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Fig.A: Analysis of prompt selection stability for Split Cars-196, Split EuroSAT, Split
CUB-200, and Split CropDiseases. We assess various models at the end of the last task
and report results as confusion matrices. The y axis indicates the task of the query
sample, while the x axis shows the task of the corresponding selected key.

A Prompt-selection stability

We hereby extend the results outlined in Sec. 3.4 and present outcomes for addi-
tional datasets/domains. Figure A provides a visual snapshot at the conclusion
of the final task. It is evident that STAR-Prompt exhibits the highest precision
in selecting the appropriate prompts. Figure B supplements this analysis with a
detailed focus on the initial task. At first glance, CODA-Prompt [7] appears to
match the retrieval performance of our approach in Split EuroSAT. However, we
ascribe it to a bias of CODA-Prompt towards the prompts learned during the
first task, as also observed in Fig. A. These additional results reaffirm our belief
that STAR-Prompt strikes the optimal balance between stability and flexibility
throughout the training sequence.

B Additional methodological details

In this section, we provide the details concerning LQ
GR, introduced in Sec. 3.5, and

which closely follows the computation of LP
GR. Specifically, similarly to Eq. (14),
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Fig. B: Prompt retrieval on the first task of different datasets.

LQ
GR is defined as:

LQ
GR = − 1

nNt

Nt∑
c=1

n∑
i=1

log p(yi = c|ẽeeCLS
L,i ), (A)

where p(yi = c|ẽeeCLS
L,i ) is the score relating each synthetic representation ẽeeCLS

L,i ∼
Hc with the corresponding ground-truth class c. We compute it as:

p(yi = c|ẽeeCLS
L,i ) = gθt′ |t′∈{1,...,t}

(ẽeeCLS
L,i ). (B)

In Eq. (B), gθt′ |t′∈{1,...,t}
(·) indicates that we use all the classification heads

of g(·) corresponding to the t tasks so far observed.

C On the computational demands of prompt-based
approaches

We use a serial two-stage training approach. First, we learn prompts for the
CLIP text encoder, freeze them, and then learn prompts for the ImageNet-pre-
trained ViT. Since each phase is independent, the overall cost stems from each
respecting phase.

In the first stage, similar to [12], a batch of images requires one forward pass
through the frozen CLIP image encoder and another through the text encoder
to compute class-level textual embeddings. Due to the very low number of train-
able parameters, this stage converges in a few epochs and requires no gradient
computation for the image encoder.

In the second stage, we freeze the CLIP text encoder prompts and focus on
the ViT prompts. The class prototypes from the text encoder can be cached,
eliminating the need for additional forward passes through the text encoder.
Again, each batch involves two forward passes: one through the CLIP image
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encoder and another through the prompted ViT. This complexity of STAR-
Prompt thus matches L2P, Dual-Prompt, and CODA-Prompt, which also use
two forward passes but with the same backbone. Our approach uses two distinct
backbones, requiring additional GPU memory for the CLIP visual encoder, which
we find negligible compared to the performance gain.

D Setting and implementation details

Experimental setting. We here provide any missing information about datasets
and experimental settings:

– Split Imagenet-R: 10 tasks of 20 classes each; 50 training epochs.
– Split CIFAR-100: 10 tasks of 10 classes each; 20 training epochs.
– Split Cars-196: 9 tasks of 20 classes each, plus the 10th task comprising

the remaining 16 classes; 50 training epochs.
– Split CUB-200: 10 tasks of 20 classes each; 50 training epochs.
– Split EuroSAT: 5 tasks of 2 classes each; 5 training epochs.
– Split RESISC45: 9 tasks of 5 classes each; 30 training epochs.
– Split CropDiseases: 7 tasks of 5 classes each; 5 training epochs. From the

original dataset [4] of 38 classes, we removed the classes with the lowest
number of examples (“Potato healthy”, “Apple Cedar ” and “Peach healthy”).

– Split ISIC: 3 tasks of 2 classes each; 30 training epochs. From the original
dataset [3] we removed the most frequent class “Melanocytic nevus”.

– Split ChestX: 2 tasks of 3 classes each. 30 training epochs. From the original
dataset [9], we took the images without overlapping diseases belonging to
the classes “Cardiomegaly”, “Consolidation”, “Edema”, “Fibrosis”, “Pleural
Thickening” and “Pneumothorax ”.

Following [11], each experiment is repeated 3 times fixing the seeds 1993, 1996,
and 1997.

On instance/batch-wise inference. To maintain consistency with the ma-
jority of CL studies, we conduct inference independently for each sample within
a batch. This approach, termed instance-wise inference, is by far the most pre-
dominant in the literature [1, 5–7,11].

Conversely, L2P and DualPrompt originally presented results using a batch-
wise setup, where a single prompt is selected for all samples in a batch through
majority voting. We reckon that this setup offers an unfair advantage, as it lever-
ages the fact that samples are not shuffled during inference, hence the ground-
truth labels of the examples within a mini-batch are typically the same. To
ensure a fair comparison with other methods, we thus report L2P and Dual-
Prompt results using the instance-wise setup, thereby eliminating any potential
advantage these approaches might have had over other techniques.
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Table A: The Final Forgetting (the lower the better) - part 1

Model Imagenet-R CIFAR-100 Cars-196 CUB-200 Avg.

Fine-tune † (ViT-B/16 ) 83.62 89.95 85.55 90.69 87.45

LwF † 79.68 87.23 76.59 83.81 81.83

DER++ * † 38.88 19.28 24.42 19.16 25.44
CODA-Prompt 4.06 5.56 7.36 5.65 5.66
AttriCLIP 6.9 − 18.8 33.35 19.68

STAR-Prompt 3.92 4.71 6.14 6.94 5.43

Table B: The Final Forgetting (the lower the better) - part 2

Model EuroSAT RESISC CropDis. ISIC ChestX Avg.

Fine-tune † (ViT-B/16 ) 98.11 95.23 93.07 94.31 66.76 78.23

LwF † 92.88 94.63 90.57 95.06 69.01 77.98

DER++ * † 8.02 53.52 8.57 45.61 61.61 40.84
L2P 43.87 25.41 18.85 37.79 42.60 36.88
DualPrompt 12.88 14.46 10.98 25.01 31.35 26.27
CODA-Prompt 16.75 15.05 10.39 22.97 10.49 22.41
AttriCLIP 39.13 32.16 62.56 74.72 48.57 51.43

SLCA † 7.74 10.58 4.90 35.25 32.05 27.30

STAR-Prompt 4.31 5.25 3.26 26.36 30.75 14.61

E Final Forgetting Metric

Tabs. A and B report the Final Forgetting metric [2] for our experiments. Tab. A
lacks L2P, DualPrompt, and SLCA, since [11] does not report forgetting values
for their experiments. The same applies to PromptFusion and to the experiments
of AttriCLIP on Split CIFAR-100 (taken from [8]).

Moreover, we report in Tab. C the standard deviation of experiments in
Tab. 2 of the main paper.

F Hyperparameters

The hyperparameters of STAR-Prompt employed for each experiment are re-
ported in Tabs. D and E.

G Number of Trainable Parameters

The number of trainable parameters varies a lot among the compared meth-
ods. As mentioned in Secs. 1 and 2, the two main adaptation strategies are
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Table C: The std dev. for experiments in Tab. 2.

Model EuroSAT RESISC CropDis. ISIC ChestX

Joint (STAR-Prompt) ±0.13 ±0.24 ±0.10 ±0.30 ±0.43

Joint † (ViT-B/16 ) ±0.12 ±0.10 ±0.08 ±1.76 ±1.40

Fine-tune † (ViT-B/16 ) ±0.13 ±2.02 ±0.39 ±2.22 ±0.64

LwF † ±2.78 ±0.85 ±2.76 ±1.98 ±0.85

GDumb * † ±1.49 ±0.54 ±1.35 ±3.64 ±2.26

DER++ * † ±1.62 ±2.89 ±1.06 ±2.16 ±1.22
L2P ±7.86 ±3.71 ±0.25 ±3.84 ±1.52
DualPrompt ±4.94 ±3.92 ±2.68 ±1.07 ±0.10
CODA-Prompt ±6.30 ±5.15 ±2.91 ±3.50 ±3.90
AttriCLIP ±6.15 ±4.31 ±3.03 ±10.38 ±1.81

SLCA † ±0.48 ±0.35 ±0.60 ±3.83 ±1.80

STAR-Prompt ±0.15 ±0.54 ±0.60 ±0.62 ±2.63

Refs. to Algorithm Imagenet-R CIFAR-100 Cars-196 CUB-200

E1 First stage – Line 1 10 10 10 50
λ First stage – Line 4 30 10 30 30
lr First stage – Line 11 0.05 0.05 0.01 0.05
E2 Second stage – Line 14 10 10 10 5
λ Second stage – Line 17 10 5 10 50
lr Second stage – Line 23 0.001 0.001 0.01 0.1
M Requirements 5 5 5 5

Table D: Hyperparameters used for each dataset - part 1.

fine-tuning the whole model on the training data of the target dataset(s) or
parameter-efficient learning, which adapts the model with only a few param-
eters (e.g., the prompts). In Tab. F we use Split CIFAR-100 as reference scenario
and report the number of trainable parameters, i.e., those parameters that are
optimized during the incremental learning. For instance, SLCA fine-tunes the
whole model, while the trainable parameters of STAR-Prompt are composed of:
pppc, Qc, Ac (c ∈ Y1, ...,YT ) and θt (t ∈ {1, ..., T}).

H Additional ablations

We herein report the ablative studies of Sec. 4.2 over the remaining datasets in
Tab. G. These results confirm the conclusion already outlined in the main paper
(see Sec. 4.2).
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Refs. to Algorithm EuroSAT RESISC CropDis. ISIC ChestX

E1 First stage – Line 1 10 10 10 50 10
λ First stage – Line 4 30 10 30 5 30
lr First stage – Line 11 0.05 0.05 0.01 0.01 0.05
E2 Second stage – Line 14 10 10 10 10 10
λ Second stage – Line 17 5 5 5 10 5
lr Second stage – Line 23 0.1 0.01 0.001 0.01 0.05
M Requirements 5 5 5 5 5

Table E: Hyperparameters used for each dataset - part 2.

Model #params (millions)

Joint, Fine-Tune, LwF 86
GDumb, DER++, SLCA 86

L2P 0.12
DualPrompt 0.41

CODA-Prompt 3.91
AttriCLIP 0.0998

PromptFusion 0.35
STAR-Prompt 3.89

Table F: The number of learnable parameters for each tested method. Note that all
these methods use a ViT-B/16 as the main classification architecture (see Sec. 4).

I Additional experimental analysis

Number of Gaussians. Tab. H shows the Final Average Accuracy of STAR-
Prompt on Split Imagenet-R using different numbers of Gaussians (M) for each
Hc. The results indicate a substantial plateau of the performance when M ≥ 5,
which we hence set as default value in all our experiments.
Prefix tuning vs. semantic residuals. In Tab. I we extend the comparison
between prefix tuning and semantic residuals reported in Tab. 3 of the main
paper. Specifically, differently from Prefix Tuning in Tab. 3, in which we used 5
tokens for each key and value, in Tab. I we use one token only for each key and
value. This way, the total number of parameters per class is comparable with Qc.
Tab. I shows that the Final Average Accuracy scores obtained using prefix tuning
are largely inferior to using semantic residuals, confirming the results reported
in Tab. 3. This shows that the gap between the two conditioning methods is not
due to the number of prompt parameters. The results of prefix tuning in I are
drastically inferior to those obtained when using the recipe suggested in [10] (5
tokens for each key and value) and adopted in Tab. 3.
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Model CIFAR-100 CUB-200 RESISC CropDis. ChestX

STAR-Prompt 90.12±0.32 84.10±0.28 92.28±0.54 94.92±0.60 41.85±2.63

Ablations on two-level prompting

Classify with first-level keys wwwc 83.49±0.16 81.31±0.20 90.80±0.34 88.36±0.74 31.70±0.77

w/o first-level prompts 87.67±0.37 81.34±0.17 85.85±0.69 89.92±1.76 37.27±3.96

Other secondary ablations

Prefix Tuning (no residuals) 86.70±0.59 82.67±0.14 84.26±0.35 95.06±0.34 39.28±4.14

w/o Generative Replay 88.72±0.41 82.21±0.39 88.2±0.79 88.82±1.25 37.66±2.12

w. Unimodal Generative Replay 90.07±0.34 83.16±0.14 92.29±0.51 94.21±0.44 38.77±2.76

w/o Confidence Modulation 89.92±0.18 83.74±0.30 92.05±0.44 93.97±0.21 39.28±3.17

Table G: Ablative studies on STAR-Prompt (Final Avg. Acc. ± std dev).

M Final Average Accuracy

2 88.94
5 89.37
10 89.16
20 89.58

Table H: Impact of the number of Gaussians.

Conditioning method Imagenet-R CIFAR-100 Cars-196 CUB-200

Prefix Tuning (one token) 71.45 85.90 52.66 80.12
Semantic Residuals 89.16 90.16 86.50 85.24

Table I: Comparing Semantic Residuals with Prefix Tuning. In the latter, we use a
single-key and a single-value prompt token.
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