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1 LNL+K baseline methods

For the convenience of formulating the following equations, recall the notations we
defined in Section 3 in the main paper. Dataset D = {(xi, ỹi)

n
i=1 ∈ Rd×K}, where

K = {1, 2, ..., k} is the categorical label for k classes. (xi, ỹi) denotes the i− th
example in the dataset. {ỹi}ni=1 might include noisy labels and the true labels
{yi}ni=1 are unknown. Noise transition probability matrix Pk×k, where Pij refers to
the probability that a sample in class i is mislabeled as class j. A set of label pairs
LP = {(i, j)|i, j ∈ K}, where (i, j) indicates that samples in class i are more likely
to be mislabeled as class j. noise source knowledge Dc−ns represents the set of
noise source labels of category c. I.e., Dc−ns = {i|i ∈ K∧ (Pic > 0∨ (i, c) ∈ LP )}.

1.1 CRUST+k

The key idea of CRUST [11] is from the neural network Jacobian matrix containing
all its first-order partial derivatives. It is proved in their work that the neural
network has a low-rank Jacobian matrix for clean samples. In other words, data
points with clean labels in the same class often have similar gradients clustered
closely together. CRUST [11] is a feature-based method and this approach can
be summarized with settings in Section 3.1. The feature used for selection is
the pairwise gradient distance within the class: g(Xc) = {dxixj

(W)|xi, xj ∈ Xc},
where dxixj (W) = ∥∇L(W, xi) − ∇L(W, xj)∥2, W is the network parameters
and L(W, xi) = 1

2

∑
xi∈D(yi − fθ(W, xi))

2. CRUST [11] needs an additional
parameter β to control the size of the clean selection set X ′

c. Given β, the sample
xi is selected as clean if ∥X ′

c∥ = β (∥X ′
c∥ is the size of set X ′

c) and xi ∈ X ′
c,

where
∑

g(X ′
c) has the minimum value. i.e., the selected clean subset X ′

c has the
most similar gradients clustered together. Thus, we can summarize the similarity
metric M for p(c|xi) as:

M(xi, ϕc, β) = 1 ↔ ∃X ′
c ⊂ Xc ∧ ∥X ′

c∥ = β,

s.t. xi ∈ X ′
c ∧ (∀∥X ′′

c ∥ = β ∧X ′′
c ⊂ Xc,∑

g(X ′
c) ≤

∑
g(X ′′

c )), (1)
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otherwise M(xi, ϕc, β) = 0. Thus, we can get the propositional logic of CRUST:

yi = c ↔ ỹi = c ∧ p(c|xi) = 1 ↔ M(xi, ϕỹi
, β) = 1. (2)

To adapt CRUST to CRUST+k with noise source distribution knowledge. from
Eq.2 in the main paper, we have

ỹi = c ∧ yi ̸= c ↔ p(c|xi) ≤ max({p(cn|xi)|cn ∈ Dc−ns})
↔ ∃cn ∈ Dc−ns s.t. p(cn|xi) ≥ p(c|xi)

↔ ∃cn ∈ Dc−ns s.t. p(cn|xi) = 1. (3)

To get p(cn|xi), we first mix xi with all the samples in Xcn , i.e., Xcn+ =
{xi} ∪Xcn . Then apply CRUST on this mix set, i.e., calculate the loss towards
label cn and select the clean subset X ′

cn+. if xi ∈ X ′
cn+, then p(cn|xi) = 1.

Here is the formulation of CRUST+k, we modify L(W, xi) to L(W, xi, c) =
1
2

∑
xi∈D(c− fθ(W, xi))

2, where we calculate the loss to any certain categories,
not limited to the loss towards the label. Similarly, we have dxixj

(W, c) =
∥∇L(W, xi, c) − ∇L(W, xj , c)∥2, g(Xcn+, cn) = {dxixj

(W, cn)|xi, xj ∈ Xcn+}.
We use γ to represent the subset size of Xc+cn , which is decided by β and noise
source distribution. Finally, we get the similarity metric M(xi, ϕcn+, γ) as:

M(xi, ϕcn+, γ) = 1 ↔ ∃X ′
cn+ ⊂ Xcn+ ∧ ∥X ′

cn+∥ = γ,

s.t. xi ∈ X ′
cn+ ∧ (∀∥X ′′

cn+∥ = γ ∧X ′′
cn+ ⊂ Xcn+,∑

g(X ′
cn+, cn) ≤

∑
g(X ′′

cn+, cn)), (4)

otherwise M(xi, ϕcn+, γ) = 0. Combining Eq.2 in the main paper, Eq.2, and
Eq.4, p(c|xi) of CRUST+k method is:

yi = c ↔ ỹi = c ∧ (∀cn ∈ Dc−ns, p(cn|xi) < p(c|xi))

↔ ỹi = c ∧ (∀cn ∈ Dc−ns, p(cn|xi) = 0)

↔ ỹi = c ∧ (∀cn ∈ Dc−ns,M(xi, ϕcn+, γ) = 0). (5)

1.2 FINE+k

Filtering Noisy instances via their Eigenvectors(FINE ) [6] selects clean samples
with the feature-based method. Let fθ∗(xi) be the feature extractor output and
Σc be the gram matrix of all features labeled as category c. The alignment
is defined as the cosine distance between feature

−−−−→
fθ∗(xi) and −→c , which is the

eigenvector of the Σc and can be treated as the feature representation of category
c. FINE fits a Gaussian Mixture Model (GMM) on the alignment distribution to
divide samples to clean and noisy groups - the clean group has a larger mean
value, which refers to a better alignment with the category feature representation.
In summary, feature mapping function g(xi, c) =<

−−−−→
fθ∗(xi),

−→c >, and mixture
of Gaussian distributions ϕc = Nclean +Nnoisy = N (µg(Xc−clean), σg(Xc−clean)) +
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N (µg(Xc−noisy), σg(Xc−noisy)), where µg(Xc−clean) > µg(Xc−noisy). The similarity
metric

M(xi, ϕc) =

{
1 : Nclean(g(xi, c)) > Nnoisy(g(xi, c))
0 : Nclean(g(xi, c)) ≤ Nnoisy(g(xi, c)).

Thus, we have

yi = c ↔ ỹi = c ∧ p(c|xi) = 1 ↔ M(xi, ϕỹi
) = 1. (6)

Next, we show our design of FINE+k with noise source distribution knowledge.
The key difference between FINE and FINE+k is that we use the alignment
score of the noise source class. For a formal description of FINE+k, We define
gk(xi, c, cn) = g(xi, c) − g(xi, cn). Similar to FINE, FINE+k fits a GMM on
gk(Xc, c, cn), so we have gk(Xc, c, cn) ∼ ϕk−{c+cn} = Nclose−c+Nclose−cn , where
µclose−c > µclose−cn . This can be interpreted in the following way: Samples
aligning better with category c should have larger g(xi, c) values and smaller
g(xi, cn) values according to the assumption, thus the greater the gk(xi, c, cn),
the closer to category c, vice versa, the smaller the gk(xi, c, cn), the closer to
category cn. Then we have

M(xi, ϕk−{c+cn}) = 1

↔ Nclose−c(gk(xi, c, cn)) > Nclose−cn(gk(xi, c, cn)) (7)

otherwise M(xi, ϕk−{c+cn}) = 0. By combining with Eq.2 in the main paper, we
have

yi = c ↔ ỹi = c ∧ (∀cn ∈ Dc−ns, p(c|xi) > p(cn|xi))

↔ yi = c ∧ (∀cn ∈ Dc−ns,M(xi, ϕk−{c+cn}) = 1).
(8)

1.3 SFT+k

SFT [14] detects noisy samples according to predictions stored in a memory bank
M. M contains the last T epochs’ predictions of each sample. A sample xi is
detected as noisy if a fluctuation event occurs, i.e., the sample classified correctly
at the previous epoch t1 is misclassified at t2, where t1 < t2. The occurrence
of the fluctuation event can be formulated as fluctuation(xi, yi) = 1, otherwise
fluctuation(xi, yi) = 0 i.e.,

fluctuation(xi, yi) = 1

↔ ∃t1, t2 ∈ {t− T, · · · , T} ∧ t1 < t2

s.t. fθ(xi)
t1 = ỹi ∧ fθ(xi)

t2 ̸= ỹi, (9)

where fθ(xi)
t1 represents the prediction of xi at epoch t1. SFT is a probability-

distribution-based approach and can fit our probabilistic model as follows. The
propositional logic of SFT is,

p(c|xi) =

{
1 : ỹi = c ∧ fluctuation(xi, ỹi) = 0
0 : otherwise.

(10)
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I.e., SFT+k applies the noise source distribution knowledge to SFT by stricting
the constraints of fluctuation. The fluctuation events only occur when the previous
correct prediction is misclassified as the noise source label. Thus, we define SFT+k

fluctuation as,

fluctuation(xi, yi, Dyi−ns) = 1

↔ ∃cn ∈ Dyi−ns,∃t1, t2 ∈ {t− T, · · · , T} ∧ t1 < t2,

s.t. fθ(xi)
t1 = yi ∧ fθ(xi)

t2 = cn. (11)

Combining Eq.2 in the main paper, Eq. 10 and Eq. 11, SFT+k detects xi with
clean label yi = ỹi = c with p(c|xi) as:

yi = c

↔ ỹi = c ∧ p(c|xi) > max({p(cn|xi)|cn ∈ Dc−ns})
↔ ỹi = c ∧ p(c|xi) = 1

↔ ỹi = c ∧ fluctuation(xi, ỹi, Dỹi−ns) = 0. (12)

1.4 UNICON+k

UNICON [5] estimate the clean probability by using Jensen-Shannon divergence
(JSD) di, which is a measure of distribution disagreement. JSD is defined by
KLD, which is the Kullback-Leibler divergence function. We follow the same JSD
definition as UNICON in the adaptation method. Given the predicted probability
pi and label ỹi, di = JSD(ỹi, pi). The value of di ranges from 0 to 1 and the
smaller the di is, the higher the probability of ỹi being clean. A cutoff value
dcutoff is used to select clean samples. To summarize, the propositional logic of
UNICON is,

p(c|xi) = 1− JSD(xi, yi)

↔ yi = c ∧ JSD(xi, yi) < dcutoff (13)

otherwise p(c|xi) = 0. Then noise source knowledge is integrated with our unified
framework:

yi = c ↔ ỹi = c ∧ p(c|xi) > max({p(cn|xi)|cn ∈ Dc−ns})
↔ ỹi = c ∧ (∀cn ∈ Dc−ns, JSD(xi, ỹi) < JSD(xi, cn)).

(14)

1.5 DISC+k

DISC [8] employs weak and strong augmentations on each single noisy labeled
data and divides samples into Clean, Hard, and Purified sets according to the
prediction confidences on the two-augmentation views. The clean set is determined
with the prediction confidence in weak view Confw, confidence in strong view
Confs, and dynamic instance specific thresholds (DIST ) for weak and strong
views τw and τs. The DIST is defined as,

τ(x, t) = λτ(t− 1) + (1− λ)max({Conf(c, x)|c ∈ K}, τ(0) = 0. (15)
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where Conf(c, x) represents the prediction confidence in sample x for class c.
Then the clean set selected at time t of DISC can be defined as,

C(t) = {xi|Confw(ỹi, xi) > τw(xi, t)} ∩ {xi|Confs(ỹi, xi) > τs(xi, t)}. (16)

According to the Eq.1 in the main paper, sample xi is clean at time t in DISC is
detected with,

yi = c ↔ ỹi = c ∧ (Confw(ỹi, xi) > τw(xi, t) ∧ Confs(ỹi, xi) > τs(xi, t)). (17)

DISC+k introduces class-wise comparisons and makes adaptations to the instance-
specific threshold. Instead of taking the maximum confidence from all the class
(i.e. max({Conf(c, x)|c ∈ K}), DISC+k only selects maximum from the labeled
class and noise source classes. To be specific, we have,

τ+k(x, ỹ, t) = λτ(t− 1) + (1− λ)max({Conf(c, x)|c ∈ Dỹ−ns} ∪ {Conf(ỹ, x)}).
(18)

According to the Eq.2 in the main paper, the noise source knowledge is integrated
as,

yi = c ↔ ỹi = c ∧ (Confw(ỹi, xi) > τ+k
w (xi, ỹi, t) ∧ Confs(ỹi, xi) > τ+k

s (xi, ỹi, t)).
(19)

2 Datasets

2.1 CIFAR datasets [7] with synthesized noise

Dominant noise There are recessive and dominant classes in dominant noise.
For CIFAR-10 [7], category index of the last 5 are recessive classes and the first
five are dominant classes. In other words, category index 6-10 samples might be
mislabeled as label index 1-5. Different numbers of samples are mixed for different
noise ratios so that the dataset is still balanced after mislabeling. Table 1 shows
the number of samples per category for each noise ratio. Notably, the dataset is
balanced after the mislabeling. In each recessive class, there are multiple noise
sources, with all dominant classes serving as the noise sources. To illustrate, in
CIFAR-10 [7], classes 6-10 are considered recessive, and instances of these classes
might be incorrectly labeled as dominant classes 1-5. To maintain balance after
mislabeling, we adopt an unbalanced sampling approach to construct the dataset.
For instance, with a noise ratio of 0.5 in the CIFAR-10 dataset, we sample 1250
instances for each dominant class and 3750 instances for each recessive class.
After mislabeling 1250 samples to the dominant class for each recessive class,
there are 2500 samples in each class.
Asymmetric noise. Labels are corrupted to visually similar classes. Pair
(C1, C2) represents the samples in class C1 and C2 are possibly mislabeled as
each other. Noise ratios in the experiments are only the noise ratio in class
pairs, i.e. not the overall noise ratio. Here are the class pairs of CIFAR-10 and
CIFAR-100 [7] for asymmetric noise. CIFAR-10 [7] (trucks, automobiles), (cat,
dog), (horse, deer). CIFAR-100 [7] (beaver, otter), (aquarium fish, flatfish),
(poppies, roses), (bottles, cans), (apples, pears), (chair, couch), (bee, beetle),
(lion, tiger), (crab, spider), (rabbit, squirrel), (maple, oak), (bicycle, motorcycle).
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Table 1: Sample composition for CIFAR-10/CIFAR-100 [7] dominant noise.

CIFAR-10 [7] Dominant Noise
Noise ratio 0.2 0.5 0.8
Dominant class 2000 1250 500
Recessive class 3000 3750 4500
CIFAR-100 [7] Dominant Noise
Noise ratio 0.2 0.5 0.8
Dominant class 200 125 50
Recessive class 300 375 450

2.2 Cell dataset BBBC036 [1]

For our experiments, we subsampled 100 treatments to evaluate natural noise.
Table 2 shows the treatment list. ("NA" refers to the control group, i.e. no
treatment group.)

Table 2: Treatments used from the BBBC036 dataset [1]

NA BRD-K88090157 BRD-K38436528 BRD-K07691486 BRD-K97530723
BRD-A32505112 BRD-K21853356 BRD-K96809896 BRD-A82590476 BRD-A95939040
BRD-A53952395 BRD-A64125466 BRD-A99177642 BRD-K90574421 BRD-K07507905
BRD-K62221994 BRD-K62810658 BRD-K47150025 BRD-K17705806 BRD-K85015012
BRD-K37865504 BRD-A52660433 BRD-K66898851 BRD-K15025317 BRD-K37392901
BRD-K91370081 BRD-K39484304 BRD-K03842655 BRD-K76840893 BRD-K62289640
BRD-K14618467 BRD-K52313696 BRD-K43744935 BRD-K86727142 BRD-K21680192
BRD-K06426971 BRD-K24132293 BRD-K68143200 BRD-K08554278 BRD-K78122587
BRD-A47513740 BRD-K18619710 BRD-A67552019 BRD-K17140735 BRD-K30867024
BRD-K36007650 BRD-K51318897 BRD-K90382497 BRD-K00259736 BRD-K95435023
BRD-K52075040 BRD-K03642198 BRD-K47278471 BRD-K17896185 BRD-K95603879
BRD-A70649075 BRD-K02407574 BRD-A90462498 BRD-K67860401 BRD-A64485570
BRD-K88429204 BRD-A49046702 BRD-K50841342 BRD-K35960502 BRD-K77171813
BRD-K54095730 BRD-K93754473 BRD-K22134346 BRD-K72703948 BRD-K31342827
BRD-K31542390 BRD-K18250272 BRD-K00141480 BRD-K37991163 BRD-K13533483
BRD-K67439147 BRD-A91008255 BRD-K39187410 BRD-K26997899 BRD-K89732114
BRD-K50135270 BRD-K95237249 BRD-K44849676 BRD-K20742498 BRD-K31912990
BRD-K96799727 BRD-K09255212 BRD-A89947015 BRD-K78364995 BRD-K49294207
BRD-K08316444 BRD-K89930444 BRD-K50398167 BRD-K47936004 BRD-A72711497
BRD-A97104540 BRD-A50737080 BRD-K80970344 BRD-K50464341 BRD-K97399794

2.3 Cell dataset CHAMMI-CP [2]

Three compounds with a control group are selected for our experiments: BRD-
A29260609 (weak reaction), BRD-K04185004 (medium reaction), and BRD-
K21680192 (strong reaction).
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2.4 Clothing1M dataset [15]

We conducted experiments on the Clothing1M dataset [4], the noise source
knowledge is summarized according to the confusion matrix from the dataset [4].
We use a → b to represent a as the noise source of b. The prior noise knowledge
is: Chiffon → Shirt, Sweater → Knitwear, Knitwear → Sweater, Jacket →
Windbreaker, Windbreaker → Down coat, and Vest→ Dress.

3 Feature extractors for each dataset

We used a pre-trained ResNet34 [3] on CIFAR-10/CIFAR-100 [7] for all approaches
(UNICON [5] trains on two networks), ResNet50 [3] on Animal-10N [12] and
Clothing1M [15] datasets. For experiments on BBBC036 [1] we used an Efficient
B0 [13] for all methods and all methods used ConvNet [10] for CHAMMI-CP [2]
dataset. To support the 5 channel images in cell datasets, we replaced the first
convolutional layer in the network to support the new image dimensions.

4 Hyperparameters

For a fair comparison, we use the same hyperparameter settings as in prior
work [5,6, 8, 11,14] for CIFAR-10/CIFAR-100 [7] datasets. Hyperparameters of
the cell dataset BBBC036 [1] were set via grid search using the validation set.
All the experiments use the same batch size of 128. "fl-ratio" of CRUST [11] and
CRUST+k, which controls the size of selected clean samples is set as the same as
the noise ratio in synthesized noise and set as 0.6 in cell dataset BBBC036 [1]
and CHAMMI-CP [2], 0.9 in Animal10N [12] and Clothing1M [15]. All the other
hyperparameters for each dataset are summarized in Table 3.

Table 3: Hyperparameters for each dataset.

learning rate warm-up epochs total number of epochs
CIFAR-10/CIFAR-100 [7] 1e-2 40 120
BBBC036 [1] 2e-4 10 100
CHAMMI-CP [2] 2e-4 5 30
Animal10N [12] 5e-3 3 30
Clothing1M [15] 5e-2 0 200

5 Additional results on lower noise ratio of dominant noise

We also performed experiments with 0.2 dominant noise on CIFAR-10/CIFAR-
100 [7] datasets. The results in Table 4 demonstrate that knowledge integration
is also beneficial in cases of lower noise ratios, showcasing the broad applicability
of LNL+K across a range of noise levels from 0.2 to 0.8.
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Table 4: 0.2 Dominant noise results on CIFAR-10 and CIFAR-100 dataset. The best
test accuracy is marked in bold, and the better result between LNL and LNL+K
methods is marked with underlined. We find incorporating source knowledge helps in
almost all cases.

CIFAR-10 [7] CIFAR-100 [7]

Baseline 85.47±0.52 50.37±0.45
DualT [16] 86.55±0.06 34.88±0.11
GT-T 88.09±0.04 59.32±0.14
SOP [9] 89.86±0.40 62.47±0.47

CRUST [11] 88.21±0.22 53.48±0.80

CRUST+k 89.53±0.05 58.69±0.50

FINE [6] 86.23±0.30 53.68±1.54

FINE+k 88.69±0.06 57.22±1.16

SFT [14] 89.48±0.21 51.82±0.67

SFT+k 89.78±0.03 54.36±0.48

UNICON [5] 90.82±0.14 63.28±0.32

UNICON+k 90.83±0.11 66.77±0.54

DISC [8] 93.10±0.12 69.75±0.13

DISC+k 93.55±0.03 70.02±0.30

6 Ethical considerations

This study was conducted with biological images of human bone osteosarcoma
cells, an immortalized cell line used for research purposes only. The images or
data in this study do not contain patient information of any kind. The use of these
images, and the algorithms to analyze them, is to test the effects of treatments.
Automating drug discovery has positive impacts on society, specifically the
potential to help find cures for diseases of pressing need around the world in
shorter times, and utilizing fewer resources. The proposed methods could be used
to optimize drugs that harm people; we do not intend that as an application,
and we expect regulations in biological labs to prevent such uses.
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