
1

Depth on Demand: Streaming Dense Depth from
a Low Frame Rate Active Sensor

Supplementary Material

This manuscript provides additional insights about the ECCV paper “Depth
on Demand: Streaming Dense Depth from a Low Frame Rate Active Sensor”.
We collect here additional experimental material, an in-depth description of the
modules composing our framework, and qualitative results.

1 Additional Implementation Details

1.1 Architectural Details

In this section, we deeply detail the core components of our framework – de-
scribed in Section 3. Table I provides implementation details of the main compo-
nents of our architecture. The visual cues integration module encodes separately
the epipolar correlation features and the current depth estimate (D)Ni , then it
fuses such data with monocular data F̃ t

8 using two Gated Recurrent Units with
kernel size of 1×5 and 5×1; this latter choice is done as it leads to a lighter model
than using a single 5×5 kernel. The depth cues integration module, composed of
only four convolutional layers, fuses different depth representations obtained by
different sources, as described in Figure 2. The depth decoding module computes
multi-scale depth maps. At each iteration a set of upsampling weights and fea-
tures are computed, then the upsampling is performed using convex upsampling.
Finally, the hidden state (H)Ni=0 initialization is performed by means of a simple
convolutional layer.

1.2 Training Details

We train our model on ScanNetV2 [3], TartanAir [11], and KITTI [4] with
AdamW, 10−4 learning rate and 10−5 weight decay. We always perform 100K
training steps, dividing the learning rate by 10 at 60K and 90K steps. We train
on 2 RTX 3090 in mixed precision with (total) batch size 8. Moreover, we clip
gradients with global norm 1 to stabilize the behavior of Gated Recurrent Units
and we enforce the same random seed in each training to increase reproducibil-
ity. On ScanNetV2 [3] we train on the same split defined by [8] with a buffer
of 7 source frames to enable consistent comparisons. However, we evaluate on
the whole test video sequences subsampled by a factor of ten to mimic a fast-
moving camera in an indoor environment; since the camera moves really slow
with respect to its high frame rate. We test on 7Scenes [9] in the same way.
On TartanAir [11] we train and test on the whole video sequences without any
frames subsampling using a buffer of 7 source frames while training. Finally, on
KITTI [4] we perform training with a buffer of 3 source frames sampled with a
frequency of 2Hz.



2

Visual Cues Integration
Input Tensor Layer K S In Out Output Tensor
C Conv2D + ReLU 1 1 32 × 41 256 corr0
corr0 Conv2D + ReLU 3 1 256 192 corr1
(D)Ni Conv2D + ReLU 7 1 1 128 depth0
depth0 Conv2D + ReLU 3 1 128 64 depth1
depth1, corr1 Conv2D + ReLU 3 1 192+64 128-1 conv0
conv0, F̃ t

8, (H)Ni , (D)Ni ConvGRU2D (1, 5) 1 128+128+128 128 hidden0
hidden0 ConvGRU2D (5, 1) 1 128 128 (H)Ni+1

Depth Cues Integration
Input Tensor Layer K S In Out Output Tensor
(H)Ni+1 Conv2D + ReLU 3 1 128 64 conv0
conv0 Conv2D 3 1 64 1 ∆Dc

(H)Ni+1, ∆Dc, ∆Dd Conv2D + ReLU 3 1 128+1+1 64 conv1
conv1 Conv2D 3 1 64 1 ∆Df

Depth Decoding
Input Tensor Layer K S In Out Output Tensor

(H)Ni=N−1, F̃ t
8, (D)Ni=N−1 Conv2D + ReLU 3 1 128 + 128 + 1 32 × 4 + 64 conv0

conv0 Conv2D 3 1 32 × 4 + 64 32 × 4 + 64 upweights8,feats8
upweights8, (D)Ni=N−1 ConvexUpsample - - 32 × 4 + 1 1 D4

F̃ t
4, D4, feats8 Conv2D + ReLU 3 1 64 + 64 + 1 32 × 4 + 32 conv1

conv1 Conv2D 3 1 32 × 4 + 32 32 × 4 + 32 upweights4,feats4
upweights4, D4 ConvexUpsample - - 32 × 4 + 1 1 D2

F̃ t
2, D2, feats4 Conv2D + ReLU 3 1 64 + 32 + 1 32 × 4 conv2

conv2 Conv2D 3 1 32 × 4 32 × 4 upweights4
upweights4, D2 ConvexUpsample - - 32 × 4 1 D1

Hidden State Initialization
Input Tensor Layer K S In Out Output Tensor

F̃ t
8 Conv2D + Tanh 3 1 128 128 (H)Ni=0

Table I: Architecture Modules Description. Description of the main components
of our architecture in terms of layers, input and output dimensions. Each line represents
a layer of a module where “Input Tensor” is the name of the input, “Layer” the type of
layer used, “K” the kernel size if the layer is convolutional, “S” the stride if the layer
is convolutional, “In” the number of input channels, and “Out” the number of output
channels. Finally, “Output Tensor” is the name associated to the output tensor. Name
of input and output tensors may refer to intermediate outputs described in the main
paper.

2 Additional Ablation Studies

2.1 Number of Iterations

Our framework is characterized by an iterative module for depth refinement
and multi-modal integration, in this section we study the impact of applying a
different number of iterations at testing time. During training, we always perform
10 iterations. Figure I shows the mean absolute error in meters on the test split
of 7Scenes [9] performing a different number of iterations. As can be clearly seen
the network stabilizes its performance starting from 8 iterations, demonstrating
its capability to reach a point of convergence. The number of iterations applied
affects the time-accuracy trade-off of our approach. Thus, this latter can be
adapted to the deploying requirements modulating such a parameter.

2 4 6 8 10 12 14

0.04

0.06

0.08

N. Iterations

M
A

E
(m

)

Fig. I: Number of Iterations. Performance using a different number of iterations
on 7Scenes [9]. Our approach allows to change the number of iterations to adapt the
time-accuracy trade-off required by the deploying environment.



3

200 Points
Method MAE↓ RMSE↓ Abs Rel↓ Sq Rel↓ σ < 1.05↑
SpAgNet [2] 0.079 0.150 0.048 0.016 0.760
NLSPN [6] 0.075 0.152 0.046 0.017 0.794
CompletionFormer [12] 0.081 0.161 0.048 0.018 0.777
DoD (ours) 0.050 0.117 0.029 0.010 0.872

100 Points
Method MAE↓ RMSE↓ Abs Rel↓ Sq Rel↓ σ < 1.05↑
SpAgNet [2] 0.094 0.165 0.056 0.018 0.696
NLSPN [6] 0.093 0.171 0.056 0.021 0.725
CompletionFormer [12] 0.099 0.181 0.059 0.023 0.703
DoD (ours) 0.061 0.129 0.035 0.011 0.832

50 Points
Method MAE↓ RMSE↓ Abs Rel↓ Sq Rel↓ σ < 1.05↑
SpAgNet [2] 0.116 0.187 0.070 0.023 0.600
NLSPN [6] 0.118 0.198 0.071 0.026 0.616
CompletionFormer [12] 0.127 0.211 0.075 0.029 0.594
DoD (ours) 0.080 0.152 0.045 0.015 0.757

Method Nr. MAE↓ Time (ms) Memory (GB)
Guided PatchMatch-Net [10]+ [7] 8 0.191 51.542 0.321
Guided CAS-MVSNet [5]+ [7] 8 0.120 95.556 1.100
Guided UCS-Net [1]+ [7] 8 0.141 104.63 1.064
Guided PatchMatch-Net [10]+ [7] 2 0.267 19.362 0.224
Guided CAS-MVSNet [5]+ [7] 2 0.250 50.750 0.983
Guided UCS-Net [1]+ [7] 2 0.228 55.668 1.063
SpAgNet [2] 1 0.068 46.249 0.817
NLSPN [6] 1 0.061 55.458 0.878
CompletionFormer [12] 1 0.067 89.741 1.141
DoD (ours) 2 0.043 32.625 0.263

(a) (b)

Table II: Spatial Sparsification and Memory-Time Studies. On the left, Spatial
sparsification study on 7Scenes [9]. We keep fixed the sparsification ratio τ = 0.2 and
progressively reduce the number of sparse depth points projected. Our approach is the
most robust versus spatial sparsification since it enables multi-view cues exploitation.
On the right, we study the memory and time impact of our approach. DoD provides
the best trade-off performance, leading the accuracy ranking by a large margin and
still being extremely lightweight in terms of memory and inference time.

2.2 Spatial Sparsification

In this section, we study the performance of our framework applying a variable
spatial density to the sparse depth data. This is the case in which a different
active sensor is used in the deploying environment. Moreover, it allows us to
assess the effectiveness of our approach to exploiting multi-view cues. Indeed,
when depth data sparsity increases, the unique information other than monoc-
ular features our method can leverage to retrieve accurate 3D reconstruction is
the information extracted from the RGB source view. When training on Scan-
NetV2 [3], we always sample 500 sparse depth points. Table II(a) reports results
obtained with variable density on 7Scenes [9], while keeping the temporal density
fixed to τ = 0.2. As the spatial density diminishes, depth completion methods
struggle since they do not employ geometry cues. On the other hand, our ap-
proach is way more robust versus this kind of sparsity since it can recover useful
information from the source view as well.

2.3 Memory and Time

We provide a detailed memory and time benchmark in Table II(b), to complete
the overview provided in Figure 7 in the main paper, where only the methods
providing the best trade-off between memory, time, and accuracy are highlighted.
Notably, PatchMatchNet [10] using only 2 views is lighter and faster than our
approach. However, with respect to our approach, it provides disastrous perfor-
mance since the MAE error is 6× worse, with comparable memory occupancy
and a small 1.7× speed boost.



4

Target (t) Source (t−N)

0 5 · 10−2 0.1 0.15 0.2 0.25 0.3
0.60

0.80

1.00

λ

M
A

E
(m

)

SpAgNet [2] NLSPN [6] CompletionFormer [12] DoD (ours)

Fig. II: Pose Noise Sensitivity Study. We assess the impact of noisy pose in our
and competitor frameworks perturbing pose information with Gaussian noise. At the
top, we show qualitatively how such a noise affects depth point projection. At the
bottom, we evaluate methods performance versus noise intensity on TartanAir [11].
Each model tested is trained with noise-free pose.

2.4 Pose Noise Sensitivity

We propose an additional experiment against test-time pose noise sensitivity,
in the event that the pose estimator – e.g ., any visual-inertial odometry or
SLAM pipeline – may introduce an error in the pose estimate. Let us represent
a pose by a six degrees of freedom vector q := (t, r) ∈ R6 with translation
t and rotation r (in Euler angles). Given each ground truth pose q, we draw
random Gaussian noise on it, yielding the perturbed pose q̂ ∼ N (q, λ2 diag(q)2)
where we dub λ the pose noise factor. We feed q̂ everywhere we would use q
in the pipeline. At the top of Figure II, we report a visual example where we
project a known sparse depth point with a set of 100 noisy poses drawn from the
aforementioned distribution with pose noise factor λ = 0.3 for a given q. Such
noise not only affects our pipeline but any other depth completion method as
well, in the assumption that the pose is used to reproject the sparse depth points
since it corresponds to a significant uncertainty in the depth hints localization. In
our case, the impact of pose errors is more subtle; first off, it affects the geometry
cues, in that the epipolar correlation block samples along perturbed epipolar
lines. Secondly, it affects the reprojected sparse depth points on the target view,
as per the completion case. At the bottom of Figure II we report quantitative
results sweeping λ ∈ [0, 0.3] (where 0 is the noiseless case). Each model in this
evaluation is trained with noise-free pose on TartanAir [11]. As it would seem
that we could be more affected by pose errors, by this test we assess that the
gap in performance between our method and depth completion methods remains



5

DoD (ours) NLSPN [6] Ground-truth

Target (t) Source (t−N) Sparse Depth (t−N→t)

3D Point Cloud

Fig. III: Moving Objects. Example of our framework behavior on moving objects in
a video sequence from TartanAir [11]. On top, ours and [6] depth estimation. Below,
are the target, source, and depth points used. In the dashed red bounding box is
highlighted a robotic arm moving regardless of the camera. Last, is the 3D projection
of our depth estimation. Our approach provides consistent monocular depth estimation
where multi-view and depth cues are wrong.

fixed w.r.t. λ, i.e., in a fair evaluation pose noise causes a degradation that
increases gracefully with λ whilst keeping an almost fixed quality gap between
all methods.

2.5 Moving Objects

Furthermore, we qualitatively assess the behavior of our approach on scenes with
moving objects. Traditionally, multi-view methods work under the assumption
of a static environment, to enable the use of multi-view geometry cues. Nonethe-
less, moving objects can occur in real use-cases. In the automotive scenario, other
vehicles move [4]; in the indoor scenario people or objects can move. In this pa-
per, we do not focus on the challenge of dealing with scene motion. Nonetheless,



6

we acknowledge the existence of this issue and thus we provide a qualitative
study of how our framework behaves in moving areas. Figure III provides an
example scene from TartanAir [11] where a robotic arm moves on an assembly
line. When sparse depth points are projected from the source view It−N to the
target view It sparse depth points gathered on the arm are wrongly projected.
Moreover, multi-view cues are not useful in this case – i.e. even if the network
predicts the correct depth on the target view for a moving object the projec-
tion on the source view leads to a wrong position. Thus, the monocular features
are the unique useful information to estimate depth in the dashed red box. Our
approach demonstrates to better exploit such information than NLSPN [6], effec-
tively ignoring misleading multi-view and sparse depth information. Nonetheless,
monocular depth estimated from a non-specialized approach is far from being
fully accurate, as can be observed in the point cloud at the bottom of Figure III.

3 Qualitative Results

3.1 3D Reconstruction

We provide qualitative results about the final 3D reconstructions we obtain
through our approach in indoor environments from ScanNetV2 [3] and 7Scenes
[9]. To build each mesh we use 500 sparse depth points and sparsification ra-
tio τ = 0.2. Then, we integrate depth prediction in a TSDF volume using the
same parameters as [8] and extract the mesh with the marching cubes algorithm.
Qualitatives are showed in Figure IV and Figure V for ScanNetV2 and 7Scenes,
respectively.

Scene 0714 Scene 0715 Scene 0721

Scene 0745 Scene 0800 Scene 0805

Fig. IV: ScanNetV2 3D Reconstruction. We provide different qualitative mesh
reconstructions on ScanNetV2 [3] in different indoor scenarios. Our approach enables
fine-grain effective RGB-D 3D reconstruction exploiting both high frame rate RGB
cameras and slow yet accurate sparse active sensors.



7

Chess Fire Heads

Office Pumpkin Red Kitchen

Fig.V: 7Scenes 3D Reconstruction. We provide qualitative mesh reconstructions
on 7Scenes [9] in generalization – i.e. we train only on ScanNetV2 [3]. Our framework
demonstrates the capability to easily generalize to new environments as assessed in the
experiments on 7Scenes.

3.2 Generalization on Waymo

Finally, in Figure VI we provide a few inferences of DoD trained on KITTI in
generalization on the Waymo Dataset. DoD provides reasonable reconstructions
even in this scenario, despite the small size and repetitiveness of the KITTI
dataset hamper good generalization.

Source View Target View Prediction

Fig.VI: Qualitatives on Waymo. We test DoD trained on KITTI on the Waymo
dataset in generalization. Although the KITTI’s small size and repetitiveness hamper
deployment in generalization DoD produces reasonable results predictions



8

References

1. Cheng, S., Xu, Z., Zhu, S., Li, Z., Li, L.E., Ramamoorthi, R., Su, H.: Deep stereo
using adaptive thin volume representation with uncertainty awareness. In: Proceed-
ings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.
pp. 2524–2534 (2020)

2. Conti, A., Poggi, M., Mattoccia, S.: Sparsity agnostic depth completion. In: Pro-
ceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision
(WACV). pp. 5871–5880 (January 2023)

3. Dai, A., Chang, A.X., Savva, M., Halber, M., Funkhouser, T., Nießner, M.: Scannet:
Richly-annotated 3d reconstructions of indoor scenes. In: Proc. Computer Vision
and Pattern Recognition (CVPR), IEEE (2017)

4. Geiger, A., Lenz, P., Urtasun, R.: Are we ready for autonomous driving? the kitti
vision benchmark suite. In: Conference on Computer Vision and Pattern Recogni-
tion (CVPR) (2012)

5. Gu, X., Fan, Z., Zhu, S., Dai, Z., Tan, F., Tan, P.: Cascade cost volume for
high-resolution multi-view stereo and stereo matching. In: Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 2495–
2504 (2020)

6. Park, J., Joo, K., Hu, Z., Liu, C.K., Kweon, I.S.: Non-local spatial propagation
network for depth completion. In: Proc. of European Conference on Computer
Vision (ECCV) (2020)

7. Poggi, M., Conti, A., Mattoccia, S.: Multi-view guided multi-view stereo. In:
IEEE/RSJ International Conference on Intelligent Robots and Systems (2022),
iROS

8. Sayed, M., Gibson, J., Watson, J., Prisacariu, V., Firman, M., Godard, C.: Sim-
plerecon: 3d reconstruction without 3d convolutions. In: Proceedings of the Euro-
pean Conference on Computer Vision (ECCV) (2022)

9. Shotton, J., Glocker, B., Zach, C., Izadi, S., Criminisi, A., Fitzgibbon, A.W.: Scene
coordinate regression forests for camera relocalization in rgb-d images. 2013 IEEE
Conference on Computer Vision and Pattern Recognition pp. 2930–2937 (2013),
https://api.semanticscholar.org/CorpusID:8632684

10. Wang, F., Galliani, S., Vogel, C., Speciale, P., Pollefeys, M.: Patchmatchnet:
Learned multi-view patchmatch stereo. In: Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition. pp. 14194–14203 (2021)

11. Wang, W., Zhu, D., Wang, X., Hu, Y., Qiu, Y., Wang, C., Hu, Y., Kapoor, A.,
Scherer, S.: Tartanair: A dataset to push the limits of visual slam (2020)

12. Zhang, Y., Guo, X., Poggi, M., Zhu, Z., Huang, G., Mattoccia, S.: Completion-
former: Depth completion with convolutions and vision transformers. In: Proceed-
ings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR). pp. 18527–18536 (June 2023)

https://api.semanticscholar.org/CorpusID:8632684

