs that are nearly orthogonal (angles exceeding 87 degrees).

For every 3D association, after optimization, we can optionally output the
final 3D association by removing the outlier 3D association based on the thresh-
olds, similar to LIMAP [8]. Some examples of initial and final associations for
the scene ai_001_006 on the Hypersim dataset [12] are illustrated in Fig. 2.



Supplementary Material for “Consistent 3D Line Mapping” 9

Point-Line [8] Line-VP [8] Point/Line-Plane (Ours)

Fig. 2: 3D associations for the scene ai_001_006 on the Hypersim dataset [12]. In
these examples, we only show geometric entities that have association. Top row : Initial
3D associations. Bottom row : Optional final 3D associations that have removed outliers
based on the optimized geometric entities and thresholds. The points associated with
one line or more than one are colored in blue or red respectively in point-line associa-
tion, while parallel lines associated with the same VP are colored the same in line-VP
association. Each plane has a different color in point-plane and line-plane association.

(d)  𝐸𝐿. (e)  𝐸𝑃, 𝐸𝐿, 𝐸𝑃𝐿. (f)  𝐸𝐿, 𝐸𝐿Π.

(g)  𝐸𝐿, 𝐸𝐿𝑉𝑃. (h)  𝐸𝑃, 𝐸𝐿, 𝐸𝑃𝐿, 𝐸𝐿𝑉𝑃. (i)  𝐸𝑃, 𝐸𝐿, 𝐸𝑃Π, 𝐸𝐿Π. (j)  𝐸𝑃, 𝐸𝐿, 𝐸𝑃𝐿, 𝐸𝑃Π, 𝐸𝐿Π, 𝐸𝐿𝑉𝑃.

(c)  Initial line map.

(a)  Coplanar region. (b)  Direction of observation.

Fig. 3: Visualization of coplanarity constraint effects. (a): The approximate coplanar
region in the scene ai_001_006 on the Hypersim dataset [12]. (b): The direction of
observation. (c)-(j): Side views of reconstructing the approximate coplanar region by
minimizing distinct combinations of energy terms in the process of joint optimization.

D.4 Visualization of Coplanarity Constraint Effects

As discussed in the main paper, we introduce coplanarity constraints (i.e., EPΠ

and ELΠ) to 3D line mapping, which is demonstrated to be crucial for line
reconstruction in our ablation study (refer to Tab. 6 in the main paper). In
Fig. 3, we additionally present an example of optimizing 3D line segments based



10 X. Bai et al.

on various energy terms, aiming to better represent the approximate coplanar
region. We present eight results delineating the approximate coplanar region
in the scene ai_001_006 on the Hypersim dataset [12], observed from a lateral
perspective (as shown in Fig. 3 (b)). Each result minimizes a distinct combination
of energy terms, which is consistent with the order of the ablation study in Tab. 6
in the main paper. Note that we do not filter any 3D line segment in this example.
The initial 3D point-line, point-plane, line-plane, and line-VP associations for
joint optimization are depicted in the top row of Fig. 2.

As illustrated in Fig. 3, it is difficult to recover coplanar regions without
the help of coplanar constraints (as shown in Fig. 3 (c), (d), (e), (g) and (h)).
When integrating coplanar constraints, the reconstructed 3D line segments were
significantly coplanar (as shown in Fig. 3 (f), (i) and (j)). In the main paper, we
jointly optimize points, lines, planes, and vanishing points, resulting in visually
superior outcomes in this example (as shown in Fig. 3 (j)).

E Application: Line-Assisted Visual Localization

We utilize point maps obtained from HLoc [13] and line maps obtained from
our proposed method to conduct line-assisted visual localization through the
localization pipeline presented in LIMAP [8]. We compared the performance of
executing line-assisted visual localization tasks using line maps obtained from
our method to those obtained from LIMAP’s approach [8]. We utilize LSD line
detector [16] and SOLD2 line matcher [10] to reconstruct line maps, which is
the default configuration for the localization task on 7Scenes dataset [15] in
LIMAP [8]. Additionally, we compare the performance of point-based visual
localization obtained from HLoc [13]. The corresponding results are reported in
Tab. 7. Our method consistently outperformed the results of using line maps
obtained from LIMAP [8], demonstrating the effectiveness of our method.

Table 7: Per-scene results of visual localization on 7Scenes [15]. The median translation
and rotation error in cm and degrees are represented by et and er, respectively. We
also report the pose accuracy (%) at a 5cm / 5deg threshold.

Scene # Query images
HLoc [13] LIMAP [8] Ours

et / er / acc.(%) et / er / acc.(%) et / er / acc.(%)

Chess 2000 2.4 / 0.84 / 93.0 2.5 / 0.85 / 92.3 2.5 / 0.85 / 92.8
Fire 2000 2.3 / 0.89 / 88.9 2.1 / 0.84 / 95.5 2.0 / 0.84 / 95.5
Heads 1000 1.1 / 0.75 / 95.9 1.1 / 0.76 / 95.9 1.0 / 0.73 / 95.3
Office 4000 3.1 / 0.91 / 77.0 3.0 / 0.89 / 78.4 3.0 / 0.88 / 79.5
Pumpkin 2000 5.0 / 1.32 / 50.4 4.7 / 1.23 / 52.9 4.6 / 1.20 / 53.2
Redkitchen 5000 4.2 / 1.39 / 58.9 4.1 / 1.39 / 60.2 4.1 / 1.39 / 60.7
Stairs 1000 5.2 / 1.46 / 46.8 3.7 / 1.02 / 71.1 3.6 / 0.97 / 72.8

Avg. 2429 3.3 / 1.08 / 73.0 3.0 / 1.00 / 78.0 3.0 / 0.98 / 78.5
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F Application: Refining Structure-from-Motion

Furthermore, we display another application of line maps for refining the cam-
era poses obtained from the point-based structure-from-motion method, e.g .,
COLMAP [14]. We first run COLMAP [14] with SuperPoint [3] on Hypersim
dataset [12] to get camera intrinsics and poses. Then we reconstruct 3D line
maps to obtain 3D line segments and their track information using L3D++ [5],
LIMAP [8] and our method, respectively, where each line mapping method re-
ceives the same 2D line segments and top K line matches as input. Lastly, we
use the obtained 3D line segments and their track information to perform joint
bundle adjustment of points and lines to refine intrinsics and poses.

We evaluate the absolute pose errors compared with Ground Truth poses.
The original pose errors of COLMAP [14], along with the refined pose errors, are
reported in Tab. 8. As depicted in Tab. 8, the joint bundle adjustment of points
and lines markedly improves original pose accuracy [14]. Unlike alternative line
mapping approaches [5,8], employing our line maps for joint bundle adjustment
achieves the least pose errors, confirming the capability of our line mapping
method to generate more accurate 3D line segments and robust tracks.

Table 8: Per-scene results of SfM poses refinement on Hypersim [12]. The median
translation and rotation error in mm and degrees are represented by et and er, respec-
tively. We also report the pose accuracy (%) at a 5mm / 0.5deg threshold.

Scene
COLMAP [14] [14] + L3D++ [5] [14] + LIMAP [8] [14] + Ours

et / er / acc.(%) et / er / acc.(%) et / er / acc.(%) et / er / acc.(%)

ai_001_001 3.1 / 0.078 / 91.8 2.4 / 0.053 / 96.9 2.1 / 0.052 / 97.9 1.9 / 0.043 / 97.9
ai_001_002 2.8 / 0.079 / 67.7 3.2 / 0.100 / 73.7 2.0 / 0.043 / 86.9 1.7 / 0.040 / 91.9
ai_001_003 5.3 / 0.121 / 47.0 3.9 / 0.088 / 69.0 3.7 / 0.094 / 75.0 3.4 / 0.069 / 79.0
ai_001_004 3.2 / 0.063 / 76.0 2.2 / 0.048 / 87.0 2.1 / 0.044 / 88.0 1.9 / 0.047 / 90.0
ai_001_005 3.3 / 0.072 / 77.0 3.2 / 0.067 / 79.0 3.1 / 0.058 / 74.0 2.1 / 0.042 / 90.0
ai_001_006 2.9 / 0.052 / 74.0 2.5 / 0.041 / 84.0 2.2 / 0.037 / 85.0 1.9 / 0.052 / 89.0
ai_001_007 2.0 / 0.071 / 81.0 1.8 / 0.062 / 81.0 1.9 / 0.058 / 81.0 1.7 / 0.049 / 81.0
ai_001_008 6.7 / 0.164 / 36.0 5.8 / 0.156 / 46.0 4.9 / 0.098 / 51.0 3.5 / 0.064 / 74.0

Avg. 3.7 / 0.088 / 68.8 3.1 / 0.077 / 77.1 2.8 / 0.061 / 79.9 2.3 / 0.051 / 86.6

G Limitations and Future Work

Our proposed iterative algorithm, aimed at selecting the best proposals, relies
on the initial best proposals. As outlined in Sec. B.4, unlike other methods [5,8],
our approach achieves superior length recall and average support counts across
all line tracks, even when employing a randomly selected best proposal as the
initial value. However, optimal performance is achieved when utilizing the best
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proposals obtained through the non-iterative method [8] as the initial value. In
the future, our objective is to develop a more robust strategy for acquiring the
initial best proposals.

Furthermore, within the joint optimization module, we perform the fitting
of 3D planes directly from the point cloud, without incorporating image obser-
vations. In the future, we aim to integrate image observations into the process
of fitting 3D planes. This enhancement will enable us to more effectively rectify
errors that may have accumulated during the reconstruction process.
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