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This document provides additional material that is supplemental to the main
submission. Section 1 outlines details of the ray encoding used to provide pose
information to our model. Section 2 discusses the generalization of our method
to numbers of views beyond those seen during training. Section 3 describes the
method used to obtain novel views from the DFM baseline. Section 4 describes
additional qualitative results for ground-truth trajectories that can be found
in the supplemental webpage. Section 5 describes improvements for generations
over cyclical motions. Section 6 describes improvements for generations over
stereo pairs, where there is no natural ordering between the views of the pairs.
Section 7 describes a heuristic for generating large sets of unordered views.

1 Camera Ray Encoding

To provide our model with access to the camera geometry, we adopt the ray
representation used in previous works [1, 4]. Given the intrinsic matrix, K, and
the extrinsic matrix, [R|t], of a camera, the projection matrix is defined as
P = K[R|t]. The ray ru,v = (τ ,du,v) at pixel coordinates (u, v) is composed of
the camera center τ = −R−1t, and normalized direction du,v. The unnormalized
ray direction is given by:

d̄u,v = R−1K−1
[
u v 1

]⊤
. (1)

The rays, r, are frequency encoded [3] into their final representation, R, which
is then used to condition the model:

R = [sin(f1πr), cos(f1πr), . . . , sin(fKπr), cos(fKπr)] , (2)

where K frequencies are used, which increment in frequency by powers of two.

2 Generalization to Number of Views

Computational constraints limit the number of views that can be used during
training. In this section, we provide additional evaluations that investigate the
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Fig. 1: Quality and consistency of our generations on RealEstate10k while varying the
number total number of conditioning and generating views. Ours-KF-i denotes genera-
tion using keyframes where the maximum number of total views used for simultaneous
generation is at most i. In all cases, the maximum number of conditioning views is i

2
.

Ours-KF-6 is the model presented in the main paper as Ours-KF. Note that perfor-
mance is best using Ours-KF-6, which does not use a significantly larger number of
views as seen during training, which would lower generated image quality as seen with
Ours-KF-8, while having a lower sampling depth than Ours-KF-4, which reduces error
accumulation from autoregressive generation.

impact of sampling using more views than those seen by our model during train-
ing.

First, we investigate the impact of the maximum total number of views used
for our keyframing sampling approach. The total number of views is the sum
of the number of conditioning and generated views. The keyframing results pre-
sented in the main paper use a maximum total of six (combined). In this section,
we investigate higher and lower maximum totals of eight and four. In all cases,
the maximum number of conditioning views is half that of the total number
of views. The results shown in Fig. 1 show that increasing the maximum total
views reduces both generated image quality (see, e.g., the FID of frames 12-
16) and TSED consistency (especially for Terror ≤ 2), while lowering the limit
also reduces quality (see FID on frame 12 and higher), while slightly lowering
consistency.

Second, we more directly analyse the impact of the number of generated
frames to the quality of frames for a fixed frame index in a sequence. Given the
ground-truth trajectories, we construct custom trajectories that vary the number
of generated views, while conditioning on the first view in the sequence, which
has a frame index of zero. We consider a minimum number of generated views
of two, where we always use the ground-truth poses at frame indices three and
six. When evaluating image quality as FID, we always measure the FID over the
views at index six over all scenes. To increase the number of generated views
beyond two, additional views are given poses that are the same as the pose at
index six, but with an uniform random translation with a magnitude of 10% of
the distance between the view at index six and three. The results in Fig. 2 show
that the FID remains relatively unchanged for the number of generated views
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up to those seen during training (i.e., four), but begins to increase noticeably
beyond four generated views.
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Fig. 2: Quality of images generated at framed index six, with respect to the number
of simultaneously generated views. Additional views beyond two generated views are
selected randomly in proximity of view index six. Beyond the number of views used
during training, the quality begins to decrease as FID rises.

3 Rendering Novel Views from DFM

For evaluations comparing our method with DFM [2], we obtain novel views from
DFM using the publicly available pretrained weights and code. Sampling with
one target view (DFM-1) is readily supported using the available code base; how-
ever, multiple target views should be considered to ensure coverage over larger
scenes. DFM supports autoregressive generation for a variable number of target
views; however, few details are available on the best methodology for rendering
the intermediate non-target views in this setting. In this section, we provide
details on the generation and rendering method we use in our experiments for
DFM-2 on RealEstate10K.

Given an observed image and the pose of a target view, DFM performs a
generative diffusion process to generate the target view. For multiple targets, au-
toregressive generation is used, where each target is diffused sequentially while
conditioning on past observed or generated target views. In our experiments
with DFM-2, with two target views, we first run two iterations of autoregressive
generation until all target views have been generated. DFM creates an inter-
mediate NeRF representation for every target view generated. Our intermediate
novel views (non-target views) are rendered from the intermediate NeRF after
diffusing the final target view.

4 Additional Results: Ground-truth Trajectories

Additional qualitative results for ground-truth trajectories are provided with an
interactive viewer on our Offline Supplementary Webpage, for RealEstate10K
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Fig. 3: Visualization of final frames of generated sequences on ground-truth trajectories
comparing our method with DFM [2]. All images here are at the native resolution of
DFM at 128 × 128. The quality of images from our keyframed method is higher than
all other methods.

and Matterport3D, under the RealEstate10K Qualitative Results: Ground-
truth Trajectories and Matterport3D Qualitative Results: Ground-
truth Trajectories headings. Additional results comparing with DFM [2] at a
lower resolution are also provided on our Offline Supplementary Webpage
under the DFM Qualitative Results: Ground-truth Trajectories head-
ing. The viewer allows views along the trajectory to be inspected manually or
with automated playback. Different scenes along with three different samples are
available. Notice that the quality of the frames later in our keyframed generations
tend to be of higher quality.

Last frame visualization for RealEstate10K. Additional qualitative visu-
alizations of the last generated frames comparing our method with DFM [2] at
128×128 are provided in Fig. 3. This visualization allows the quality of the final
frames to be inspected easily.

Last frame visualization for Matterport3D. Additional qualitative visual-
izations of the last generated frames on Matterport3D are provided in Fig. 4.
Similar to the qualitative results on RealEstate10k in the main paper, the qual-
ity of the final frames on Matterport3D generated using our keyframing method
are superior to the baselines.
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Fig. 4: Visualization of final frames of generated sequences on ground-truth trajectories
on Matterport3D. The quality of images from our keyframed method is higher than all
other methods.

5 Additional Results: Cyclical Trajectories - Spin

Additional qualitative results for the spin trajectory are provided with an in-
teractive viewer on our Offline Supplementary Webpage, under the Real-
Estate10K Qualitative Results: Cyclical Trajectory - Spin heading. This
trajectory is of particular interest due to its cyclical structure; the views even-
tually travel back to the original position. Generating views with this trajectory
using previous autoregressive Markov methods is challenging due to the limited
conditioning window, which degrades the consistency between the last and first
views, as expected.

The viewer provided on our Offline Supplementary Webpage loops the
trajectory to make the inconsistency easier to see. There is also a Loop First
and Last playback option to directly compare the first and last frame. Note the
scene content changes significantly in the other methods, while our keyframed
method is far more consistent.
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6 Additional Results: Stereo Grouped View Generation

We provide an example stereo generation under RealEstate10K Qualitative
Results: Stereo Grouped View Generation on our Offline Supplemen-
tary Webpage. These views contain stereo pairs along a trajectory, which do
not have any natural ordering within the pairs. A naive baseline samples these
views using a standard autoregressive method, where the right then the left view
is sampled before repeating for the next stereo pair in the trajectory. Our set-
based model is able to group the pairs and generate them simultaneously without
imposing any ordering within the pairs. This allows the generated stereo pairs
to maintain a stable disparity along the trajectory, which is challenging using
previous methods.

7 Generating Large Sets of Unordered Views

In general, views within a set do not necessarily have a single natural ordering or
any at all. In cases where the ordering may be completely arbitrary, a heuristic
based on the proximity of camera poses can be used to order the views for
sampling. Next, we describe one such simple heuristic. This is an interesting
design space for future work.

Given a set of N camera poses, we iteratively grow a set of keyframes, Ω, as
a small subset of all the frames. Starting with the pose of the given view, k1, we
choose the next keyframe in Ω as a view that is not already a keyframe, and is
furthest from any of the existing keyframes:

ki = argmax
cr /∈{k1,...ki−1}

min
cs∈{k1,...ki−1}

d(cr, cs), (3)

where ki is the ith selected keyframe, and d(cr, cs) quantifies a distance between
the cameras. This heuristic is chosen to spread the keyframes out while having
high coverage of the space occupied by the views. The remaining views are used
as in-between frames with a generation order defined in a similar manner to the
keyframe selection method in Eq. 3. The in-between frames are conditioned on
a subset of the closest views that have already been generated (these may not
necessarily be keyframes).

We provide an interactive viewer in our Offline Supplementary Web-
page for a set of novel views generated along a fixed radius, under RealEst-
ate10K Qualitative Results: Alternative Sampling. Specifically, the dis-
tance, d(cr, cs), is set to the Euclidean distance between the camera origins. The
exact algorithm used for keyframe selection is specified in Algorithm 1. The gen-
eration and conditioning scheme for keyframes and in-between frames is specified
in Algorithm 2 and Algorithm 3, respectively. The interactive viewer organizes
the views in a grid, where the horizontal and vertical position of the view se-
lection squares correspond to the view azimuth and elevation. The viewer also
includes a visualization to illustrate the order of generations and conditioning
views used to sample the set of views.
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Algorithm 1: Keyframe selection. C is the set of all camera poses.
Nk is the maximum number of keyframes. d(·, ·) measures the distance
between camera poses. Ω is the set of keyframe camera poses, initialized
with the observed view camera poses. The alternative sampling result
in the Offline Supplementary Webpage uses Nk = 37 and d(·, ·) is
the the Euclidean distance between camera origins.

Given C, Nk, d(·, ·):
Let Ω ⊂ C contain the camera poses of the observed views
Function FindClosest(A,B):

Let a ∈ A, such that d(a, b) is minimized, over all b ∈ B
return a

end

Function FindFurthest(A,B):
Let a ∈ A, such that d(a, FindClosest(B, {a})) is maximized
return a

end

while |Ω| < Nk do
Let Cremaining = C/Ω
Set Ω ← Ω ∪ { FindClosest(Cremaining, Ω) }

end
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Algorithm 2: Keyframe sampling and conditioning selection. Initially
one keyframe is selected to be generated with two conditioning frames
based on the proximity to available views (observed or already gener-
ated views). Additional keyframes may be selected to be simultaneously
generated with this initial keyframe, which may add up to two condi-
tioning views. When the total number of views (|Ωgen|+|Ωcond|) exceeds
Nsoftlim, no additional keyframes are considered for generation. The al-
ternative sampling result in the Offline Supplementary Webpage
uses Nsoftlim = 6.

Given Ω,Nsoftlim:
Let Ωavail ⊂ Ω contain the observed views
Function FindClosest(A,B):

Let a ∈ A, such that d(a, b) is minimized, over all b ∈ B
return a

end

while Ω ̸= Ωavail do
Set Ωremain ← Ω/Ωavail

Set k ← FindClosest(Ωremain, Ωavail)
Set c1 ← FindClosest(Ωavail, {k})
Set c2 ← FindClosest(Ωavail/{c1}, {k})
Set Ωgen ← {k}
Set Ωcond ← {c1, c2}
while |Ωgen|+ |Ωcond| < Nsoftlim and Ω ̸= Ωavail ∪Ωgen do

Set kextra ← FindClosest(Ωremain/Ωgen, Ωcond)
Set cextra1 ← FindClosest(Ωavail, {kextra})
Set cextra2 ← FindClosest(Ωavail/{cextra1}, {kextra})
Set Ωgen ← Ωgen ∪ {kextra}
Set Ωcond ← Ωcond ∪ {cextra1, cextra2}

end
Sample views in Ωgen conditioned on Ωcond

Set Ωavail ← Ωavail ∪Ωgen

end
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Algorithm 3: In-between frame sampling and conditioning selection.
In-between frames are selected in a similar manner to keyframe selection,
where in-between frames that are further from the generated frames are
sampled first. Frames are generated individually while conditioning on
Ncond views. The alternative sampling result in the Offline Supple-
mentary Webpage uses Ncond = 3.

Given C, Ω,Ncond:
Let Cbetween = C/Ω
Let Cavail = Ω
Function FindClosest(A,B):

Let a ∈ A, such that d(a, b) is minimized, over all b ∈ B
return a

end

Function FindFurthest(A,B):
Let a ∈ A, such that d(a, FindClosest(B, {a})) is maximized
return a

end

while Cavail ̸= C do
Let ccur = FindFurthest(Cbetween,Cavail)
Set Ωcond ← {}
for i← 1 to Ncond do

Set Ωcond ← Ωcond ∪ { FindClosest(Cavail/Ωcond, {ccur}) }
end
Sample view ccur conditioned on Ωcond

Set Cavail ← Cavail ∪ {ccur}
Set Cbetween ← Cbetween/{ccur}

end
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