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Abstract. The visual detection and tracking of surface terrain is re-
quired for spacecraft to safely land on or navigate within close prox-
imity to celestial objects. Current approaches rely on template match-
ing with pre-gathered patch-based features, which are expensive to ob-
tain and a limiting factor in perceptual capability. While recent liter-
ature has focused on in-situ detection methods to enhance navigation
and operational autonomy, robust description is still needed. In this
work, we explore metric learning as the lightweight feature description
mechanism and find that current solutions fail to address inter-class
similarity and multi-view observational geometry. We attribute this to
the view-unaware attention mechanism and introduce Multi-view At-
tention Regularizations (MARs) to constrain the channel and spatial
attention across multiple feature views, regularizing the what and where
of attention focus. We thoroughly analyze many modern metric learn-
ing losses with and without MARs and demonstrate improved terrain-
feature recognition performance by upwards of 85%. We additionally
introduce the Luna-1 dataset, consisting of Moon crater landmarks and
reference navigation frames from NASA mission data to support future
research in this difficult task. Luna-1 and source code are publicly avail-
able at https://droneslab.github.io/mars/.
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Fig. 1: Patch-based features of space terrain exhibit extreme inter-class similarity and
varying multi-view observations, which is difficult for metric learning to discern where
attention focus is disparate. We propose Multi-view Attention Regularizations (MARs)
to alleviate this issue and drive the attention of arbitrary viewpoints together.
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1 Introduction

Exploring deep space objects such as planets, comets, and asteroids involves am-
bitious and increasingly complex scientific pursuits. It has also been one of the
earliest real-world applications of robotic autonomy. Advanced missions strive for
spacecraft to land on or maneuver within close proximity to surfaces of highly
irregular terrain and varying topography, which poses a significant challenge
to spacecraft navigation as communication latency is often too great to per-
mit any Earth-based assistance through radiometric tracking, real-time plan-
ning and control, or precise GPS positioning. More recently, these challenges
are being addressed through the optical tracking of prominent surface terrain
features to provide Terrain Relative Navigation (TRN). This approach has been
validated on recent flagship missions including the landing of the Mars Perse-
verance Rover [56] and the collection of asteroid regolith by OSIRIS-REx [81].
With compute power limited by radiation-tolerant hardware, current approaches
to TRN are template matching and correlation techniques using patch-based
features (called landmarks) on static navigation maps that are collected and
constructed a priori [56,81,109]. The set of landmarks and the underlying map
require extensive pre-navigation costs and effort to obtain and develop. In the
case of OSIRIS-REx, an estimated USD 68.5 million (roughly 25% of the nine-
year operations budget) was spent performing sufficient reconnaissance to gather
and refine this data over a 1.5-year period [80,97].

To reduce costs and accelerate mission timelines, it would be beneficial to
detect and track these landmarks at navigation time similar to Simultaneous
Localization and Mapping (SLAM) systems on Earth; a formulation that would
also permit generalization to unseen and unexpected scenarios such as planetary
weather [46] or asteroid ejection events [65]. SLAM is incredibly challenging to
perform during TRN as space environments are generally unstructured, where
low lighting and similarity in feature spaces create ambiguity and a lack of re-
identifiability [38–40]. The use of learning-based solutions to overcome these
challenges is possible with the recent inception of rad-hard inference accelera-
tors [31,37,42], which enable in-situ terrain detection methods [14,30,66,69,90].

Robust description of these detections remains an open problem. On Earth,
this is similar to representation learning for tasks such as fine-grained classifica-
tion, visual place recognition, and person re-identification. At the core of these
applications is an objective to learn discriminative image embeddings for efficient
similarity computation and downstream retrieval, which is commonly facilitated
by metric learning. Compared to Earth-based recognition, however, landmark
recognition in space is more nuanced where only one subclass of geological ter-
rain is considered (e.g., crater) with possibly thousands of individual instances
to discern against (e.g., crater 570 vs crater 1181 ). This is more fine-grained
than even the most challenging of traditional benchmarks (e.g., CUB-200 [104]),
demonstrated by Figure 1-a. Apart from individual discernability, the terrain on
the surface of planetary bodies, moons, and asteroids can vary widely in appear-
ance from one observation to the next (Figure 1-b), which is difficult for metric
learning to reason about on its own (Figure 1-c).
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In this work, we examine metric learning as it relates to landmark descrip-
tion during spacecraft TRN. We identify shortcomings in modern metric learn-
ing losses and consider poor performance an effect of the view-unaware attention
mechanism included in modern architectures. We introduce Multi-view Atten-
tion Regularizations (MARs) to bolster recognition accuracy, training network
attention to be implicitly view-aware and improving embedding distinguisha-
bility. Through additional similarity spaces, we constrain the what and where
of attention information to enforce the consistency of focus between arbitrary
feature views. Our approach is extensively validated on Earth, Mars, and Moon
landmarks, where we introduce a photo-realistic dataset in the latter case. Ex-
perimental results demonstrate the effectiveness of our MARs learning constraint
where attention between views is heavily correlated and recognition performance
is greatly improved. Overall, we make the following contributions in this paper:

– We study metric learning as the patch-based landmark descriptor for space-
craft navigation and perform extensive studies over traditional methods. We
demonstrate shortcomings with terrestrial-based solutions and show correla-
tions between the view-unaware attention mechanism and poor recognition
performance in single-shot networks. To the best of our knowledge, this is
the first study of its kind.

– We introduce Multi-view Attention Regularizations (MARs), a novel learn-
ing constraint to enforce the consistency of channel and spatial attention
focus between arbitrary feature views.

– We release a new dataset, Luna-1, consisting of Moon crater landmarks and
representative navigation frames using real-world NASA data, facilitating ex-
perimentation with multi-view and patch-based recognition systems in space
navigation settings.

– We demonstrate the utility of our MARs method, achieving state-of-the-art
single-shot landmark description results on Earth, Mars, and Moon environ-
ments. Furthermore, we qualitatively showcase improved multi-view atten-
tion alignment using MARs.

2 Related Work

Spacecraft Terrain Relative Navigation: Landmarks used for Terrain Rela-
tive Navigation (TRN) are collected a priori through extensive surveying of the
target body and crafted offline by human ground operators. RElative Terrain
Imaging NAvigation (RETINA) [109] and Natural Feature Tracking (NFT) [81]
are current asteroid-focused TRN methods that create 3D Digital Terrain Mod-
els (DTMs) by Stereophotoclinometry (SPC) [35]. Visually prominent areas on
the DTM are identified by hand, which are extracted as 2D image templates and
uploaded to the spacecraft. Onboard, these templates (i.e., landmarks) are re-
generated in SPC fashion to adjust shading based on the predicted illumination
conditions of the surface. Navigation frames are then searched for correspondence
by traditional image processing algorithms. The Mars Perseverance Landing Vi-
sion System (MP-LVS [56]) deployed a similar technique during the landing
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phase of the Mars 2020 mission, which hand-picked landmarks on landing site
survey imagery captured by other orbiting spacecraft at Mars.

Current TRN solutions include many shortcomings that are a detriment to
mission cost, complexity, and time-to-science. The amount of pre-navigation im-
agery required is immense, and the subsequent time needed to hand-pick which
“features-to-track” is extensive. The total number of features used by the system
is incredibly sparse due to the level of human involvement, which drastically re-
duces perceptual capability and prevents reasoning over unseen areas. Onboard
rendering of predicted landmark appearances severely limits frame rate, which
can jeopardize spacecraft safety during critical phases of the mission. For exam-
ple, the deployment of NFT on OSIRIS-REx executed at 0.0083 FPS, or one
frame every two minutes, as it made contact with the surface [81].

Terrestrial Recognition: The front-end vision in current TRN systems can
be radically improved by leveraging rad-hard accelerators and object detection-
style observation methods discussed in section 1; although a robust descrip-
tion technique is required to close the loop. Earth-based tasks such as fine-
grained visual classification (FGVC), visual place recognition (VPR), and per-
son re-identification (Re-ID) intrinsically demonstrate this capability and rea-
son over similar challenges, including high intra-class and low inter-class vari-
ances [5, 20, 73], multi-view observations [7, 48, 98, 121], and appearance change
over time [2,48]. Nevertheless, there are considerable challenges in adopting the
current literature. Modern solutions to FGVC, VPR, and Re-ID are focused on
description and retrieval problems at internet-scale [17,102,116,118,120] and con-
sequently have become more involved than a single-stage network. These meth-
ods employ multiple forward passes [1,28], region proposals [43,88,93,114,122],
model fusions [41, 74, 84, 91, 92, 99, 113, 119], multi-stage re-rankings [4, 70, 112],
and high-parameter transformer models [3,18,24,26,32,59,68,83,89,95,111]. As
such, there is a primary concern about the physical execution of these techniques
onboard resource-limited spaceflight computers [10, 36, 107]. Large models that
cannot fit within accelerator caches must be executed in a hybrid manner, where
model parameters are streamed from the host processor to the accelerator during
inference. This has a detrimental effect on execution time [13] and requires care-
ful consideration, given that cache sizes in the current generation of spacecraft
accelerators are small (e.g., 8 MB in [42]).

Furthermore, TRN landmark recognition requires more granular reasoning
than FGVC, VPR, and Re-ID, akin to frame-to-frame feature matching prob-
lems in SLAM. Recognition in FGVC, VPR, and Re-ID is performed by recall-
ing instances from a pre-seeded database by global description [2, 7], where any
viewpoint and domain generalization is generally a byproduct of learning with
extremely large datasets [2,6,34] or the aggregation of large datasets [59]; a tech-
nique that is not currently adoptable due to the lack of space landmark datasets
(two at the time of writing including the proposed Luna-1). Additionally, the
sequential nature of the TRN task needs consideration, where any recognition
database is populated as samples are encountered instead of recalling against the
entire population upfront (the effects of which have not been studied previously).
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Futhermore, the appearance differences between instances of a geological space-
terrain feature (e.g., crater) are generally more subtle than traditional FGVC
and Re-ID datasets making discernability more challenging [64,104,117].

We identify metric learning as the core facilitator of discriminative repre-
sentation learning in terrestrial tasks and examine its capabilities to permit
lightweight, onboard-executable single-shot description networks for spacecraft
TRN. Observing terrain features from a remote-sensing platform exhibits com-
plex transformation spaces, however, which must be taken into consideration.

Viewpoint Challenges and Attention: During TRN the observed tar-
get body is rotating and revolving distinctly from the spacecraft leading to an
unconstrained appearance change in landmark illumination, translation, and ro-
tation over time. Such a transformation space is generally uncommon in the
literature (Re-ID would not expect a person observation to be upside-down for
example [117]), and modern metric learning losses do not permit invariancy to
these transformations directly. The convolutional layers used in modern net-
works are known to be equivariant to translations over the input image [22,47],
but are not naturally equivariant to rotations. Explicit in-network modifications
for adding rotation equivariance have recently been explored including steer-
able filters [22, 103], multi-orientation feature extractions [27, 67], and alterna-
tive coordinate systems [33,51,55,75]. Equivariant properties can be additionally
learned [11, 77], which may be advantageous as a supplement to explicit mech-
anisms or when explicit mechanisms are themselves undesirable [87]. Learning
equivariance is popular in the literature through batch-sampling, mining, and
augmentation approaches [12, 16, 44, 71, 105, 115]. The remote sensing literature
has studied similar techniques with the fusion of pre-trained group convolu-
tions [21] and probabilistic formulations of metric space locations [58], although
they are restrictive in their reasoning through trainings with pre-rotated data.

The explicit encoding of equivariant properties into the attention mecha-
nism has recently been explored [9, 15, 54]. At large, however, analyzing learned
attention equivariance as it compares to these mechanisms (or the combina-
tion thereof) has not been studied previously. The Self-supervised Equivari-
ant Attention Mechanism (SEAM) [101] is one of the only works that target
attention-equivariance learning directly through self-supervised regularization.
Multi-view attention similarity learning such as the Contrastive Attention Map
Loss (CAML) [62] has shown impressive equivariant properties as a byproduct of
contrastive learning over attention maps. Although, integration of these methods
within metric learning frameworks is a challenging task as SEAM requires Class
Activation Maps (CAMs) and CAML targets foreground/background feature
separation using image statistics from segmentation labels.

3 Methodology

Prior work demonstrates that attention has a large influence on recognition
performance in multi-view settings, but the extent of this influence concern-
ing equivariant properties (either encoded or learned) is unclear. Equivariance
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does not guarantee that attention, being a strictly learnable mechanism, will
be identical between multiple views of the same feature; it only suggests that it
should be similar. An alignment of attention focus should lessen the downstream
recognition difficulty, maximizing separability and view-dependent groupings in
the embedding space, although such a constraint is not readily formulated in
current multi-view metric learning pipelines. We suggest that any attention dis-
agreement must be directly accounted for during the training, and propose a
soft learning constraint to rectify any variance. This concept forms the basis of
our proposed Multi-view Attention Regularizations (MARs), described in this
section. We first introduce our learning framework and baseline network archi-
tecture in subsection 3.1 and subsection 3.2. We then detail our constraint for
aligning attention and frame the overall learning objective in subsection 3.3.

3.1 Learning Framework

The framework for data augmentation and batch formation plays a critical role
in multi-view similarity learning [12,16,44,115], where we start by following the
popular SimCLR [16] method. SimCLR aims to maximize the learned repre-
sentation similarity between augmented views of the same input. With training
batch size B, we begin by sampling a minibatch of B/2 samples where each
sample x gets augmented by two distinct transformation operations to produce
new views x1 = t1(x) and x2 = t2(x) where t1 and t2 are sampled from the same
family of augmentations T . T is a composition function of three image transfor-
mations that include a random brightness adjustment, rotation, and translation.
An encoder network f(·) is applied to the augmented data to extract interme-
diate representations h1 = f(x1) and h2 = f(x2). These representations are in
turn mapped to the metric space through projection head g(·) to yield embed-
dings z1 = g(h1) and z2 = g(h2). Given this (z1, z2) positive pair, the other
2(B/2 − 1) embeddings in the minibatch are considered negative samples. The
batch of z embeddings is fed to any applicable metric learning loss LML, as is the
traditional metric learning process. To assist with the inter-class granularity of
landmark recognition we additionally employ hard sample mining in traditional
multi-similarity (MS) [100] fashion to yield ap, p, an, n batch-indices where ap, p
represent anchor-positives and positives (simply the indices of the twice aug-
mented images) and an, n the indices of embeddings deemed similar by the MS
metric but have different instance labels.

3.2 Network Architectures

With inspiration from large-scale Earth-based recognition networks [50, 60, 106]
we employ a ResNeXt-101 [110] architecture with Squeeze-and-Excitation (SE) [53]
attention as the baseline for encoder network f(·). Encoder f(·) is the primary
bottleneck to onboard execution performance as it will hold the most param-
eters, and we select ResNeXt-101 as a middle ground between discriminative
representation power and model size. Furthermore, we elect to stay on the larger
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end of model size in contrast to the ResNet-50 class [49] to isolate representa-
tion power and examine the effects of different attention and equivariance setups.
Our embedding projection head g(·) is a smaller network consisting of a Gen-
eralized Mean Pooling (GeM) [85] layer followed by a linear (512), batch norm,
and PReLU activation. In contrast to Earth-based recognition, we perform no
functions other than a single shot f(·) and g(·) to descript instances.

Encoding Rotational Equivariance: Augmentations applied in T mimic
the unconstrained landmark appearance change found in spacecraft TRN (as-
suming the spacecraft is in a non-geosynchronous position relative to the target
body). As the pose of the target body will be changing independently of the
spacecraft we cannot assume rotated landmark views will be limited to anything
less than a full 360 degree of change. Although data augmentation attempts to
implicitly teach the network to be robust, reasoning over this level of extreme
rotation remains a challenging property to learn. As such, we additionally seek
to study the benefits of explicit rotational equivariance integration in f(·).

RIC-CNN [75] develops a convolutional operation (the Rotation-Invariant
Coordinate Convolution, RIC-C) based on a novel coordinate system that per-
mits this equivariance as a replacement to standard convolutional layers. RIC-C
extends the idea of deformable convolutions [23] and does not require any trans-
formation of the representation space of input images or intermediate features.
This property enacts a simple and efficient implementation, which we leverage
in this work by replacing all standard convolution operations in f(·) with RIC-C
layers. For brevity, we refer interested readers to [75] for the full account of the
coordinate system and RIC-C operation.

Spatial Attention: SE attention improves the interdependencies within fea-
ture maps by assigning weights to each channel and selecting the most relevant
for a given input. This type of attention is focused on relevancy between features
alone (channel) and carries no understanding of relevancy within an individ-
ual feature (spatial). We assume spatial attention has a critical role in multi-
view metric learning and introduce this in f(·). Coordinate Attention (CA [52])
provides spatial awareness through distinctive pooling operations in the height
and width dimensions while preserving the channel dimensionality. This is in
contrast to other spatial attention techniques such as the Convolutional Block
Attention Module (CBAM [108]) that collapse channel information via pooling
before learning spatial weight factors. We modify f(·) by replacing SE attention
with CA.

3.3 Forming Attention Similarity Constraints

The inclusion of explicit rotational equivariant properties through RIC-C layers
and the ability to attend spatially with CA is the basis for which we explore
our proposed MARs constraint. During the training procedure, we seek to drive
both the what (channel) and the where (spatial) elements focused by the atten-
tion mechanism together, without explicitly assuming that one view is correct in
either of these aspects. This alignment is thus a moving target, where it is imper-
ative to impose a soft constraint between them. In other words, it is undesirable
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to calculate a strict differentiation between attention maps at any point dur-
ing training to avoid a collapse in attention information. The constraint should
prioritize that the attention maps from each view evolve similarly over time.

Pose Normalization and Channel Reduction: To facilitate this
constrained evolution we propose to introduce regularization terms by embed-
ding attention into additional metric spaces. Let Ai be the set of attention maps
output from ResNeXt block i ∈ N from f(·) where N is the number of these
blocks. For each positive pair in the training batch, we have multi-view attention
maps Ai1 and Ai2. For each ResNeXt block outputting Ai, we output inverse
transformation t−1

i where the translation parameters are adjusted relative to
the spatial resolution of Ai. We apply the inverse transformation to normalize
the translation and orientation (pose) of each attention map to equal that of
the input image, yielding pose-normalized attention maps Âi1 = t−1

i1 (Ai1) and
Âi2 = t−1

i2 (Ai2). To embed attention into additional metric spaces we employ
mini variants of the projection head g(·), which do not include any linear layers
for dimensionality reduction. Instead, we first reduce the channel dimension of
Âi ∈ RC×H×W through a 1x1 convolution Conv1

i (·) with reduction factor r to
yield Âr

i ∈ RC/r×H×W . This process prevents obscurification, keeps the data
correlated, and reduces learnable parameters.

Channel and Spatial Attention Embeddings: For positive and
pose-normalized attention pairs (Âr

i1, Â
r
i2) we utilize the mini channel-wise (c)

projection head gci(·) to produce channel attention embeddings zci1 = gci(Â
r
i1)

and zci2 = gci(Â
r
i2). GeM pooling collapses the spatial dimensions to yield an

embedding with length given by C/r where C is the channel dimension of the
current ResNeXt block i. For spatial attention embeddings, we first perform
height and width pooling (similar to CA) on Âr

i . Specifically, given height (y)
and width (x) pooling operators Ypool(·) and Xpool(·) we produce intermediate
representations hyi = Ypool(Âr

i ) and hxi = Xpool(Âr
i ). These representations

are input to mini spatial projection heads gyi(·) and gxi(·) to yield height and
width embeddings zyi = gyi(hyi) and zxi = gxi(hxi). The mini projection heads
gci(·), gyi(·), and gxi(·) do not share any parameters and are instantiated once
per block i ∈ N . This allows distinct regularization on attention maps with
the same channel-spatial resolution as well as calculating accurate batch-norm
statistics that are channel, spatial-height, and spatial-width disparate.

Multi-view Attention Regularizations (MARs): Once embedded, we
regulate the channel and spatial attention focus using a cosine similarity loss:

Lcs(z1, z2) = 1− z1 · z2
∥z1∥2 · ∥z2∥2

(1)

given embeddings z1 and z2. We define a channel-wise MARs (LChMARs) as the
cosine similarity between channel attention embeddings:

LChMARs(Â
r
i1, Â

r
i2) = Lcs(zci1, zci2) (2)

given positive pair, pose-normalized and dimensionality reduced attention maps
Âr

i1 and Âr
i2. Likewise, we define a spatial-wise MARs (LSpMARs) as the cosine
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Fig. 2: Framework of the proposed Multi-view Attention Regularizations (MARs).
MARs aligns the what (channel) and where (spatial) focus of attention between multiple
patch-feature views using distinct metric spaces.

similarity between Y-pooled and X-pooled attention embeddings:

LSpMARs(Â
r
i1, Â

r
i2) = Lcs(zyi1, zyi2) + Lcs(zxi1, zxi2) (3)

and our combined MARs regularization loss by:

LMARs(Â
r
i1, Â

r
i2) = γChLChMARs(Â

r
i1, Â

r
i2) + γSpLSpMARs(Â

r
i1, Â

r
i2) (4)

where γCh and γSp are weight parameters that control the influence of channel
and spatial attention alignment respectively. With augmented image batch X
and mined indices (ap, p, an, n) our complete learning objective is given as:

L(X, (ap, p, an, n)) = LML(g(f(X)), (ap, p, an, n))+

N∈f(·)∑
i=1

LMARs(Â
r
ap, Â

r
p) (5)

where
Âr

ap = Conv1
i (t

−1
ap (fi(Xap))), Âr

p = Conv1
i (t

−1
p (fi(Xp))) (6)

with Xap and Xp the anchor-positive and positive pair images and fi(·) the
i’th block in f(·) that outputs attention maps Ai. Our end-to-end pipeline with
MARs regularization is shown in Figure 2.

4 Evaluation

We wish to study lightweight single-shot TRN landmark description using mod-
ern metric learning both with and without MARs as well as the effect of differ-
ent attention and equivariant mechanisms. We first discuss the datasets used for
experimentation in this section, followed by a description of our experiments,
implementation details, and analysis of the results.
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4.1 Datasets

(a) HiRISE [29]

(b) Luna-1

Fig. 3: Mars (a),
Moon (b) landmark
examples.

We leverage three datasets of Mars, Moon, and Earth
landmark images. HiRISE [29] contains 700 Mars crater
images and is the only real-world dataset available at the
time of writing. We further introduce Luna-1, a 5,067 sam-
ple Moon crater dataset generated in the Blender 3D soft-
ware [8] with real-world NASA data products. Luna-1 ad-
ditionally contains 2,161 emulated navigation frames from
a Lunar Reconnaissance Orbiter (LRO) three-orbit refer-
ence navigation sequence. An example landmark image
from HiRISE and Luna-1 is shown in Figure 3. Additional
Luna-1 details and visualizations can be found in the sup-
plementary. For Earth landmarks, we utilize the stadium
class from RESISC45 [19], a terrestrial remote sensing
scene classification dataset with 700 samples. We refer to
HiRISE, Luna-1, and RESISC45 as Mars Crater, Moon
Crater, and Earth Stadium respectively. For all datasets,
we partition two instance-distinct groups for training and
testing such that each group contains half of the available
images (as is standard in the literature). In the case of
Luna-1, we ensure all craters seen during the navigation
sequence are added to the test set before this partitioning.

4.2 Experiments

We perform two experiments that emulate landmark recognition behavior dur-
ing TRN, including a sequential, incremental recall experiment (Incremental Re-
call@1 ) and an object detection-style description experiment on the navigation
frames from Luna-1 (Moon Navigation). Additionally, we perform a traditional
Recall@1 (gallery size one) as well as a Luna-1 relocalization experiment (Moon
Lost-in-Space). Details of these experiments are provided below. Additional re-
sults including model execution times on spacecraft hardware and MARs training
curves can be viewed in the supplementary.

Incremental Recall@1: The embedding database starts empty and test-
partition landmarks are randomly selected. Each landmark is augmented by
a transform sampled from T . Embeddings are generated single-shot from the
model and the database is searched for correspondence. Embeddings are stored
in the database if no match is found. We compute Recognition Accuracy (RA)
as the percentage of correct matches relative to the total number of landmark
matches (either correct, incorrect, or missed). Missed matches are landmarks
that were added to the database more than once (i.e., duplicate embeddings).
The RA formulation is given in Equation 7. To provide multiple observations we
repeat each landmark in the test partition twice.

RA = (
Correct Matches

Correct Matches + Incorrect Matches + Missed Matches
) ∗ 100 (7)
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Moon Navigation: Luna-1 navigation frames are iterated sequentially, where
each frame comes paired with ground-truth bounding box annotations of visible
craters. For each frame, we first perform non-maximum suppression (NMS) to
emulate the use of an object detector (akin YOLO [86]). Landmarks are given
by cropping the resulting set of bounding boxes which are in turn augmented
by a random transform sampled from T . Embeddings are generated single-shot
by the model and RA performance is measured identically to the Incremental
Recall@1 experiment. Models trained on Mars Crater are not considered in this
experiment due to the domain shift between Mars and Moon. However, one may
expect a level of feature generality on crater landmarks from any environment
and we report such results in the supplementary.

Moon Lost-in-Space: This experiment emulates the kidnapped robot prob-
lem in traditional robotics literature. The embedding database is first seeded
with all crater landmarks seen during the first orbit of the Luna-1 navigation,
where landmarks are detected and augmented identically to the Moon Naviga-
tion experiment. Frames from the last orbit are then randomly selected and the
RA is reported by matching computed embeddings to those in the database. The
database is not updated throughout the experiment outside of the initial seed.
Similar to Moon Navigation we only consider models trained on Moon Crater
data here, and report a Mars Crater training study in the supplementary. Fur-
thermore, an ablation study over singular transformation types in the family T
for this experiment as well as Moon Navigation is given in the supplementary.

4.3 Implementation Details

Table 1: Evaluated vari-
ants of the baseline model.
conv2d: PyTorch convolution.
RIC: Rotation Invariant Con-
volution [75]. SE: Squeeze-
Excitation attention [53]. CA:
Coordinate Attention [52].

Name Conv. Att. Loss

conv2d SE conv2d SE LML Only
RIC CA RIC CA LML Only
MARs RIC CA LMARs

To determine the effectiveness of metric learning
for robust landmark description, it is imperative
to understand two primary conditions for TRN:
(i) recognition over time with many similar ter-
rain features encountered sequentially, and (ii) the
unique transformation space in remote sensing.
Therefore, we frame this study as a measure of
modern metric learning invariancy and discrimi-
native properties under these conditions and elect
not to compare against fully-fledged Earth-based
systems that are unsuitable for onboard space-
flight. Additionally, we seek to understand the in-
fluence of MARs on various metric learning losses and the effect of different
attention and equivariant setups.

We evaluate three variants of the baseline model which are described in Ta-
ble 1. Each model effectively adds a level of equivariance (and in theory, robust-
ness to challenging multi-view appearance change) from the last; i.e., conv2d
SE learned equivariance only, RIC CA learned and explicit equivariance, MARs
learned and explicit equivariance with attention constraints. We study the effects
of each model across nine discriminative learning losses (LML) found recent in
the literature, including Circle Loss [94], Direction-Regularized Multi-Similarity
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(DR-MS) [76], NTXent [82], PNP [72], Proxy Anchor [63], ProxyNCA++ [96],
Subcenter ArcFace [25], Supervised Contrastive (SupCon) [61], and Proxy Syn-
thesis [45]. We train all models for 150 epochs using a batch size of 32 on Earth
Stadium and Mars Crater and 128 on Moon Crater.

We use the PyTorch Metric Learning (PML) [79] library for MS miner imple-
mentation as well as all LML losses except ProxyNCA++ and Proxy Synthesis,
in which we use the paper implementations. The Faiss [57] library is used as the
embedding database in all experiments. We use cosine similarity for database
comparison and define a matching threshold of 0.9. If multiple embeddings are
retrieved above this threshold we consider the largest one a match. In Moon
Navigation an NMS threshold of 0.5 is used based on the YOLO default. The p
parameter in GeM layers is learnable with an initial value of 3. The reduction
factor r is set to 4. All LMARs models have γCh and γSp parameters set to 0.15.

4.4 Experimental Results
Table 2: Recall@1 (gallery size one) and Incremental Recall@1 recognition accuracy
for all models and LML losses. Bold values signify the highest performing model for
each LML, while underlined values show the best model/LML variant on each dataset.

Recall@1 Incremental Recall@1

Earth Stadium Mars Crater Moon Crater Earth Stadium Mars Crater Moon CraterLML

conv2d
SE

RIC
CA

MARs
(Ours)

conv2d
SE

RIC
CA

MARs
(Ours)

conv2d
SE

RIC
CA

MARs
(Ours)

conv2d
SE

RIC
CA

MARs
(Ours)

conv2d
SE

RIC
CA

MARs
(Ours)

conv2d
SE

RIC
CA

MARs
(Ours)

Circle [94] 86.29 93.71 90.29 59.71 92.29 80.57 98.38 97.75 96.93 4.79 5.11 5.13 3.59 60.81 12.56 43.36 60.09 30.46
DR-MS [76] 86.57 88.86 89.71 66.57 84.29 62.57 96.14 85.97 96.02 4.33 5.27 54.32 4.04 48.48 4.04 62.55 2.47 64.57
NTXent [82] 95.43 91.71 94.29 66.57 83.43 91.71 98.03 98.98 99.57 12.23 7.75 8.59 4.49 34.10 34.01 69.85 77.06 81.69
PNP [72] 80.57 79.43 85.14 43.71 80.86 68.00 75.18 88.65 94.09 4.64 5.27 4.66 3.14 16.70 5.14 10.24 15.54 40.84
Proxy Anchor [63] 90.57 99.71 100.00 56.86 84.86 98.57 99.96 – 100.00 4.48 72.86 78.06 3.44 10.45 71.10 94.56 – 94.78
ProxyNCA++ [96] 95.71 96.29 99.71 63.14 99.43 78.57 99.65 98.78 95.47 4.33 4.64 12.00 4.04 7.71 4.79 56.03 71.23 70.27
Subcenter ArcFace [25] 77.71 87.71 83.43 40.86 62.29 79.14 – – 94.05 4.49 4.48 4.19 3.29 4.99 38.69 – – 20.45
SupCon [61] 76.57 92.00 95.71 74.29 94.86 91.43 97.08 99.21 98.98 4.19 5.80 46.43 4.65 57.52 49.19 16.73 79.42 84.11
Proxy Synthesis [45] 94.86 95.14 99.71 76.86 74.57 99.14 99.68 99.96 99.84 4.33 39.41 22.57 4.03 4.97 35.14 91.40 64.71 17.47

Recall@1: Table 2 (left) displays results for Recall@1. Firstly, including
explicit rotation equivariance and spatial attention (RIC CA) leads to improve-
ments on many LML, suggesting that learning transformation robustness alone is
not enough and a combination of learned and explicit equivariance is necessary.
On Mars Crater data, MARs leads to substantial improvements on certain LML
such as NTXent, Proxy Anchor, Subcenter ArcFace, and Proxy Synthesis which
were improved by roughly 10%, 16%, 27%, and 33% respectively compared to
RIC CA. This is evidence that attention similarity heavily influences f(·) feature
selection and results in more discriminative embeddings. Conv2d SE and RIC
CA variants for Subcenter ArcFace on Moon Crater see a failure to converge
during training while MARs variants do not. This is significant as it demon-
strates a boost in representation power that can enable LML losses that would
otherwise fail. Overall, a MARs model variant is best-in-class for Earth Stadium
and Moon Carter, and competitive (<1% difference) on Mars Crater.

Benefits are not guaranteed as we observe lower accuracy than RIC CA with
MARs for certain LML such as DR-MS on Mars Crater, which sees a perfor-
mance decrease of roughly 26%. This reveals a correlation between attention
alignment and embedding separability that is LML specific. Knowing how atten-
tion information ultimately presents itself in the embedding projected by g(·) is
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not obvious, which may indicate incompatible LML where attention information
is ultimately obscured and not readily distinguishable in the LML space.

Incremental Recall@1: Recognition accuracy for the Incremental Recall@1
experiment is shown in Table 2 (right). We see very low accuracy with conv2d
SE on Earth Stadium and Mars Crater, which signals poor representation power
and an indiscernible metric space on these smaller datasets. Encoding rotational
equivariance in RIC CA helps alleviate this issue in cases such as Proxy Anchor
on Earth Stadium and many LML on Mars Crater. MARs has a profound impact
in cases where RIC CA offers little to no benefit, such as Proxy Anchor on Mars
Crater where we see a roughly 85% improvement over RIC CA. On Moon Crater,
MARs attention constraints improve 6/9 LML losses and is competitive on Sub-
center ArcFace (< 1% difference), indicating benefits with more training data.
Furthermore, we see a similar pattern of behavior to the Recall@1 experiment
where the performance of RIC CA and MARs varies wildly across LML losses, as
shown by Proxy Synthesis on Mars/Moon Crater. Overall, Proxy Anchor with
MARs is best-in-class on every dataset for this experiment.

Moon Navigation and Lost-in-Space: Table 3 displays results for Moon
Navigation (left) and Moon Lost-in-Space (right). For Moon Navigation, conv2d
SE retains maximum performance on 4/9 LML losses while RIC CA achieves the
highest accuracy only on SupCon loss, supporting the theory that fully explicit

Table 3: Accuracy for Moon Navigation
(left) and Moon Lost-in-Space (right).

LML

Moon Navigation Moon Lost-in-Space

conv2d
SE

RIC
CA

MARs
(Ours)

conv2d
SE

RIC
CA

MARs
(Ours)

Circle [94] 58.07 37.97 38.46 94.03 96.68 92.31
DR-MS [76] 37.69 3.12 36.68 86.34 88.06 90.05
NTXent [82] 48.25 32.00 57.68 94.83 83.16 96.29
PNP [72] 14.34 23.34 24.66 61.41 77.98 75.46
Proxy Anchor [63] 64.17 – 66.31 97.21 – 96.02
ProxyNCA++ [96] 58.27 53.92 35.87 94.69 93.24 91.38
Subcenter ArcFace [25] – – 40.63 – – 81.17
SupCon [61] 17.92 42.28 37.50 89.39 90.32 90.58
Proxy Synthesis [45] 61.26 60.53 32.67 96.42 93.77 36.87

Table 4: MARs γ ablation study.

γCh γSp Recall@1 Incremental
Recall@1

Moon
Navigation

Moon
Lost-in-Space

0.0 0.3 100 59.429 48.204 89.594
0.15 0.15 98.571 71.105 38.301 89.335
0.3 0.0 69.43 4.18 1.93 62.62
1 1 96.571 61.517 23.593 89.733

equivariance may be undesirable in
cases with more training data, and a
partial (i.e., learned) equivariance is
better suited due to the sufficiency
of the learning framework to distin-
guish low-level features under trans-
formation [87]. Nevertheless, MARs is
quite competitive in instances where
RIC CA has worse performance than
conv2d SE showing that the addi-
tional learned multi-view attention
constraint counteracts the negative ef-
fects of the explicit properties. In to-
tal, MARs achieves the highest perfor-
mance on 4/9 LML and obtains best-
in-class with Proxy Anchor. Accuracy
is relatively high for all methods on
Moon Lost-in-Space, which could be
an artifact of the high-framerate navi-
gation sequence that fills the embedding database with many duplicate (although
augmented) craters throughout the first orbit. MARs demonstrates performance
increases on 4/9 LML losses once again with only NTXent and Subcenter ArcFace
being common among both experiments.

Ablation Study, γ Parameter: Table 4 gives an ablation study over the
γ parameters in MARs. We train four combinations of γCh and γSp using Proxy
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Anchor LML on Mars Crater, where we can see a clear sensitivity. Spatial atten-
tion has the biggest impact where γSp = 0 reduces accuracy in all experiments,
indicating the importance of spatial attention alignment in multi-view learning.
The conservative 0.15 for both γCh and γSp gives utility to the channel compo-
nent, as we see the best results on Recall@1 and Incremental Recall@1 accuracy
(and only slightly less accuracy on Moon Lost-in-Space). A perhaps surprising
result is the difference in performance (or lack thereof) between low parameter
settings (0.15) and unweighted settings (γCh = γSp = 1), implying that the
magnitude of LMARs has little effect on the optimization.

Qualitative Analysis: Figure 4 visualizes attention focus via the Eigen-
CAM [78] algorithm, comparing RIC CA and MARs (γSp = 0.3, γCh = 0) for
Proxy Anchor on Mars Crater. MARs shows a near-identical magnitude Eigen-
CAM between each positive pair of pose-normalized landmarks where RIC CA
focuses on disparate regions. Additional examples and animations of attention
evolution during the training can be viewed in the supplementary.

(a) RIC CA (b) MARs

Fig. 4: Attention visualizations with EigenCAM [78] on Mars Crater trained with
Proxy Anchor LML.

5 Conclusion

The utility of metric learning as a single-shot landmark description technique for
spacecraft TRN was thoroughly explored in this work. We demonstrated that
metric learning alone cannot adequately descript fine-grained instances of celes-
tial terrain given multi-view observations and complex transformation spaces.
We show that traditional workarounds such as equivariant convolutional layers
are in many cases still insufficient. We identify shortcomings with the view-
unaware attention mechanism and proposed Multi-view Attention Regulariza-
tions (MARs) to regulate attention focus between views. MARs enacts a soft
learning constraint that prevents attention collapse, effectively driving the what
and where elements of attention together and eases the downstream separability
task. We demonstrated the utility of our method through rigorous and com-
prehensive experimentation, where we showed regular improvements to a wide
range of metric learning losses by upwards of 85% on navigation-style tasks. We
additionally introduced the Luna-1 dataset to facilitate more active research in
TRN landmark recognition, consisting of photo-realistic Moon crater landmarks
and paired navigation images using real-world NASA data.
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