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A Additional Details

Fized Pattern Noise. One source of noise associated with sensors (including those
used in C-ToF cameras) is fixed-pattern noise [5]. This noise originates from
spatial non-uniformities with the physical sensor pixels themselves, resulting in
differences in their response to light. The raw images captured by our C-ToF
camera also have fixed noise pattern, which we model as a per-pixel offset in the
intensity. When computing C-ToF derived depth, these fixed patterns in the raw
frames are typically cancelled out within the computation of the phase offset
(Equation 1). Given that our method uses the raw frames directly, it is important
to run a pre-processing step that subtracts the fixed-pattern noise from the raw
frames. We calculated the fixed-pattern noise by (i) capturing four raw images
of a static scene, and (ii) averaging the result. Figure 7 demonstrates the raw
images before and after fixed pattern noise calibration.

Data Normalization. To eliminate outliers in the real data, usually resulting
from oversaturated pixels in the sensor, we use a two-step normalization process.
Through empirical observation, this improves the quality of the 4D volume
reconstruction. Initially, we normalize the raw ToF captures by normalizing the
amplitudes of all the quartets to be between [0, 1] using the maximum amplitude

Table 2: Mathematical symbol legend.

Symbol Description

X A point € R®.

w A direction; unit vector € S2.

Xt A point ¢ units along a direction w, x; = x + wt.

wi A direction incoming to a point.

Wo A direction outgoing from a point.

P C-ToF phase, linearly related to distance.

¢ Field offset € {0, %, m, &}

T Timestep associated with each frame.

L, Amplitude of returned /reflected light.

Ly Raw quad using field offset ¢.

L;Zé Raw quad using field offset ¢ = 0 at timestep 7 = 1.

Ly Quartet of raw quad images.

v(x,T) Velocity vector € R? at point x and time 7.

u(x,w, ) Projected integrated scene flow € R? for a ray
from point x in direction w at time 7.

D(t=1) Integrated depth map at time ¢

L(x,w) or L(x,w,T) Radiance measured by a camera at point x in direction w.
o(x) or o(x,T) Density function at a point.

T(x,x¢) or T'(x,x¢, 7) Transmittance function, i.e., accumulated density.

W(p) Importance function for light path of length p.
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Fig. 6: Different Depth Output Examples from Arcing Cube and Target
Left: Depth dror derived via rendered raw frames. In real sequence Target, the scene’s
range exceeds C-ToF range and we see phase wrapping. Rendering raw frames from our
4D scene reconstruction cannot automatically unwrap phase because depth in dror is
still derived via Eq. 1. Right: Depth d is produced by volume rendering density o as
depth via Eq. 7. d can be fuzzy because o is only indirectly optimized. Please see our
supplemental video for additional results.

Fig. 7: Removing fixed-pattern noise. Top: Raw images of a hallway captured
with a C-ToF camera. These images are averaged to compute the fixed-pattern noise
associated with this sensor. Bottom: Same raw images of the scene, after subtracting
the fixed-pattern noise.
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Table 3: Ablations. Synthetic scenes; showing MSEXx100. Variations:

- No OF Loss: No optical flow loss Ly.

- Single Stage: Optimizing the velocity field from the beginning, rather than after a set
of iterations with zero velocity.

- No Color: Without the input color channel as an additional loss.

- No Repro.: Without using the phase-aware reprojection loss.

- Ours: Full model.

Scene No OF Loss Single Stage No Color No Repro. Ours
Arcing Cube Dyn. 12.186 10.679 10.906 62.834 13.310
All 1.330 1.132 1.155 92.070 1.256
Axial Speed Test Dyn. 5.008 3.386 3.773 4.589 3.430
All 1.067 0.812 0.917 4.101 0.938
Orthogonal Speed Test Dyn. 28.958 24.008 107.507 82.382 33.021
All 8.673 9.082 24.735 39.838 7.527
Sliding Cube Dyn. 1.427 1.319 1.134 0.965 1.080
All 0.431 0.503 0.441 2.370  0.440
3 Cubes Speed Test Dyn. 10.485 6.336 10.556 7.256 6.268
All 2.057 1.463 2.402 5.484 1.390
8 Chairs Speed Test  Dyn. 5.337 6.105 6.743 11.099 5.540
All 0.868 0.990 1.066 2.946 0.855
Occluded Cube Dyn. 1.303 1.166 1.818 4.281 0.809
All 0.853 0.691 0.871 1.894 0.647

observed across all frames within a scene. For real data, then, we truncate values
exceeding 0.1 and perform the same amplitude normalization again.

DC Offset. As our method directly uses raw frames, we must correctly account
for average amount of light emitted—the so-called DC offset—around which the
sinusoidal emission varies. We estimate the intensity of the emitter’s light source
as a constant additive value present in the captured signal: light intensity has
the non-negative 51gna1 s sin(27 ft) + C, where C represents the DC offset (cf.
idealized model in main paper). In synthetic scenes, we render the raw frame
quartets with a fixed DC offset C = 0.5. In real scenes, the value of the DC
offset is unknown, so we optimize a predicted DC offset during training after
initializing it to zero.

Reprojection Loss Cost. We supervise the density field at integer time moments
only (aligned with the capture of Lg); that is, we reproject the density field
at integer time moments to recreate the appearance of Lz, L., and L37r. In
principle, we can penalize reprojection losses to optimize the Scene density at any
and all fractional time moments; however, in practice, this is too computationally
and memory expensive. Similarly, we could supervise the motion using 2D flow
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Fig. 8: Dynamic Mask Example from Arcing Cube. Left: Frame at integer time
moment. Right: Dynamic mask spanning an integer unit of time. The dynamic mask
captures the object’s geometry during motion across the quartet. These masks are used
to evaluate depth MSE metrics on dynamic regions.

computed between all pairs of matching quads; in practice, we use only Lg to
reduce expense.

Temporal Superresolution. The explicit motion modeling allows us to interpolate
density to an arbitrary time moment and increase the temporal resolution of the
original video. For example, to generate a depth map at the novel time moment
j, we blend depth maps reprojected from the two nearby integer time moments 4
and 7 + 1:

D(r=j)=(1-0)-D'7(r=j)+6- DV (r =), (16)

where § = j — i and j € [i,i + 1]. Please see the supplemental videos for example
temporally-superresolved videos.

Dynamic Masks. To compute the dynamic masks used to evaluate the Depth MSE
on synthetic scenes, we generate ground-truth motion vectors for each quartet,
{Lo,Lx,Lz,L sx }. Then, we mask pixels with no motion, and then union the
masks to produce an integer-timestep aligned mask. This allows the dynamic
masks to capture both the dynamic object’s true location and the regions where
motion artifacts are expected (assuming synchronous capture). Figure 8 shows
an example of this.

Velocity Regularizations. Following NSFF [19], we apply regularizations Lyeg to
the flow to encourage flow smoothness and symmetry. Cycle consistency minimizes
the summation of forward and backward scene flow for corresponding points
across time :

Leye = ZZ va(x,r =) + vp(x' 7D 7 = (i 1))”1
ieN x (17)

* HVb(X’T = i)+ vi(x 0 = (i - 1))H :
1
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Temporal smoothness minimizes the summation of forward and backward
scene flow for each point in the volume:

Liemp = Z Z lve(x, 7 =) + vp(x,7 = z)||§ . (18)

i€EN x
We use L1 regularization of the velocity field,

Emin = ZZ ”V(X,T = Z)”l ; (19)

ieN x
to encourage minimal motion, i.e. a static reconstruction wherever feasible. The
final velocity regularization loss is

‘Creg = /\cycﬁcyc + )\tempﬁtemp + /\min‘Cmim (20)
with hyperparameters set to Acye = 0.0001, Ajemp = 0.001, Apin = 0.001.

Integrating RGB Cameras. Following Equation 5, the presented formulation can
be extended to integrate color cameras, too [2]. For instance, the StudyBook data
sequence from Attal et al. includes this extra information. As the color sensor
is offset slightly from the C-ToF sensor, the density ¢ is subtly supervised by
small-baseline multi-view constraints under the assumption that ¢ can be shared
between the infrared ToF and color channels. Adding a moving color camera can
overcome phase wrapping and lead to denoised and superresolved density fields—
this is notable in the significantly higher quality of density reconstruction in the
StudyBook sequence (supplemental video). We label the color reconstruction loss
Lrgp and its equivalent reprojection loss L -
In the presence of an RGB signal, stage 1 of the optimization penalizes

L= XLy + AraBLRGB, (21)

where L, is a loss from Equation 14. For stage 2, we penalize

L= NL7 4+ ALy + AreBLrce + > AreBLhdS, (22)
4,3 ik
where i and k are integer timesteps such that |i — k| = 1 and j is a fractional

timestep, such that |i — j| < 1. The hyperparameters are set to Ay = 10.0,
)\u = 001, and /\RGB = 1.0.

Model and Optimization. We parameterise Fg(x,w,7) with an 8-layer MLP with
256 neurons each. Each input parameter is transformed with a 10-band positional
encoding. The MLP has separate heads for density, amplitude, and velocity. Stage
1 of the optimization occurs for 25-100K iterations, with 200K iterations in stage
2. Loss hyperparameters are set to A, =0.01, where the velocity network output
is initialized to be near zero and )\, is decayed to zero during training. We use the
Adam optimizer [15] with 81 =0.9, 52=0.999 and e=10"". We set the learning
rate to n=2-107%, and use a batch size of 1024 simulated through gradient
accumulation, since it empirically leads to better convergence. The training is
performed on a single RTX 3090 GPU with 24 GB of RAM and typically takes
three days.
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color camera
C-ToF sensor
C-ToF light source

(a) Photo of setup

(b) Color image

(c) C-ToF amplitude (d) C-ToF phase

Fig. 9: (a) Photo of the proposed hardware setup, consisting of a single ToF and a
color camera. (b) Color image from color camera. (c) Amplitude image; represents the
average amount of infrared light reflected by the scene. (d) Phase image; values are
approximately proportional to range.

B Experimental C-ToF Setup

Our hardware setup is the same as in Attal et al. [2]. Here, we reproduce text
from that paper as the details are the same.

The hardware setup shown in Figure 9(a) consists of a standard machine
vision camera and a time-of-flight camera. Our USB 3.0 industrial color camera
(UI-3070CP-C-HQ Rev. 2) from iDS has a sensor resolution of 2056 x 1542 pixels,
operates at 30 frames per second, and uses a 6 mm lens with an f/1.2 aperture.
Our high-performance time-of-flight camera (OPT8241-CDK-EVM) from Texas
Instruments has a sensor resolution of 320x240 pixels, and also operates at
30 frames per second (software synchronized with the color camera). Camera
exposure was 10ms. The illumination source wavelength of the time-of-flight
camera is infrared (850 nm) and invisible to the color camera. The modulation
frequency of the time-of-flight camera is w = 30 MHz, resulting in an unambiguous
range of 5m. Both cameras are mounted onto an optical plate, and have a baseline
of approximately 41 mm.

We use OpenCV to calibrate the intrinsics, extrinsics and distortion coefficients
of the stereo camera system. We undistort all captured images, and resize the
color image to 640x480 to improve optimization performance. In addition, the
phase associated with the C-ToF measurements may be offset by an unknown
constant; we recover this common zero-phase offset by comparing the measured
phase values to the recovered position of the calibration target. For simplicity,
we assume that the modulation frequency associated with the C-ToF camera is
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an approximately sinusoidal signal, and ignore any nonlinearities between the
recovered phase measurements and the true depth.

Along with the downsampled 640x480 color images, the C-ToF measurements
consist of the four 320x240 images, each representing the scene response to a
different predefined phase offset ¢. For visualization in Figure 9, ToF amplitude
and phase images are computed from the quartet of raw frames.



