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Abstract. The popular CLIP model displays impressive zero-shot ca-
pabilities thanks to its seamless interaction with arbitrary text prompts.
However, its lack of spatial awareness makes it unsuitable for dense com-
puter vision tasks, e.g., semantic segmentation, without an additional
fine-tuning step that often uses annotations and can potentially sup-
press its original open-vocabulary properties. Meanwhile, self-supervised
representation methods have demonstrated good localization properties
without human-made annotations nor explicit supervision. In this work,
we take the best of both worlds and propose an open-vocabulary semantic
segmentation method, which does not require any annotations. We pro-
pose to locally improve dense MaskCLIP features, which are computed
with a simple modification of CLIP’s last pooling layer, by integrating lo-
calization priors extracted from self-supervised features. By doing so, we
greatly improve the performance of MaskCLIP and produce smooth out-
puts. Moreover, we show that the used self-supervised feature properties
can directly be learnt from CLIP features. Our method CLIP-DINOiser
needs only a single forward pass of CLIP and two light convolutional
layers at inference, no extra supervision nor extra memory and reaches
state-of-the-art results on challenging and fine-grained benchmarks such
as COCO, Pascal Context, Cityscapes and ADE20k. The code to re-
produce our results is available at https://github.com/wysoczanska/
clip_dinoiser.

Keywords: open-vocabulary semantic segmentation · self-supervised fea-
tures · annotation-free segmentation

1 Introduction

Semantic segmentation is a key visual perception task for many real-world sys-
tems, e.g., self-driving cars, and industrial robots. Typically tackled in a dataset-
oriented manner, best methods require a training dataset which is manually
annotated for a specific and finite set of classes. The advent of powerful Vision-
Language Models (VLM) [24,43,63] is stimulating a shift from a closed-vocabulary

⋆ Work done outside of Meta and Meta was not involved in the research discussed
here.

https://orcid.org/0000-0001-7785-2277
https://orcid.org/0000-0003-3232-8978
https://orcid.org/0000-0003-2485-9402
https://orcid.org/0000-0002-1486-8906
https://orcid.org/0000-0002-8124-1206 
https://github.com/wysoczanska/clip_dinoiser
https://github.com/wysoczanska/clip_dinoiser


2 M.Wysoczanska et al.

M
as

kC
L
IP

CL
IP

-D
IN

Oi
se

r

rusted van
green trees

clouds
mountains

french
pastries
wooden

table plate

Marie Curie
Sklodowska
glass flask
laboratory

white horse
dark horse

leather bag
vintage bike

l Irrelevant prompts predicted: aeroplane, cat, cow, sheep, sofa, motorbike, dogl

Fig. 1: Examples of open-vocabulary semantic segmentation results obtained
with our method CLIP-DINOiser on ‘in-the-wild’ images vs. those of MaskCLIP [67].
Our method improves MaskCLIP features with a smart pooling strategy which does
not alter the original open-vocabulary properties. We use self-supervised DINO [5] as
a guide to teach CLIP [22] to produce DINO-like localization features through two
light convolutional layers. Our method, which achieves state-of-the-art results, only
requires a single forward pass through CLIP model and our two layers. In addition
to the correct prompts (light grey row) we list the irrelevant prompts predicted (in
yellow) that we query in all images shown here.

paradigm to an open-world one. Such models are trained with a simple but scal-
able objective: to align pairs of image and coarse text captions that can be
obtained in large amounts with limited manual supervision. VLMs excel at as-
sociating global image content with arbitrary text inputs with remarkable gen-
eralization capabilities [17, 34], but struggle to provide dense open-vocabulary
features [18, 67]. Obtaining such an alignment between pixels and language can
lead to open-vocabulary extensions for multiple other modalities, such as point
clouds [8, 23, 38, 41], 3D scenes [54], 3D shapes [1], radiance fields [27], inter-
modality alignment [19, 23], with multiple potential applications for which the
construction of training datasets is even more challenging and where CLIP-
derived models show promising results.

Different strategies have been recently proposed towards improving CLIP’s
patch-level feature extraction abilities by modifying the original CLIP archi-
tecture for dense pooling and retraining [6, 37, 44, 61, 62] or finetuning on an
annotated segmentation dataset with pre-defined classes [32, 67]. The former
requires long training and/or large collections of annotated data, while the
latter leads to an alteration of the vision-language associations of the CLIP
features. An alternative line of approaches freezes the CLIP encoder and di-
rectly densifies its features with different heuristics, often with multiple forward
passes [1, 23, 27, 49, 50, 59], but are less practical due to the extensive computa-
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tional overhead. MaskCLIP [67] arises as a computationally efficient dense CLIP
extractor. It converts CLIP’s global self-attention layer into a convolutional one
to produce patch features with original vision-language qualities. If such fea-
tures are local, they appear to be too noisy for high-quality segmentation mask
extraction (see Fig. 2b middle column).

Meanwhile, recent self-supervised learning (SSL) approaches [4, 5, 9, 68] pro-
duce strong visual representations displaying object localization properties, and
such without requiring any manual annotation. DINO [5] stands out with its
semantically meaningful features which have been exploited for unsupervised
object discovery [51, 52, 56, 57]. DINO features prove useful also for zero-shot
semantic segmentation [25, 27, 59], but require expensive sliding window sam-
pling [27,59] or building concept-specific prototypes and ensemble strategies [25].

In this work, we aim for unaltered patch-level CLIP features with mini-
mal runtime overhead. To this end, we re-examine the localization properties
of MaskCLIP features and observe that it is possible to easily refine them with
guidance from SSL models. In detail, we train a simple convolutional layer on
unlabeled data to produce pooling weights to perform correlation-guided dense
feature pooling from CLIP without distorting the vision-language alignment.
This layer is optimized to mimic the patch correlations of DINO [5] that indicate
likely layouts of visual concepts in the images. Furthermore, we show that the
unsupervised objectness information given by FOUND [52] from DINO features
can be also directly learned from CLIP features again in a fully-unsupervised
fashion with a single convolutional layer and helps improve the segmentation
of the ill-defined ‘background’ prompt. With CLIP-DINOiser, we obtain high-
quality masks in a single forward pass on CLIP (see Fig. 1). CLIP-DINOiser is
amenable to producing dense semantic maps.

To summarize, our contributions are: (1) We propose a light pooling mech-
anism to refine MaskCLIP features by leveraging guidance from SSL features
without degrading its original open-vocabulary properties. CLIP-DINOiser does
not require any annotations, nor retraining CLIP from scratch, but only a sin-
gle CLIP forward pass. (2) We show that CLIP already contains good localiza-
tion properties which can be exploited. We leverage simple convolutional layers
to emphasize visual concept layouts from dense CLIP features. We train them
without any annotation on only 1k of raw images randomly sampled in Ima-
geNet [13]. We believe that this finding could be further exploited in different
contexts. (3) Our method achieves state-of-the-art results on complex semantic
segmentation datasets such as COCO [3], Pascal Context [16], Cityscapes [11]
and ADE20K [66].

2 Related Work

Zero-shot semantic segmentation. This task has been typically approached by
methods which aim at generalizing from seen classes to unseen ones [2, 20, 21,
26,30,40,60,64]. Such strategies train models with full supervision on the set of
seen classes and propose different solutions to extend them to unseen ones with-
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out new images (labeled or unlabeled), e.g., by exploiting class information and
relationships encapsulated in popular word embeddings [35,42]. While they pro-
duce fine segmentations without computational overhead, these methods require
pixel-level annotations for the seen classes.

From CLIP to open-vocabulary segmentation. The surge of VLMs with aligned
image-language representations [22, 24, 43] brought back into the spotlight the
zero-shot classification task. However, the extension to zero-shot segmentation
is not obvious as the CLIP architecture is not equipped to yield dense vision-
language features [18, 67]. To produce dense CLIP features, several approaches
fine-tune or train from scratch pixel-aligned CLIP-like models with additional
modules, mechanisms or supervision objectives [6,37,44,61,62] on datasets with
annotations of varying granularity and quality: dense annotations [29,31], class-
agnostic object masks [14, 18, 45], coarse captions [6, 18, 31–33, 37, 44, 61, 62, 65]
or pseudo-labels [67]. Recent works leverage image-level captions to align text to
regions (obtained without supervision): PACL [37] trains an embedder module
to learn patch-to-text affinity, TCL [6] proposes a local contrastive objective to
align well-selected patches to the text and ViewCO [46] leverages multi-view
consistency. On the downside, such models require long training on millions of
images or specific types of very costly annotations. Also, fine-tuning CLIP with
a defined vocabulary is more computationally appealing [29, 31, 67], but alters
the open-vocabulary properties of the features [23].

Most related to us is a line of works that investigate how to directly densify
CLIP features [1, 23, 27, 59, 67] to obtain per-patch CLIP features. Such densi-
fication can be performed by aggregating features from multiple views [1, 27]
or from sliding windows [23, 59] at the extra-cost of multiple forward passes.
MaskCLIP [67] drops the global pooling layer of CLIP and matches the pro-
jected features directly to text via a 1 × 1 convolution layer. By doing so they
achieve dense predictions, however noisy.

With a concept-driven perspective, some methods [25,49,50] build codebooks
of visual prototypes per concept, including negative prototypes [25], and then
perform co-segmentation [49]. While such an approach yields good results, it
is however at the cost of building expensive class-specific prototypes, therefore
diverging from open-vocabulary scenarios. Instead, we aim to remain open to
avoid retraining a model or building new expensive prototypes whenever a new
concept is considered. To that end, we devise a dense CLIP-feature extraction
method that preserves the open-vocabulary quality.

Leveraging self-supervised models & CLIP. Recent self-supervised ViTs [4,5,9,12,
68] have demonstrated features with good localization properties [51,52,56,57].
Such features have also been exploited in the context of open-vocabulary seg-
mentation methods, e.g. for pre-training for the visual backbone [7, 44, 62], co-
segmentation [49], clustering patches into masks [47], representing object proto-
types [25]. Related to us is the recent CLIP-DIY [59] which computes patch-level
representations from CLIP features from different image crops with guidance
from an unsupervised saliency segmenter [52] FOUND. While we also leverage
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the latter, in contrast with CLIP-DIY which runs multiple forward passes to
build their dense CLIP features, our method requires only a single forward pass
of CLIP. Furthermore, our method mitigates the limits of FOUND in cluttered
scenarios by integrating an uncertainty constraint. Finally, we leverage the infor-
mative patch correlation properties of DINO [5] and show that it is possible to
teach CLIP to produce DINO-like features through light convolutional layers.

3 Method

We present in this section CLIP-DINOiser, a simple and efficient strategy to
improve MaskCLIP using localization information extracted from CLIP—with
a lightweight model trained to mimic some of DINO’s properties. We first set
the goal in Sec. 3.1 and present MaskCLIP [67] in Sec. 3.2. We then introduce
our strategy which leverages self-supervised features localization information to
consolidate MaskCLIP features in Sec. 3.3 and discuss how such localization
information can directly be learnt from CLIP in Sec. 3.4 (we visualize both
steps in Fig. 3). We also propose a way to improve the ‘background’ filtering in
Sec. 3.5.

3.1 Problem statement

In this work, we aim to produce open-vocabulary1 semantic segmentation of an
image. We consider an image X ∈ RH×W×3 which we split into a sequence of N
patches of dimensions P ×P × 3 with P ×P the patch size and N = ⌈H

P ⌉ · ⌈W
P ⌉.

A class token, noted CLS, is added to the input sequence and we feed the N + 1
patches to a ViT [15] model. We aim at producing dense visual features F ∈
RN×d, with d the feature dimension, that can later be matched to any set of
text inputs embedded in the same space. In particular, the goal is to produce a
segmentation map per textual query.

3.2 Preliminaries on MaskCLIP

Extracting dense open-vocabulary features. The popular CLIP [22] model pre-
trained on image/caption pairs produces good global image features, but was
not trained to generate high-quality 2D feature maps. In order to extract such
dense feature maps relevant to semantic segmentation, Zhou et al. [67] revisit
the global attention pooling layer of the last attention layer of the model. The
authors discard the query and key embeddings of the layer and transform both
the value projection and the last linear layer into a conv 1×1 layer. With this new
model, named MaskCLIP and denoted ϕ(·), we extract d-dimensional features
ϕL(X) ∈ RN×d from the last layer L which retains most of the open-vocabulary
properties of CLIP [67].

1 We adopt the taxonomy defined in the recent survey [58] and define our method as
‘open-vocabulary’, with capabilities to generalize to unseen datasets.
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Semantic segmentation given textual queries. We also extract CLIP textual fea-
tures ϕT (tj) for each text query tj ∈ T with j ∈ {1, . . . , |T |}. Segmentation
maps are then generated by computing the cosine similarity between each of the
visual patch features and of the textual prompts, after L2-normalization. The
most similar prompt is assigned to each patch. Note that a query ‘background’
can be added in order to obtain negative patches. Using MaskCLIP allows us to
produce dense segmentation maps with a single forward pass of the classic CLIP
model, but its outputs are noisy, as visible in Fig. 2b (middle column).

3.3 DINOising open-vocabulary features

In this work, we aim to improve MaskCLIP’s open-vocabulary features described
above. To do so, we propose to leverage the known good localization properties
of self-supervised features [5, 39,51–53,57] .

Extracting self-supervised correlation information. Recent works [51, 57] have
shown that the patch correlation information of the embeddings from the last
attention layer of the self-supervised model, DINO [5] can help highlight ob-
jects in images. We use here the value embeddings which we observe have finer
correlation than those of key and query (more discussion in supplementary ma-
terial). We extract such self-supervised features ξ(X) ∈ RN×dξ and discard the
CLS token. We then compute the per-patch cosine-similarity and produce the
affinity map Aξ ∈ [−1, 1]N×N . We compare in Fig. 4 the patch-similarities ob-
tained for a patch seed with MaskCLIP and DINO features and observe that the
self-supervised features are more densely and accurately correlated than those
of CLIP.

Dense CLIP
features 

DINOised
features  

Affinity map

guided-
pooling

(a) Our guided pooling
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(b) Impact of the pooling

Fig. 2: We present in (a) is our guided pooling strategy defined in Eq. (1). The N ×N
affinity matrix is computed from patch features and is used to refine MaskCLIP features
(bottom left). In (b) we compare our results with F+ (right) versus those obtained with
MaskCLIP features (middle).

Strengthening features with guided pooling. In order to locally consolidate MaskCLIP
features ϕL(X), now noted F , we propose to perform a concept-aware linear com-
bination of the features per patch with guidance from the patch affinity Aξ. The
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feature combination strategy can be seen as a form of voting mechanism that
enforces similar patches to have similar CLIP features (and prediction) while at-
tenuating noisy features. Specifically, we compute the new features F+ ∈ RN×d

as an average of MaskCLIP features F weighted by Aξ, presented in Fig. 2a. We
zero-out Aξ correlations below a threshold γ, following [51,57], and compute the
new features for patch p ∈ {1, . . . , N}:

F+
p =

1∑N
q=1 A

ξ
p,q

N∑
q=1

Aξ
p,q · Fq. (1)

We then produce the segmentation maps S ∈ [−1, 1]N×|T |, by comparing
the new features F+ to each textual queries in T . As shown in Fig. 2b, when
using such consolidated features, we obtain more accurate outputs and the high-
frequency predictions observed in MaskCLIP are smoothed out, showing the
benefit of the pooling.

3.4 Teaching CLIP a first DINO trick: object correlations

CLIP-DINOIserDINOising
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Inference

Dot 
product
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Affinity 
map
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{‘Eiffel Tower’, 
‘toy’,‘ground’, 
‘sky’,‘tree’}

Fig. 3: Overview of CLIP-DINOiser which leverages the quality of self-supervised
features to improve the notoriously noisy MaskCLIP feature maps. We use DINO
as a teacher which ‘teaches’ CLIP how to extract localization information. We train
(left) a conv3 × 3 layer to reproduce the patch correlations obtained with DINO. At
inference (right), an input image is forwarded through the frozen CLIP image backbone
and MaskCLIP projection. The produced features are then improved with our pooling
strategy which is guided by correlations predicted with the trained convolutional layer
applied on CLIP. With this light ‘DINOising’ process, we obtain ‘DINOised’ features
which are matched against the prompts features to produce CLIP-DINOiser outputs.

We have shown in the previous section that self-supervised correlation infor-
mation can successfully be used to improve the dense quality of open-vocabulary
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features. If the difficulty of densifying CLIP is well-known, we show here that
CLIP features already contain good localization information which can be ex-
tracted with a light model. We indeed predict DINO correlations Aξ from CLIP
with a single convolutional layer.

In order to predict the DINO affinity map Aξ from CLIP features, we train
a single 3 × 3 convolutional layer g(·) : Rd → Rdg which projects intermediate
features ϕl(X)–extracted from layer l–into a smaller space of dimension dg < d.
We enforce the patch correlations of the generated features Aϕ ∈ [−1, 1]N×N :

Aϕ =
g(ϕl(X))

∥g(ϕl(X))∥
⊗
(

g(ϕl(X))

∥g(ϕl(X))∥

)⊤

, (2)

with ⊗ denoting the outer product, to be close to the binarized correlations
D = Aξ > γ (we use here the same γ as defined above), using the binary cross-
entropy loss Lc:

Lc =

N∑
p=1

[
Dp logA

ϕ
p + (1−Dp) log(1−Aϕ

p )
]
. (3)

We present our layer training in Fig. 3 (left part) and observe the quality
of CLIP-predicted affinity matrix Aϕ. We also show in Fig. 4 another example
of obtained Aϕ and observe their similarity to DINO-based correlations. We
use the CLIP-produced correlations Aϕ to replace Aξ in Eq. (1) to weight the
pooling and observe a similar boost over MaskCLIP, thus showing that good
patch correlations can indeed be extracted directly from CLIP. We can now
discard DINO and we name CLIP-DINOiser the guided-pooling strategy which
uses CLIP-based correlation. As shown in Fig. 3 (inference step), our method
runs with a single forward pass of CLIP model and a small extra layer.

image MaskCLIP corr. DINO Aξ CLIP-DINOiserAϕ

Fig. 4: Comparison of the affinity maps between a seed (one on the ‘plant’ and
the other on a ‘pillow’) and the other patch features when using features of MaskCLIP,
DINO and ours after training.

3.5 Teaching CLIP a second DINO trick: background filtering

Moreover, as discussed earlier, a ‘background’ query may be added to the set
of textual queries T in order to help filter out patches falling in the background
and not corresponding to any objects. We do not assume here any prior knowl-
edge about classes of interest and focus rather on the foreground/background
paradigm [52]. We argue that relying solely on the textual prompt ‘background’
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FOUND [52] CLIP-DINOiser

(a) Comparison of background filtering

CLIPText

prompts: 
{‘banana’,‘ball’
‘apple’,‘oven’
‘background’}

Background
filtering

DINOising

DINOised
features

conv1x1

CLIPImg

Objectness
map

fusion

(b) Background filtering

Fig. 5: We present in (a) a comparison of objectness mask generated by FOUND [52]
and with our layer using CLIP features. We carefully define the fusion operation and
the simple training strategy of the conv1×1 again using DINO as a teacher in Sec. 3.5.
In (b) is an overview of our background filtering which is applied when a ‘background’
prompt is provided and helps reduce hallucinations.

to catch all non-salient patches is underperforming and, similarly to [59], we
propose to use a very light-weight unsupervised foreground/background segmen-
tation method, namely FOUND [52] which also relies on DINO self-supervised
features. We run FOUND on the entire image and extract a prediction mask
M ∈ {0, 1}N in which a patch is assigned the value 1 if falling into the fore-
ground and 0 otherwise. We also observe that saliencies produced by FOUND
can be too restrictive and discard objects which are partially visible or in a clut-
ter. To mitigate this behaviour, we propose to relax the background selection by
integrating an additional uncertainty constraint. To this end, we fuse the back-
ground information from both modalities by assigning the ‘background’ prompt
to patches p which are both uncertain, e.g. have low confidence score σ(S)p < δ,
with σ(·) the softmax operation, and which fall in the background in M .

Learning FOUND objectness. Moreover, we are also able to learn the predictions
of FOUND [52] directly from CLIP features. To do so, we train a single 1 × 1
convolutional layer h(·) : Rd → R which predicts from the features ϕl(X) an
objectness map Mϕ = h(ϕl(X)) ∈ RN . We train the model to predict the
FOUND binary mask M with the binary cross-entropy loss Lm:

Lm =

N∑
p=1

[
Mp log(M

ϕ
p ) + (1−Mp) log(1−Mϕ

p )
]
.

We show examples of predicted CLIP-based objectness in Fig. 5a and observe
their very high similarity to those produced with DINO. Moreover, we can now
replace M defined above with the binarized CLIP-based scores ζ(Mϕ) > 0.5,
with ζ(·) the sigmoid operation, and observe a minimal drop in performances. We
show an example of the background filtering with trained objectness in Fig. 5b.
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4 Experiments

We detail in Sec. 4.1 the experimental setup used in our evaluation. We produce
state-of-the-art results on the task of open-vocabulary semantic segmentation in
Sec. 4.2 and ablation studies in Sec. 4.3.

4.1 Experimental setup

Technical details. We use in all experiments a frozen CLIP ViT-B/16 pre-trained
following OpenCLIP [22]. Our method CLIP-DINOiser uses two convolutional
layers to extract DINO-like information from CLIP layer l = 10 (the 3rd before
the last which was shown to provide the best results [55]). The first layer g(·) has
a kernel 3×3 and output dimension dg = 256 and h(·) a kernel 1×1 with dh = 1.
The first is trained to match the correlation information extracted from the value
embeddings of the last layer of a ViT-B/16 model trained following DINO [5].
The second layer is trained to replicate the unsupervised object localization
predictions of FOUND [52]–which also uses DINO model. We train both layers
with a binary cross-entropy loss on only 1k raw images randomly sampled from
ImageNet [13] dataset without any annotation. We report average scores over
3 runs with different sampling seeds and provide standard deviations in the
supplementary material. We follow [57] and binarize the correlations with γ =
0.2. In the background filtering step, we use a high confidence score, i.e., δ = 0.99.
We train our model for 6k iterations with a batch size of 16 images using Adam
optimizer [28], which takes approximately 3 hours on a single NVIDIA RTX
A5000 GPU. We decrease the learning rate for both heads by a factor of 0.1
after 5k iterations. We apply data augmentations during training (random scale
and cropping, flipping and photometric distortions).

Datasets and metric. We evaluate our method on eight benchmarks typically
used for zero-shot semantic segmentation [6]. Following [6], we split them into
two groups. The first consists in datasets with a ‘background’ query: PAS-
CAL VOC [16] (noted ‘VOC’), PASCAL Context [36] (noted ‘Context’), and
COCO Object [3] (noted ‘Object’) and the second without: PASCAL VOC20 [16]
(noted ‘VOC20’), PASCAL Context59 [36] (noted ‘C59’), COCO-Stuff [3] (noted
‘Stuff’), Cityscapes [11] (noted ‘City’), and ADE20K [66] (noted ‘ADE’). We
evaluate results with the standard mIoU metric. We also follow the evaluation
protocol of [6], use the implementations provided by MMSegmentation [10], em-
ploy a sliding window strategy, resize the input image to have a shorter side of
448. We also do not perform text expansions of the class names and use only the
standard ImageNet prompts following [22,61,67].

Baselines. We compare our method against state-of-the-art methods on open-
vocabulary zero-shot semantic segmentation. For a fair comparison between
methods, we report results without any post-processing step. In our evalua-
tions, we follow the taxonomy presented in [58] and compare our model with
the methods relying on language-image pretraining, also called open-vocabulary.
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We split the compared baselines into four categories: (1) dataset specific which
employ pseudo-labeling and supervised training of a segmentation model on
target dataset: NamedMask [50], MaskCLIP+ [67]); (2) construct prototypes:
ReCO [49], OVDiff [25]; (3) train with text supervision including GroupViT [61],
ZeroSeg [47], SegCLIP [33], TCL [6], CLIPpy [44], OVSegmentor [62], which
all require access to additional datasets of millions of image/caption pairs (we
note in the table the exact datasets used for the training); and finally use frozen
CLIP i.e. CLIP-DIY [59] and MaskCLIP [67], which use pre-trained CLIP. Our
method falls into the last category as we do not modify CLIP, and do not need
access to additional caption annotations as we use only 1k unannotated images.

Concept Extra Inference No background prompt W/ bkg prompt
Methods spec. data backbone VOC20 lC59l lStuffl lCityl lADEl lCont.ObjectVOC

aaaaaaa Dataset specific
MaskCLIP+ [67] ✓ ✗ I DLv2 - 31.1 18.0 - - - - -
NamedMask [50] ✓ ✗ I DLv3+ - - - - - - 27.7 59.2

aaaaaaa Build prototypes per visual concept
ReCo [49] ✓ ✓ I CLIP 57.8 22.3 14.8 21.1 11.2 19.9 15.7 25.1

OVDiff [25] ✓ ✓ ✗
CLIP+

DINO+SD 81.7 33.7 - - 14.9 30.1 34.8 67.1

aaaaaaa Text/image alignment training with captions
GroupViT [61] [6] ✗ ✗ IT CLIP 79.7 23.4 15.3 11.1 9.2 18.7 27.5 50.4
ZeroSeg [7] ✗ ✗ IT CLIP - - - - - 21.8 22.1 42.9
SegCLIP [33] ✗ ✗ IT CLIP - - - 11.0 8.7 24.7 26.5 52.6
TCL [6] ✗ ✗ IT CLIP 77.5 30.3 19.6 23.1 14.9 24.3 30.4 51.2
CLIPpy [44] ✗ ✗ IT CLIP - - - - 13.5 - 32.0 52.2
OVSegmentor [62] ✗ ✗ IT CLIP - - - - 5.6 20.4 25.1 53.8

aaaaaaa Frozen CLIP

CLIP-DIY [59]∗ ✗ ✓ ✗
CLIP+
DINO 79.7 19.8 13.3 11.6 9.9 19.7 31.0 59.9

MaskCLIP [67] [6] ✗ ✓ ✗ CLIP 53.7 23.3 14.7 21.6 10.8 21.1 15.5 29.3
MaskCLIP∗ ✗ ✓ ✗ CLIP 61.8 25.6 17.6 25.0 14.3 22.9 16.4 32.9
MaskCLIP∗ † ✗ ✓ ✗ CLIP 71.9 27.4 18.6 23.0 14.9 24.0 21.6 41.3
CLIP-DINOiser ✗ ✓ I(1k) CLIP 80.9 35.9 24.6 31.7 20.0 32.4 34.8 62.1

Table 1: Open-vocabulary semantic segmentation quantitative comparison
using the mIoU metric. We separate in two columns the evaluation datasets: those
without a ‘background’ prompt and those with (noted ‘W/ bkg prompt’), as discussed
in Sec. 4.1. We report all methods without post-processing. We note with ∗ methods
for which we computed scores; we obtained MaskCLIP∗ scores with OpenCLIP [22]
and mark with † the use of MaskCLIP refinement. The first and second best methods
are respectively bold and underlined. We specify if a method assumes prior access
to names of concepts (‘Concept spec.’) and if it employs a frozen backbone ( ). We
specify what additional data is used at training (‘Extra data’) (‘I’ stands for images
and ‘IT’ for image/text aligned data). Our CLIP-DINOiser only needs 1k images from
ImageNet to be trained. ‘SD’ stands for Stable Diffusion [48]. We refer to Sec. 4.1 for
more details on baselines and we detail the datasets used for training by each method
in the supplementary material.
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4.2 Open-vocabulary semantic segmentation

We discuss in this section state-of-the-art results on the task of open-vocabulary
semantic segmentation.

Evaluation with no ‘background’ class. We first compare in Tab. 1 (‘No back-
ground prompt’ column) the results on datasets which aim at the segmentation
of most of the pixels in an image and do not consider a ‘background’ class.
We observe that our method CLIP-DINOiser achieves the best results on four
datasets yielding +2.2, +5.0, +6.7 and +5.1 mIoU over the second best per-
forming method. Interestingly, we outperform methods which build expensive
prototypes per visual concept on fine-grained datasets, showing the benefit of
our lightweight and generalizable method. The only drop (-0.8 mIoU) is seen
on VOC20 with respect to OVDiff; we believe it is due to the benefit of gen-
erating per-concept negative prototypes which likely benefits this object-centric
dataset. An adaptive granularity of feature correlation could help mitigate this
drop, which we leave for future work.

Evaluation with ‘background’ class. We now compare our method on datasets
which include a ‘background’ query in Tab. 1 (‘W/ bkg prompt’ column). In this
setup, we also apply our background detection mechanism (detailed in Sec. 3.5)
on VOC and Object in order to improve the stuff-like background detection. We
observe that CLIP-DINOiser significantly outperforms all methods which do not
construct prototypes. Moreover, we surpass OVDiff (which uses an ensemble of
three models) on Context dataset by +2.3 mIoU and are on par on Object. It is to
be noted that with a single feature extractor, the performance of OVDiff drops by
-10 mIoU and the method requires the construction of a ‘background’ prototype
per concept, otherwise losing another -10 mIoU on VOC. On the other hand,
CLIP-DINOiser produces segmentation masks in a single pass of CLIP with the
light addition of two convolutional layers while remaining fully open-vocabulary
as it does not require any concept-specific constructs.

Qualitative results. We qualitatively compare in Fig. 6 CLIP-DINOiser with
high-performing TCL [6], CLIP-DIY [59] (two recent methods which provide
code) and our baseline method MaskCLIP [67] on images taken from the datasets
considered in the evaluation. We observe that our method generates predictions
accurate both in terms of localization and assignment. Indeed we obtain fined-
grained results on the challenging datasets, e.g. in the Cityscapes example the
text query ‘car’ and in the ADE20k example ‘fountain’ are accurately located
when CLIP-DIY and TCL produce coarser results. Versus MaskCLIP, we can
see the denoising capabilities of CLIP-DINOiser as MaskCLIP hallucinations
grow with the number of text queries prompted at evaluation. Finally, in Fig. 1
we present ’in the wild’ examples, beyond the evaluation benchmarks, and show
that CLIP-DINOiser produces accurate segmentation masks for arbitrary and
very specific prompts, such as ‘wooden table’ or ‘leather bag’.
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Fig. 6: Qualitative open-vocabulary segmentation results. We compare ours
against CLIP-DIY [59], TCL [6] and MaskCLIP [67]. For a fair comparison, we do not
apply post-processing. All pixels annotated in black are from the background class. We
observe that our method achieves more accurate results both in terms of localization
and class assignment.

4.3 Ablation study

We now conduct an ablation study of the different components of CLIP-DINOiser
and investigate the impact of both our feature pooling strategy and background
detection.

The impact of the pooling mechanism. We propose with CLIP-DINOiser to com-
bine MaskCLIP features with a well-defined linear combination and compare
different solutions in Tab. 2a. In [67], the authors proposed to refine the predic-
tions with a combination weighted by CLIP key embeddings (noted ‘CLIP keys
(preds.)’ in the table) and boost MaskCLIP results by more than +8 mIoU on
VOC and VOC20, +1.8 and +1.0 and +0.6 mIoU on the other datasets. However,
we show that working directly at the feature level allows us to achieve better
results; we obtain consistent improvements ranging from +6 to +19 mIoU on
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all datasets when using DINO-based weight Aξ and further improve when using
trained CLIP-based weights Aϕ.

Pooling strategy VOC VOC20 C59 Stuff ADE
MaskCLIP [67] - baseline 32.9 61.8 25.6 17.6 14.3
CLIP keys (preds.) [67] 41.3 71.9 27.4 18.6 14.9
ours w. CLIP keys 39.2 73.2 23.0 12.6 7.7
ours w. DINO Aξ 53.7 79.1 35.5 24.7 20.4
ours w. trained Aϕ 54.0 80.9 35.9 24.6 20.0

(a) Pooling strategy

Pooling Bkg det. Object VOC
MaskCLIP [67] - baseline 16.4 32.9
ours w. DINO Aξ 29.9 53.7
ours w. DINO Aξ FOUND 32.1 60.1
ours w. DINO Aξ ours w. M 34.1 62.1
ours w. DINO Aξ ours w. Mϕ 34.2 61.9
ours w. trained Aϕ ours w. Mϕ 34.8 62.1

(b) Background detection

Table 2: Impact of the pooling strategy (a) and background detection (b) on
diverse datasets reported with the mIoU metric.

The impact of the background detection. We now discuss the improvement pro-
vided by our background refinement strategy, which is applied when stuff -like
background patches need to be detected. We report such results in Tab. 2b when
employing our pooling strategy (either using DINO features, noted ‘w. DINO
Aξ’ or those extracted from CLIP, noted ‘w. trained Aϕ’). When using solely
‘FOUND’ for background detection, as in [59], we improve by +6.4 mIoU on
VOC (achieving 60.1 mIoU), but when relaxing FOUND (see Sec. 3.5) with an
uncertainty condition, we boost scores up to 62.1 on VOC, showing the limitation
of using FOUND alone. We also achieve similar results when using CLIP-based
predictions Mϕ both with DINO-based Aξ and trained CLIP-based Aϕ corre-
lations, although we observe that best results are overall obtained with trained
Aϕ. We visualize CLIP-based mask Mϕ in Fig. 5a and see high similarity to
DINO-based predictions, therefore showing the localization quality of CLIP.

5 Conclusions

In this work, we propose to make the most out of CLIP features and show that
the features already contain useful localization information. Indeed with light
convolutional layers, we are able to learn both good patch-correlation and ob-
jectness information by using DINO self-supervised model as a guide. With such
information, our method CLIP-DINOiser performs zero-shot open-vocabulary
semantic segmentation in a single pass of CLIP model and with two light extra
convolutional layers. CLIP-DINOiser reaches state-of-the-art results on complex
semantic segmentation datasets.

Limitations. Despite yielding strong results on open-vocabulary semantic seg-
mentation, CLIP-DINOiser is still bounded by the capability of the CLIP model
to separate classes, as it inherits its granularity. We believe that better prompt
engineering paired with better image-text models could further boost the per-
formance of CLIP-DINOiser.
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