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1 Overview

In this supplementary material, we include additional details to complement the main
text. In Sec. 2, we include additional qualitative results. In Sec. 3, we include additional
studies beyond those presented in the main paper.

2 Additional Qualitative Results

In Sec. 2.1, we include more qualitative reconstruction results for Tanks and Temples
(T&T) outdoor scenes. In Sec. 2.2, we include additional visual ablation results.

2.1 Additional T&T outdoor scenes

See Fig. 1 for several additional scenes from the T&T dataset. Note that, as in Fig. 7
of the main text, all visualizations are for outdoor scenes. We specifically include out-
door scenes, as these represent the most challenging reconstruction scenarios. We find
DIV-MYVS produces reconstructions with substantially cleaner, more accurate edges
than competing unsupervised baselines while containing less per-point error than the
supervised baseline. As in the examples in the main text, this shows two things. First,
it shows that models trained using DIV loss generalize effectively beyond the training
distribution, performing well even in these challenging, fully-outdoor scenarios. Sec-
ond, it shows that improvements in object boundaries in predicted depth maps transfer
to improvements in the downstream reconstructions.

2.2 Additional visual ablation results

See Fig. 2 for additional qualitative visualizations of the individual components of DIV
loss. The first example shows that DIV loss helps fill large holes in textureless regions.
We find our clamped 2"-order smoothness to be most responsible for this, with each
additional component also providing improvement. The second example shows that
DIV loss leads to substantially cleaner 3D edge quality, with each component having a
positive, cumulative effect. The full details of the ablation study can be found in Sec. 4.3
of the main text.
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Fig. 1: Qualitative reconstruction results (T&T outdoor scenes). Darker regions indicate more
error. As in Fig. 7 of the main paper, we find DIV-MVS produces highly complete reconstructions
with clean and accurate edges on these challenging, reflective and low-texture objects, achieving
higher F-scores than both supervised (a) and unsupervised (b-c) baselines. This indicates im-
proved generalization and robustness under difficult conditions. The large reduction in edge noise
shows that improvements in object boundaries in depth predictions transfer to improvements in
downstream reconstructions.

baseline + clamped 2"-order smoothness + reference synthesis + occlusion masking + view sampling

Fig.2: Visual ablation study (DTU). We show ablation results using DIV-MVS. Dark gray
is background. As identified by the blue arrow in the first row inset, our contributions lead to
much more complete reconstructions in textureless regions, with our clamped 2"-order smooth-
ness having the largest effect. As identified by the green arrow in the second row inset, our
contributions noticeably reduce edge noise. This improvement is cumulative, together leading to
much more accurate and visually clean results.
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Fig. 3: Lower-resolution depth results (DTU). Representative depth-prediction results with and
without our DIV loss for three different training pipelines using 640 x 512 resolution input
images. As in Fig. 6 of the main paper, we find MVS networks trained with our loss produce
depth maps with smooth and distinct foreground objects free of salient edge artifacts.

3 Additional Studies

In Sec. 3.1, we include additional depth-prediction results on lower resolution images,
showing DIV loss provides an even larger performance boost at lower resolutions. In
Sec. 3.2, we include an experiments varying the number of intermediate feature chan-
nels in our weight prediction CNN. In Sec. 3.3, we include a study in which we vary
the number and resolution of input views during forward inference, showing networks
trained with DIV loss are robust to changes in these parameters.

3.1 Lower-resolution depth-prediction results

In Table 4 and Fig. 6 of the main text, we include quantitative and qualitative depth-
prediction results on DTU using the standard 1600 x 1184 test image resolution. We
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640 x 512 Abs. Depth Error (mm) J

pipeline without DIV with DIV diff
DIV-MVS 15.92 8.75 =717
DIV-RC 15.60 10.60 -5.00
DIV-CL 16.14 9.46 -6.68

Table 1: DTU Dataset. Comparison of pipelines with and without our DIV loss. We compute
depth-prediction metrics on 640 x 512 images (the resolution used during training). DIV loss
boosts performance for all pipelines. These results highlight the large positive effect DIV loss
has on the accuracy of object boundaries in predicted depth maps.

also observe that DIV loss has a large positive effect on the accuracy of object edges
in predicted depth maps. To further show this, we include results on lower resolution
images. When decreasing the resolution of the image, the surface area of the imaged ob-
ject decreases quadratically in image space while the object edge length decreases only
linearly. Therefore decreasing the resolution of depth predictions will increase the im-
pact of edge accuracy in the quantitative metrics. This allows us to better quantitatively
measure the effect of DIV loss on edge accuracy in predicted depth maps.

In Table 1 and Fig. 3, we include quantitative and qualitative depth-prediction re-
sults for our 3 pipelines with and without DIV loss, as in Table 4 and Fig. 6 of the
main text, but for 640 x 512 input images. We choose this resolution because it is the
standard DTU training set resolution. We note that these results are computed using the
same test set images, just resized and cropped according to the standard DTU training
pre-processing. We also note we use the same trained models that we used for the main
text results, and simply run inference on lower-resolution images.

Quantitatively, DIV loss gives an even larger performance boost when testing with
640 x 512 resolution than it does when testing using the standard 1600 x 1184 test
resolution. We measure a percent decrease in Abs. Depth Error of 45.04%, 32.05%,
and 41.39% for DIV-MVS, DIV-RC, and DIV-CL respectively. This is a much larger
decrease in error than we observe testing on full resolution, 1600 x 1184 images. As
outlined at the beginning of this section, this highlights the large positive effect DIV loss
has on accuracy of object boundaries in predicted depth maps. We also note that these
results together with the results from Table 4 of the main text show that DIV loss boosts
network performance at multiple input resolutions for all tested pipelines. Qualitatively,
DIV loss also greatly improves the visual quality of the 640 x 512 resolution depth
predictions in every case, producing sharp and accurate edges where previous work
shows indistinct shapes with cloudy artifacts (see Fig. 3).

3.2 Weight-prediction CNN ablation

We performed experiments varying the number of CNN intermediate feature channels.
See Table 2, with “a, b, ¢" denoting the number of channels for each of the 3 stages
of our CNN. Our CNN improves performance against a min-K baseline independent
of these architectural choices. For largest improvement, selecting a CNN with appro-
priate capacity is important. The CNN with less capacity does not learn to effectively
combine the warped supervision images, sending a sub-optimal signal. The CNN with
more capacity can find a minimum-loss result even when the depth prediction is poor,
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CNN feature channels Acc. | Comp. | Ovr. | Diff.
min- K baseline 0.390 0.290 0.340 +0.000

8, 16,32 0.390 0.285 0.337 -0.003

16, 32, 64 0.382 0.279 0.330 -0.010
32,64, 128 0.386 0.288 0.337 -0.003
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Table 2: DTU dataset. Ablation study (DIV-MVS pipeline) varying the number of weight-
prediction CNN intermediate feature channels. All CNN versions outperform the min- K baseline.

N Hx W Acc. | Comp. | Ovr. |
3 1600 x 1184 0.373 0.301 0.337
5 1600 x 1184 0.382 0.279 0.330
7 1600 x 1184 0.390 0.276 0.333
9 1600 x 1184 0.392 0.279 0.336
5 1152 x 864 0.394 0.291 0.343
5 800 x 576 0.418 0.333 0.375

Table 3: DTU Dataset. Ablation study using DIV-MYVS of number of views and input resolu-
tion. Bold indicates best score. 1152 x 864 and 800 x 576 are half and quarter sized images

respectively, modified slightly to fit the stride of the 3D CNN. DIV-MVS is robust to changes in

both parameters.

resulting in a sub-optimal signal. Our main paper version (“16, 32, 64") performs best

among those tested.

3.3 Number of views & input resolution

In Table 3, we conduct an ablation study using DIV-MVS in which we vary both the
number and resolution of the input views during forward inference. We find the Over-
all score achieved by DIV-MVS is relatively unchanged in all conditions. This study
indicates that networks trained with DIV loss are robust to changes in both parameters.
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