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1 Spiking Neural Network

Spiking Neural Networks represent a paradigm shift in neural network tech-
nology, drawing closer to the biological intricacies of the human brain. Unlike
traditional neural networks, which process information continuously, SNNs trans-
mit information through discrete events known as spikes. This not only makes
them more biologically plausible but also potentially more efficient in terms of
computational resources.

The concept of SNNs stems from the desire to mimic the brain’s extraordinary
ability to process information efficiently. Historically, the development of SNNs
has been part of the broader field of neuromorphic computing, aiming to create
computer architectures that mirror neural structures. The fundamental building
blocks of SNNs are neurons and synapses, interconnected in ways that allow for
the dynamic transmission of spike signals.

SNNs stand out due to their potential applications in areas where traditional
networks may not be as efficient, particularly in tasks involving temporal data
processing, like speech and gesture recognition. The unique architecture of SNNs,
where the timing of a spike carries information, allows for a more nuanced and
dynamic approach to learning patterns and making predictions.

1.1 Encoding Method in Spiking Neural Networks

The encoding method in SNNs is a critical aspect that determines how informa-
tion is represented and processed. Unlike conventional neural networks that use
continuous values, SNNs rely on spikes, where the timing and frequency of these
spikes represent information. There are various methods of encoding in SNNs,
each with its strengths and applications.

Rate encoding, one of the most common methods, encodes information in
the frequency of the spikes. High-frequency spikes can represent a high value,
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Fig. 1: llustrative depiction of neuronal anatomy and electrophysiology. Panel a shows
the neuron’s structure, highlighting the dendrites, cell body, axon, myelin sheath, and
synaptic terminal. Panel b details the states of a sodium (Na+) channel during and after
action potential initiation: resting with the channel closed, activated with the channel
open, and inactivated with the channel closed, awaiting potential normalization. Panel
¢ presents the action potential mechanism as described by the Hodgkin-Huxley model,
showcasing the dynamic changes in Na+ and K+ conductances that facilitate neuronal
firing, alongside the periods of absolute and relative refractory phases following the

spike

and vice versa. However, this method can be less efficient in terms of spike usage
and might not capture the temporal aspects of the information.

Temporal encoding, on the other hand, utilizes the precise timing of spikes
to convey information. This method can be more efficient than rate encoding
and is particularly useful in tasks that require processing of temporal patterns,
such as speech recognition.

Population encoding involves using a group of neurons to represent a single
value, providing a balance between rate and temporal encoding methods. It
enhances the robustness of the representation and can handle a wider range of
values more efficiently.

1.2 Biological Concepts in Spiking Neural Networks

The inspiration for SNNs comes directly from the way biological neural networks
in the brain process information. The neurons in these networks communicate
through electrical impulses or spikes, which are brief and discrete events. This
biological realism in SNNs is not just limited to the use of spikes; it extends to
the modeling of neurons and synapses.

Neuron models in SNNs, such as the Hodgkin-Huxley and integrate-and-fire
models, aim to replicate the electrical characteristics of biological neurons. These
models describe how neurons accumulate input signals and generate an output
spike once a certain threshold is reached.

Synaptic transmission and plasticity are also crucial biological concepts repli-
cated in SNNs. Synapses in the brain strengthen or weaken over time based on
the activity of the neurons they connect, a concept known as synaptic plastic-
ity. This mechanism is the basis for learning and memory in the brain and is
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mirrored in SNNs through learning rules like Spike-Timing-Dependent Plasticity
(STDP).

1.3 Mathematical Framework in Spiking Neural Networks

The mathematical framework of SNNs is essential for understanding their oper-
ation and designing efficient networks. This framework involves equations and
algorithms that describe how neurons and synapses behave and interact.

Neuron dynamics in SNNs are typically described by differential equations
that model the change in a neuron’s membrane potential over time. These equa-
tions take into account the inputs received from other neurons and determine
when a neuron should emit a spike.

Learning in SNNs is governed by mathematical rules that adjust the strength
of synapses based on the timing of spikes. STDP, for instance, is a rule where
the synaptic strength is increased if a presynaptic neuron’s spike precedes a
postsynaptic neuron’s spike and decreased in the opposite scenario. This rule is
critical for unsupervised learning in networks.

In summary, Spiking Neural Networks represent a sophisticated and biologi-
cally inspired approach to neural computation. Their unique properties, such as
spike-based information processing and the incorporation of temporal dynam-
ics, offer promising avenues for research and application in fields ranging from
robotics to neuroscience.

2 Datasets

2.1 Neuromorphic-MNIST (N-MNIST) Dataset Overview

The N-MNIST dataset represents a significant advancement in the field of neu-
romorphic vision systems, offering a novel adaptation of the widely recognized
MNIST dataset. This "spiking" version maintains the structural integrity of the
original dataset, featuring 60,000 training and 10,000 testing samples, each with
a visual scale of 28x28 pixels. N-MNIST was developed using the ATIS sensor on
a motorized pan-tilt unit, enabling dynamic capture of MNIST examples from an
LCD monitor. This method closely mimics the temporal dynamics of real-world
visual perception, a crucial aspect for advanced neuromorphic computing. The
dataset’s development is thoroughly detailed in [6].

2.2 CIFAR-10 DVS Dataset Overview

The CIFAR-10 DVS dataset is an innovative adaptation of the CIFAR-10 dataset,
tailored for neuromorphic vision research. It transforms frame-based images into
event streams using a Dynamic Vision Sensor (DVS). This dataset comprises
10,000 converted images, with 1,000 from each of the 10 classes of the original
CIFAR-10 dataset, which includes 60,000 32x32 color images. The conversion
employs a repeated closed-loop smooth (RCLS) movement of images, generat-
ing more realistic and applicable event streams. These streams possess complex
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spatio-temporal structures, positioning the CIFAR-10 DVS as a moderate-level
dataset in terms of complexity. This dataset supports the development of event-
driven algorithms for object classification tasks, employing methodologies such
as spike-based forward networks and support vector machines with bag of events
(BOE) features |[5].

2.3 DVS128 Gesture Recognition Dataset Overview

The DVS128 Gesture Dataset, crucial for real-time gesture recognition systems,
features data recorded using a DVS128. It includes 11 hand gestures from 29
subjects under three illumination conditions. Each trial has two files: a data
file (.aedat) containing DVS128 events and an annotation file (.csv) with the
start and stop times of each gesture. The DVS data is stored in the AEDAT 3.1
file format as Polarity Events, where each event includes x, y coordinates and
polarity.

2.4 ESD-1 and ESD-2 Dataset Overview

The ESD dataset, elucidated in [3], emerges as an expansive dataset for investi-
gating robotic grasping scenarios. Captured using a DAVIS346 sensor mounted
on a robotic arm, it integrates both conventional RGB frames and asynchronous
events. The dataset is distinguished by its detailed, instance-specific annotations,
categorized into six classes: bottle, box, pouch, book, mouse, and platform, com-
prising 17,186 annotated images and 177 event streams. Divided into ESD-1 and
ESD-2, ESD-1 is tailored for known object segmentation challenges, containing
10 objects across 13,984 training images and 3,202 testing images. ESD-2, dedi-
cated to unknown object segmentation, is solely for testing, featuring five unique
objects not included in ESD-1. Both subsets exhibit variations in camera motion
direction, arm speed, lighting conditions, and object clutter. These include lin-
ear, rotational, and partial-rotational motions, arm speeds of 0.15 m/s, 0.3 m/s,
and 1 m/s, alongside normal and low lighting conditions. Object clutter varies
from 2 to 10. To align the event data with the 40 Hz RGB frames, a temporal
window of 25 ms is used, ensuring synchronization between the frame modalities.

3 Metrics

3.1 Classification Accuracy for Image classification

Classification Accuracy is a performance metric for classification tasks that mea-
sures the percentage of test data points for which the class with the highest
predicted probability matches the true class label.

Mathematically, Classification Accuracy accuracy can be defined as:

Number of Correct Top-1 Predictions
Total Number of Samples (1)

Classification Accuracy =

x 100
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Here, “Number of Correct Top-1 Predictions” refers to the count of samples
where the class with the highest predicted probability is the same as the true
class, and “Total Number of Samples” is the size of the dataset being evaluated.

3.2 Event-wise Segmentation Accuracy

Event-wise accuracy is used to evaluate the performance of asynchronous event-
based object segmentation which essentially predicts class labels for each event
to its true label. This approach provides a way to evaluate object detection
models based on event data and accounts for the sparsity of events:

1 d;
Ace(d,d') = 21: e 100 (2)

where d, d’, and N represent the ground truth event set, the predicted event
set, and the total number of events respectively [4].

3.3 Homeostasis

To understand the capacity of neurons to self-regulate and maintain a consis-
tent level of activity over time we also measure the homeostasis of the host
SNNs. Specifically, we employ three statistical indicators: F R,,, FR,, stq4, and
FR, 44, all of which are based on the neuron firing rate. F'R,, signifies the aver-
age neuron firing rate of an SNN over all P trials. FR,, 4 represents the mean
of P standard deviations, where each deviation corresponds to the neuron firing
rates of an SNN during an individual trial. Conversely, F'Rs 44 illustrates the
variability of the P standard deviations. The firing rate is calculated as follows:

77 = = S, Q

P =1

where fil P denotes the firing rate of the i-th neuron in the I-th layer during
the p-th trial and T}, represents the duration of the p-th trial. F'RE, symbolizes
the average firing rate of all neurons in an SNN for the p-th trial, while FRY,
corresponds to the standard deviation of the firing rates of all neurons within

an SNN throughout the p-th trial. |2]

3.4 Energy Consumption

To evaluate the energy efficiency of Spiking Neural Networks (SNNs), we focus on
calculating both multiply-accumulate (MAC) and accumulate (AC) operations.
While MAC operations consider multiplicative interactions, AC operations in
SNNs focus on accumulative interactions, especially given the binary nature of
spikes. In addtion to the MAC and AC operations, the energy consumption is
further influenced by the average spiking activity, (;. This activity represents the
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ratio of the total number of spikes in layer [ over all events to the total number
of neurons in that layer. When dealing with asynchronous events, the focus
is on the temporal sequence of events. The adapted energy formula for SNNs,
incorporating both MAC and AC operations in the context of asynchronous
events, is:

FEsnn = (169pJ x MAC + 0.38 pJ x AC) X ( (4)

where MAC and AC signify the count of multiply-accumulate and accumulate
operations, respectively. As per the study in |1], the coefficient 1.69pJ is energy
consumed per MAC operation, while 0.38pJ is the energy for each AC operation.
The term (; captures the average spiking activity for layer [, shedding light on
the spiking dynamics of the network in the context of asynchronous events. This
term quantifies the energy expenditure associated with the sequence of spikes,
especially pertinent when addressing asynchronous event-driven inputs.

4 Ablation Study

4.1 Weighting Factor Selection

Table 1: Performance Analysis for different values of ki, k2, and k3, on CIFAR and
DVS128 datasets.

ki ko ks CIFAR DVS128
Acc. FR_m Acc. FR_m

0.05 0.15 0.05 67.39 0.841 69.34 0.872
0.150.25 0.15 86.71 0.625 91.02 0.713
0.25 0.5 0.25 94.74 0.352 97.83 0.421
0.5 0.75 0.5 61.82 0.936 76.48 0.947
0.750.850.75 52.01 1.62 57.01 1.707

This study aims to experimentally select the weighting factors k1, k2, and
k3, which correspond to the three elements of the ABN. The experiment utilized
the CIFAR-DVS and DVS128 datasets for gesture recognition to determine the
optimal combination of ki, k2, and k3. This was achieved by evaluating the
combinations through image classification accuracy and firing rate. It was ob-
served that as the combination of ki, ko, and k3 started from 0.05, 0.15, and
0.05 respectively and incrementally increased, the accuracy of image classifica-
tion improved. Peak performance and the lowest firing rates were achieved at
the combination of k1 = 0.5, ks = 0.25, and k3 — 0.25. Beyond this point, fur-
ther increases in the k values led to a decrease in accuracy and a surge in firing
rates. Therefore, having identified the optimal combination, it becomes crucial
to examine the most influential element of the ABN, which is the focus of the
subsequent subsection.
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Fig. 2: Ablation Study Spike Activity Analysis of each element of the ABN

4.2 Spike Activity Analysis

The ablation study of the proposed ABN model, focused on the distinct behav-
iors of its constituent elements MG, TRG, and SE, observed across the CIFAR-10
DVS, ESD-2, and DVS-128 Gesture Recognition datasets, as depicted in Fig. 2]
The MG demonstrated a robust increase in firing rates over time, while the TRG
exhibited an inverse trend, decreasing over the same intervals. These opposing
dynamics suggest that while each element responds distinctly to temporal stim-
uli, they collectively contribute to a regulatory effect, mitigating abrupt fluctu-
ations and promoting threshold stability in the ABN model. The SE component
further modulates this balance, optimizing the firing rates for computational ef-
ficiency. In addition, the variability in the firing rate patterns across different
datasets reflects the distinct event frequencies encountered within each dataset.
The CIFAR-10 DVS dataset, with its more uniform event timing, facilitates a
steady increase in the MG’s influence, whereas the ESD-2’s irregular events lead
to more erratic firing rates, challenging threshold stabilization. The DVS-128
Gesture Recognition dataset, with its complex event sequences, showcases the
ABN model’s adaptability to rapid temporal changes. This highlights the ABN
model’s capacity to modulate neural firing in response to the diverse temporal
structures of sensory input.

4.3 ABN Analysis

This ablation study, as presented in Table [2] examines the individual and com-
bined contributions of each functional element (MG, TRG, SE) to the overall
performance on the CIFAR and DVS128 datasets. The results clearly indicate
that all three factors are crucial, as each one independently enhances perfor-
mance. Specifically, the integration of TRG demonstrates the most significant
impact on performance, followed by MG and SE, in terms of their contribution to
the final outcomes. Using optimal weights k1, ko, and k3, the model attains peak
performance, with accuracies of 94.74% on CIFAR and 97.83% on DVS128. It
showcases an inverse relationship between firing rate and accuracy, particularly
in the full ABN model, achieving the highest accuracy at minimal firing rates of
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Table 2: Ablation Study of the ABN

Feat. Params CIFAR DVS128
k1 ko ks Acc. FR_m Acc. FR_m

MG 025 0 0 7448 0.534 79.41  0.682
TRG 0 05 0 83.03 0.516 87.34  0.603
SE 0 0 025 56.35 0832 614 0.854
MG+TRG 0.25 0.5 0 78.52  0.523 82.01 0.671
TRG+SE 0 0.5 0 81.3 0.481  84.01 0.601
MG+SE 025 0 025 59.26 0.704 63.28 0.853
All 0.25 0.5 0.25 94.74 0.352 97.83 0.421

0.352 on CIFAR and 0.421 on DVS128, indicating efficient spike utilization for
enhanced accuracy.

5 Qualitative Evaluation

The qualitative results illustrated in the attached images demonstrate the effi-
cacy of the proposed method in semantic segmentation and image classification
tasks using specialized datasets. For semantic segmentation, the method was
evaluated on the ESD1 and ESD2 datasets, showcasing its ability to distin-
guish and classify multiple objects within a scene. As seen in the images, the
method’s performance was tested across varying complexities—from scenes with
two objects to those cluttered with ten objects—as well as under challenging con-
ditions such as movement at 1 m/s speed, rotational changes, varied distances
(like 83cm), and low light environments. The ground truth images display a
rich tapestry of colors, each representing a distinct class, against which the pre-
dictions are compared. The predicted segmentation closely mirrors the ground
truth, with precise color-coded object delineation, even as the number of objects
increases or the conditions become more adverse.

In the image classification task using the N-MNIST dataset, the method’s
robustness was further validated. The dataset, a neuromorphic rendition of the
traditional MNIST, presents digits as spike events, requiring the algorithm to
interpret spatiotemporal data. The results are compelling, with the predicted
classifications forming recognizable representations of the digits zero through
nine, depicted in a scatter plot-like format that aligns well with the original dot
patterns. This indicates a high degree of accuracy in the network’s ability to
classify temporal patterns, a task critical for neuromorphic computing systems
that process data in a manner akin to biological neural networks.
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Fig. 4: Qualitative Results - Robust Semantic Segmentation under Varied Conditions
- Illustrated here are the segmentation results of the proposed model on the ESD1
and ESD2 datasets under diverse environmental challenges. The model’s predictions
demonstrate resilience and adaptability to rotations, distance variations (83cm shown),
dim lighting, and the presence of unknown objects, maintaining consistency with the
ground truth across all test cases.
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Fig. 5: Qualitative Results - Image Classification Results on N-MNIST - This figure
showcases the classification performance of the proposed method on the N-MNIST
dataset, where each subplot represents the spatiotemporal spike patterns associated
with the digits zero through nine. The method’s ability to discern and classify the
neuromorphic data into accurate digit representations is highlighted, reflecting its po-
tential for applications in dynamic, event-driven vision systems.
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