
ProSub 1

ProSub: Probabilistic Open-Set Semi-Supervised
Learning with Subspace-Based
Out-of-Distribution Detection

Supplementary Material

6 Qualitative Analysis of Feature Separation

To further analyze the effects of the self-supervision, ℓself from (10), and the
subspace loss, ℓsub from (8), we plot t-SNE (Maaten and Hinton, 2008) reductions
of features from ID and OOD test sets for a few different training setups. These
experiments are done with CIFAR-100 as ID and CIFAR-10 as OOD. First,
we train a fully supervised model using all 50,000 training data (with labels)
from CIFAR-100. This model is never exposed to OOD data. Secondly, we train
ProSub using 10,000 labels and first train until the end of the warm-up phase.
At this stage, the model has only been trained with the labeled cross-entropy,
ℓsup from (11), and self-supervision, ℓself. Finally, we carry out a full training run
of ProSub, where ℓsemi from (9) and ℓsub are applied after the warm-up stage.

The results are shown in Fig. 5. From the top panel, we see that the fully su-
pervised model successfully clusters the ID data in feature space. However, most
OOD data are not clustered or separated from ID, highlighting the challenge of
OOD detection when we do not receive learning signals from these data.

The next evaluated model is ProSub at the end of the warm-up. This model
is trained with fewer labeled data than the fully supervised model but is exposed
to both (unlabeled) ID and OOD through self-supervision. OOD data now begin
to form distinct clusters, visibly separated from ID data. This suggests that self-
supervision facilitates the clustering of both ID and OOD data. Visually, it seems
reasonable to believe that OOD detection in this feature space is easier than for
the fully supervised case. However, there are still regions where ID and OOD
are mixed.

Finally, we have the features from the fully trained ProSub. Now we see even
more clear and separated clusters for both ID and OOD data, indicating that
the subspace loss further contributes to forming separated clusters for ID and
OOD. An interesting observation is that OOD forms multiple clusters instead of
one, even though this is not explicitly encouraged by either the self-supervision
or the subspace loss. This indicates that the model not only learns to separate
ID from OOD but also learns to group data within OOD.



2 E. Wallin et al.

Fully supervised

ProSub (end of warm-up)

ProSub (fully trained)

ID
OOD

Fig. 5: t-SNE of features. ID: CIFAR-100, OOD: CIFAR-10.



ProSub 3

Table 5: Evaluating OOD detection on unseen OOD using TIN.

AUROC

Accuracy Seen OOD Unseen OOD

OpenMatch 56.51 0.69 0.69
SeFOSS 64.09 0.68 0.74
ProSub 66.06 0.80 0.71

7 Experiments with Unseen Outliers

Tab. 1 evaluates AUROC of OOD detection on classes present in the unlabeled
training set (seen OOD). While this is a core metric of OSSL performance, we
also find value in exploring OOD detection for classes completely unseen during
training (unseen OOD). To simulate this scenario, we divide Tiny ImageNet into
three parts: 70 ID classes, 70 OOD classes present in the unlabeled training data,
and 60 OOD classes entirely unseen during training. We use 3,500 labels. For this
setting, we evaluate OpenMatch, SeFOSS, and ProSub. The results are shown
in Tab. 5. We see that ProSub drops in AUROC when going from seen to unseen
OOD, indicating that the losses applied to OOD data facilitate learning features
to discriminate between ID and seen OOD specifically. In contrast, OpenMatch
obtains consistent AUROC for both seen and unseen OOD and SeFOSS shows
better AUROC for unseen OOD. However, despite this, ProSub demonstrates
competitive results in OOD detection for unseen OOD.

8 Sensitivity Analysis of π

The probabilistic ID/OOD predictions of ProSub (see (1)) require specifying the
proportion of ID data in unlabeled data, π. In the experiments conducted for
this work, we use exact values of π, which is π = 0.5 for all scenarios except
ImageNet20/10 where it is π = 0.66. While it may be hard to know the exact
value of π in practice, we argue that it is easy to get an approximation by
inspecting a subset of unlabeled data. If this approximation is unavailable, one
can treat π as a hyperparameter. To study how the performance of ProSub
varies with π, we conduct experiments with CIFAR-100 as ID (10,000 labels)
with CIFAR-10 as OOD using different values of π. With this setup, π = 0.5
corresponds to the true proportion of ID data in unlabeled data.

Fig. 6 shows closed-set accuracy and AUROC as a function of π. We see
that the obtained accuracy shows minimal dependency on π. The AUROC, in-
terestingly, exhibits a stable high value as long as π does not exceed 0.5. This
suggests avoiding misclassifying OOD as ID is more crucial than the reverse. One
possible explanation is that the cross-entropy for labeled data (or from pseudo-
labeling) acts as an “anchor” for ID data, counter-acting the subspace loss that
pushes these data away from Wid. No such counterweight exists if OOD data are
pushed towards Wid, making this type of error more detrimental.



4 E. Wallin et al.

To show that we do not make significant performance gains from knowing the
exact value of π, we include results on some datasets where ProSub displays the
best results in Tab. 1. In these experiments, we use π = 0.4, i.e., lower than the
true portion of ID data in the unlabeled data. These results are shown in Tab. 6,
revealing that using an incorrect π does not significantly impact our results. For
TIN, the accuracy is slightly lower when using π = 0.4, however, it is still higher
than competing methods.

As a practical recommendation, we suggest using a π slightly lower than
the approximation obtained from unlabeled data to avoid exceeding the true
proportion.

0.30 0.40 0.50 0.60 0.70

0.8

0.9

1

π

A
cc

ur
ac

y
/

A
U

R
O

C

AUROC
Accuracy

Fig. 6: Analyzing how ProSub performance depends on π (π = 0.5 corresponding to
the true value).

Table 6: Results from using an offset π: π = 0.4.

ID: CIFAR-100 (10,000 lab.) IN50/50 TIN100/100OOD: CIFAR-10

ProSub (correct π) 79.59±0.37 71.15±0.80 60.92±0.32
0.98±0.00 0.96±0.00 0.72±0.00

ProSub (π = 0.4) 79.54 71.48 59.96
0.98 0.96 0.72

9 Hyperparameters

The values of most hyperparameters used in ProSub are gathered from existing
works and used without further tuning. For example, we use wsemi = 1.0 and
initial learning rate η0 = 0.03, l2-regularization wreg, decay rate γ, EMA mo-
mentum, batch sizes, and SGD momentum following [51,56]. For the evaluations
done on TIN100/100 (new for this work), we copy the values for wreg and γ used
for CIFAR-100 in [56] (wreg = 0.001, γ = 5/8) because of the equal number of



ProSub 5

ID classes. For ImageNet50/50 (also new for this work) we copy the values for
wreg and γ used for ImageNet20/10 in [56] (wreg = 0.0005, γ = 7/8).

The main hyperparameter introduced for ProSub is wsub, the weight for the
subspace loss. We empirically find that wsub = 1.0 works well across all evaluated
datasets. Secondly, we use the cosine-based self-supervision from [55] that shows
wself can need dataset-specific tuning, which is why we use varying values of
wself.

9.1 Selecting Hyperparameters Using Validation Data

The hyperparameters we tune for ProSub are wself and wsub. Since labeled data
are limited in OSSL, we suggest using a subset of labeled data as validation data
to tune wself and wsub. Subsequently, these tuned values can be utilized in a
training run using all available labeled data for training.

We illustrate this procedure using CIFAR-100 as ID (10,000 labels) with
CIFAR-10 as OOD by using 5,000 labels for training and 5,000 for validation.
Table 7 shows that wsub = 1.0 and wself = 15.0 yield the best validation accuracy
among the evaluated values. Additionally, Tab. 7 shows that these values cor-
respond to the best accuracy on the test set. Notably, the closed-set accuracies
align reasonably well with the obtained AUROC, simplifying hyperparameter
selection as AUROC cannot be evaluated directly from the validation set.

The gap in accuracy between the validation set and the test set arises from
labeled data (and consequently validation data) being included in the unlabeled
training set without labels. To obtain an absolute prediction of test accuracy
(rather than a relative one), the validation data can be explicitly excluded from
the unlabeled set.

Table 7: Tuning hyperparameters from validation data.

Validation results

wself

wsub 5.0 15.0 25.0

0.1 86.82 87.58 88.12
1.0 86.66 88.56 88.36
10.0 52.00 79.44 85.84

Test results

wself

wsub 5.0 15.0 25.0

0.1 72.67 75.72 75.08
0.96 0.97 0.96

1.0 72.76 77.25 77.15
0.86 0.98 0.98

10.0 12.25 58.78 71.43
0.58 0.67 0.86

9.2 The Number of Training Steps

We set the number of training steps, K, to obtain reasonable training times,
which is why we use a lower number of training steps for the ImageNet exper-
iments. We have not observed any issues with overfitting or training collapse.



6 E. Wallin et al.

The best performance is generally achieved at the end of training as shown in
Fig. 7. This figure shows test accuracy and AUROC as a function of training
steps for a run on ImageNet50/50. This likely means that increasing the number
of training steps should obtain equal or better results.

We have set the number of warm-up steps, Kp, to be a small but non-trivial
fraction of the total number of training steps. Table 8 shows results on Ima-
geNet50/50 with varying Kp and a fixed K = 105, showing that the results are
insensitive to the choice of Kp.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

·105

0

0.2

0.4

0.6

0.8

1

Training step

A
cc

ur
ac

y
/

A
U

R
O

C

AUROC
Accuracy

Fig. 7: ImageNet50/50 performance vs. training steps.

Table 8: Varying Kp on ImageNet50/50 (with K = 105).

Kp/10
3 15 20 25 30 35 40

Acc 71.92 72.52 71.44 71.15 71.40 71.60
AUROC 0.96 0.96 0.96 0.96 0.96 0.96

9.3 Fine-grained Hyperparameter Sensitivity

To further analyze the sensitivity of hyperparameters wsub and wself we run
experiments on ImageNet50/50 with varying wsub and wself. Figure 8 shows
that the results drop when we go far away from the values used to generate the
main results in Tab. 1, but there are relatively large ranges for both wsub and
wself where the results are stable.



ProSub 7

10 20 30 40 50 60 75 100 150
0.6

0.7

0.8

0.9

1

wsub = 1.0

wself

A
cc

/
A

U
R

O
C

AUROC Accuracy

0.001 0.01 0.1 1.0
0.7

0.8

0.9

1

wself = 40

wsub

A
cc

/
A

U
R

O
C

Fig. 8: Hyperparameter evaluations on ImageNet50/50 test sets. Violet marks values
used for Tab. 1.

9.4 Initiation of Beta Parameters

For the IMM estimation, we use the initial guess αid = βood = 10, αood =
βid = 2. We make this choice to ensure that the estimate for the ID distribution
lies closer to 1.0 than the OOD distribution. However, because of the warm-up
phase, the estimates have time to improve and settle before they are used to
generate training signal through ℓsemi (9) and ℓsub (8). We have not found the
initiation of these parameters to be significant for our performance.

10 Varying ID/OOD Ratios in Unlabeled Data

In the experiments of Tab. 1, most of our benchmark problems have equal
amounts of ID and OOD in the unlabeled set. Here, we study how ProSub
performs with varying ratios of ID to OOD data in the unlabeled set. Figure 9
shows closed-set accuracy and AUROC for ProSub with varying OOD frequen-
cies. We let π follow the true ID/OOD ratio. For these experiments, we use
CIFAR-100 (2,500 labels) as ID with CIFAR-10 as OOD, and ImageNet50/50.
As expected, AUROC increases with more OOD data because the exposure to
OOD data through self-supervision enables better OOD detection (see Sec. 4.3).
Conversely, closed-set accuracy drops as ID data decreases due to fewer pseudo-
labels that help us learn the ID classes. The results indicate optimal OOD fre-
quencies around 0.4 - 0.5 that yield the best results for both OOD detection
and closed-set accuracy. However, the OOD frequency is difficult to control in
real-world scenarios.



8 E. Wallin et al.

0.6

0.7

0.8

0.9

1

A
cc

/
A

U
R

O
C

ID: CIFAR-100 2,500 labels, OOD: CIFAR-10

AUROC Acc

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.6

0.8

1

Ratio of OOD in unlabeled data

A
cc

/
A

U
R

O
C

ImageNet50/50

Fig. 9: ProSub performance with varying ratios of ID and OOD in the unlabeled set.

11 Regularization of ID Probabilities

Based on the observation in Sec. 8 that avoiding misclassifying ID as OOD
is more important than the reverse, we find it beneficial to regularize the ID
probabilities when computing the random mask in (7). This is achieved by adding
a constant, ϵ, to the denominator of (1) as

p(x ∈ ID|s(z)) = πpid(s(z))

πpid(s(z)) + (1− π)pood(s(z)) + ϵ
. (14)

We have found ϵ = 0.1 to be a suitable value. Note that this regularization is
used only for computing the random mask and not in the IMM estimation.

12 Limitations

Section 7 shows ProSub’s superior performance on OOD detection for seen OOD
specifically. While ProSub remains competitive for unseen OOD detection, other
methods may perform better if unseen OOD detection is your most important
metric. Furthermore, this work only considers datasets that are balanced in
terms of classes. We do not know how big shifts in class balances impact our
performance. Finally, a limitation of ProSub lies in its dependence on dataset-
specific tuning of wself and the necessity to tune π or approximate the proportion
of ID data within the unlabeled data.

13 Score Distributions and Estimates

In Sec. 4.2 and Fig. 3 we look at the distributions of scores and the corresponding
estimates at two different time steps during training. Here, in Fig. 10, we show



ProSub 9

the equivalent evaluations at more time steps during training to display how
the distributions and their corresponding estimates progress. These results are
from a run using CIFAR-100 (2,500 labels) as ID with CIFAR-10 as OOD. The
current training step is denoted by k and the warm-up phase runs for 50,000
steps.

Figure 10 shows that during the warm-up phase, most data stay fairly close
to Wid, but as training progresses, we start to distinguish between ID and OOD
when the distribution of OOD moves slowly away from Wid. Interestingly, de-
spite the overlapping distributions, the estimated Beta distributions accurately
capture the individual mixture components throughout the warm-up phase.

After the warm-up phase (indicated by the horizontal black dashed line in
Fig. 10), when we apply ℓsub from (8), we see that the distribution of scores
for OOD data quickly moves away from Wid (lower scores). The distribution of
scores for ID data similarly moves closer to Wid (higher scores). The estimated
Beta distributions adapt well to this sudden change.

However, we also see that a few OOD data incorrectly get scores close to 1.0,
highlighting that our obtained ID/OOD classifier does not have perfect accuracy.
Notably, the set of OOD data that obtain high scores after the warm-up phase
seems to grow and shrink in size at different time steps, indicating that the model
can recover from misclassifying these data.



10 E. Wallin et al.

k = 5, 000

Histogram ID
Histogram OOD
Estimated pid(s)

Estimated pood(s)

k = 10, 000

k = 20, 000 k = 30, 000

k = 40, 000 k = 50, 000

k = 55, 000 k = 100, 000

k = 200, 000 k = 300, 000

0 0.2 0.4 0.6 0.8 1

k = 400, 000

0 0.2 0.4 0.6 0.8 1

k = 500, 000

D
uring

w
arm

-up,w
ithout

lsu
b

A
fter

w
arm

-up,w
ith

lsu
b

Fig. 10: Distributions of scores and their corresponding estimates at different time
steps during training.



ProSub 11

14 Indexing of Classes in TIN and IN100

For completeness, we specify how we divide the classes of Tiny ImageNet and
ImageNet100 into ID and OOD. How classes are indexed in ImageNet100 are
shown in Tab. 9. Here, we use indices 0-49 as ID and 50-99 classes as OOD.

The indexing of classes in Tiny ImageNet is shown in Tab. 10. For experi-
ments on TIN100/100, we use indices 0-99 as ID and 100-199 as OOD. For the
experiments conducted using unseen OOD in Sec. 7, we use 0-69 ID, 70-139 as
seen OOD, and 140-199 as unseen OOD.



12 E. Wallin et al.

Table 9: Class indexing for ImageNet100.

Class Index

n01440764 0
n01443537 1
n01484850 2
n01491361 3
n01494475 4
n01496331 5
n01498041 6
n01514668 7
n01514859 8
n01531178 9
n01537544 10
n01560419 11
n01582220 12
n01592084 13
n01601694 14
n01608432 15
n01614925 16
n01622779 17
n01630670 18
n01632458 19
n01632777 20
n01644900 21
n01664065 22
n01665541 23
n01667114 24
n01667778 25
n01675722 26
n01677366 27
n01685808 28
n01687978 29
n01693334 30
n01695060 31
n01698640 32
n01728572 33
n01729322 34
n01729977 35
n01734418 36
n01735189 37
n01739381 38
n01740131 39
n01742172 40
n01749939 41
n01751748 42
n01753488 43
n01755581 44
n01756291 45
n01770081 46
n01770393 47
n01773157 48
n01773549 49

Class Index

n01773797 50
n01774384 51
n01774750 52
n01775062 53
n01776313 54
n01795545 55
n01796340 56
n01798484 57
n01806143 58
n01818515 59
n01819313 60
n01820546 61
n01824575 62
n01828970 63
n01829413 64
n01833805 65
n01843383 66
n01847000 67
n01855672 68
n01860187 69
n01877812 70
n01883070 71
n01910747 72
n01914609 73
n01924916 74
n01930112 75
n01943899 76
n01944390 77
n01950731 78
n01955084 79
n01968897 80
n01978287 81
n01978455 82
n01984695 83
n01985128 84
n01986214 85
n02002556 86
n02006656 87
n02007558 88
n02011460 89
n02012849 90
n02013706 91
n02018207 92
n02018795 93
n02027492 94
n02028035 95
n02037110 96
n02051845 97
n02058221 98
n02077923 99



ProSub 13

Table 10: Class indexing for Tiny ImageNet.

Class Index

n02814533 0
n02113799 1
n02883205 2
n04597913 3
n03733131 4
n04179913 5
n02802426 6
n04070727 7
n03706229 8
n02321529 9
n02085620 10
n03970156 11
n02730930 12
n02268443 13
n02099712 14
n04133789 15
n04251144 16
n03026506 17
n04532106 18
n07614500 19
n07747607 20
n01742172 21
n03160309 22
n03992509 23
n01784675 24
n01644900 25
n02808440 26
n01774750 27
n02669723 28
n03838899 29
n01910747 30
n03444034 31
n04118538 32
n03662601 33
n02948072 34
n02231487 35
n02106662 36
n02094433 37
n07873807 38
n01641577 39
n03977966 40
n04259630 41
n07871810 42
n02906734 43
n02364673 44
n04008634 45
n09256479 46
n02815834 47
n02481823 48
n02963159 49

Class Index

n03100240 50
n04149813 51
n01917289 52
n04507155 53
n02892201 54
n03089624 55
n02132136 56
n04254777 57
n02927161 58
n03983396 59
n02123045 60
n02791270 61
n09246464 62
n03447447 63
n04417672 64
n07579787 65
n07583066 66
n02795169 67
n03393912 68
n04023962 69
n04486054 70
n02233338 71
n01855672 72
n02814860 73
n04067472 74
n02410509 75
n02480495 76
n03126707 77
n07753592 78
n03085013 79
n02988304 80
n02099601 81
n04501370 82
n02909870 83
n03014705 84
n04146614 85
n02666196 86
n04074963 87
n01882714 88
n03930313 89
n07734744 90
n04366367 91
n03837869 92
n03250847 93
n02236044 94
n03201208 95
n02437312 96
n02837789 97
n02699494 98
n04099969 99

Class Index

n07615774 100
n03355925 101
n04371430 102
n01945685 103
n03649909 104
n03404251 105
n03891332 106
n07695742 107
n04311004 108
n02823428 109
n07749582 110
n04399382 111
n07875152 112
n09193705 113
n02074367 114
n03937543 115
n02206856 116
n01698640 117
n02788148 118
n02917067 119
n01983481 120
n02504458 121
n02281406 122
n04376876 123
n02056570 124
n03388043 125
n02423022 126
n07720875 127
n02125311 128
n03400231 129
n02226429 130
n04465501 131
n02841315 132
n02843684 133
n09332890 134
n02415577 135
n04596742 136
n04275548 137
n01774384 138
n02793495 139
n02395406 140
n07715103 141
n03255030 142
n02403003 143
n04456115 144
n04398044 145
n12267677 146
n03424325 147
n01950731 148
n01984695 149

Class Index

n01768244 150
n03617480 151
n04487081 152
n07768694 153
n02002724 154
n06596364 155
n03042490 156
n04285008 157
n03544143 158
n03980874 159
n02279972 160
n03770439 161
n04560804 162
n07711569 163
n04356056 164
n02977058 165
n03854065 166
n03179701 167
n02486410 168
n02058221 169
n09428293 170
n04265275 171
n01443537 172
n03814639 173
n02165456 174
n02129165 175
n02509815 176
n02190166 177
n02124075 178
n07920052 179
n03804744 180
n01770393 181
n04562935 182
n03976657 183
n04328186 184
n03599486 185
n02999410 186
n03637318 187
n03584254 188
n02769748 189
n02123394 190
n04540053 191
n03763968 192
n03902125 193
n03670208 194
n03796401 195
n01629819 196
n02950826 197
n04532670 198
n01944390 199


	ProSub: Probabilistic Open-Set Semi-Supervised Learning with Subspace-Based Out-of-Distribution Detection

