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The supplementary material is organized as follows: Appendix 1 provides a
comprehensive specification of the DTLD dataset; Appendix 2 presents a com-
parative analysis of the impact resulting from two different training objectives;
Appendix 3 illustrate the reasons for choosing Bézier Curves; Appendix 5 eval-
uates the 6D pose estimation performance of the FFB6D model on the DTLD
dataset; Appendix 6 showcases additional visualized contact line detection re-
sults using BCRM and TCLD modules.

1 Dataset Analysis

We present a supplementary specification of the DTLD to facilitate a compre-
hensive understanding of the dataset’s distribution characteristics, encompassing
object instances, viewpoints, lighting conditions, and liquid levels. Analyses are
elucidated using a series of visualization charts. As illustrated in Fig. 8, the
dataset includes a rendered image of four transparent objects: T175 Cell Flask,
T75 Cell Flask, T25 Cell Flask, and G-rex Bioreactor. The dataset composi-
tion is further detailed, showing the number of images across three laboratory
settings, with a pattern of incremental composition. Although all instances are
represented across the dataset, certain instances may not be captured in every
image due to limitations in camera coverage.
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A set of parameters configures the camera viewpoint. In Fig. 9 (a), xm, ym,
zm represent the target object coordinate system, while xc, yc, zc denote the
camera coordinate system. The parameter d corresponds to the distance from
the coordinate system origin. In Fig. 9 (b), the origin of the object coordinate
system is aligned with that of the camera coordinate system, where θx, θy, θz
represent the angles between the x, y, z axes, respectively. Fig. 10 (c) provides
an example image showing exact parameters for each object instance.

Fig. 10 presents a statistical analysis of the dataset’s relative orientations
and distances between the camera and the objects. Specifically, Fig. 10 (a), (b),
and (c) detail the distribution of the camera’s orientation relative to the objects,
considering the x, y, and z axes of the object coordinate system (as defined in
Fig. 9 (b)). These subfigures also include the corresponding counts of images for
each orientation category. Furthermore, Fig. 10 (d) illustrates the distribution of
distances from the camera to the objects concerning the baseline measurements
shown in Fig. 9 (a). This distribution spans from a minimum distance of 300mm
to a maximum of 1050mm, covering a total range of 750mm.

Fig. 11 displays the distribution of image samples under seven lighting con-
ditions, categorized and analyzed across three laboratory environments. Addi-
tionally, Fig. 12 includes two charts: the first chart enumerates the image count
corresponding to each liquid level. In contrast, the second chart delineates the
range of liquid levels observed in the DTLD. In total, fifty-six measurements of
liquid levels are documented within the dataset. These measurements are fur-
ther categorized into five ranges, each spanning 20mm, to facilitate a detailed
analysis of liquid level variations.

T175 Cell Flask

T75 Cell Flask

T25 Cell Flask

G-rex Bioreactor

Fig. 8: Dataset Analysis. Left: a rendered image of four objects in the DTLD dataset.
Right: the number of images for each object across three ABL scenes.

2 Training Objective Comparison

Section 4.1.1 introduces LBezier used to train the BCRM, obtaining the loss
function by calculating the L1 Norm between the predicted Bézier curve control
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Fig. 9: The object-camera transformation diagram.

Fig. 10: Visualizing the Distribution of Camera and Object Positions in the Dataset.
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Bio-lab A

Bio-lab B Bio-lab C


Fig. 11: Sample distribution of seven lighting conditions in three lab scenes.

(a) (b)

Fig. 12: Sample distribution of liquid levels, presented regarding accurate values and
interval categorization.
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points and the corresponding ground truth control points. To investigate the
impact of two training objectives on contact line detection performance, an al-
ternative loss function is employed to supervise our BCRM and TCLD modules.

We obtain N points by uniformly sampling the ground truth and predicted
Bézier curve and calculate the L1 norm between these sampled points to compute
the loss,

Lreg_sp =
1

N

N∑
i

∥pi − p̂i∥1. (13)

where p̂i and pi represent the sampled points on the ground truth and the
predicted Bézier curve, respectively.

For the probability of each proposal curve, we use binary cross-entropy loss
and retain other training settings. The retrained and original results are com-
pared in Tab. 6.

We observe that differences between models trained with different objectives
are marginal, and the alternative loss function only achieves a slight advantage
in MAPE (less than 0.002 points). Therefore, all reported experiment results
are based on the control point loss function because of its reduction capacity of
training time expenditure.

Table 6: Comparative results of contact line detection using two training objectives.

Method Average CL-IoU Precision@0.50 Recall@0.50 F1@0.50 F1@0.75 mF1 MAPE

BCRM-GT 0.526 0.569 0.555 0.562 0.269 0.292 0.203
BCRM-GT(sampled) 0.529 0.576 0.558 0.567 0.283 0.301 0.205

TCLD-GT 0.590 0.675 0.651 0.663 0.356 0.361 0.186
TCLD-GT(sampled) 0.592 0.675 0.655 0.665 0.352 0.362 0.187

3 Reasons for choosing Bézier Curves

Contact line detection requires predicting a smooth curve while using Polyno-
mials may result in excessive fitting, particularly with high-order Polynomials.
Furthermore, Bézier curves can more accurately fit the contact line than Polyno-
mials, as shown in Tab. 7. The smoothness and accuracy of Bézier curves became
the basis for our ultimate selection.

4 Implementation Details

ResNet-18 and ResNet-34 [2] serve as the backbones for the CRM and BCRM
modules. TCLD is trained using the Adam optimizer [3] with a batch size of 48
and an initial learning rate of 0.0006, coupled with a Cosine Annealing Learning
Rate schedule [4]. Object instances within the ROI obtained from the 6D estima-
tion result are resized to a resolution of 512×512 pixels before the network input.
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Table 7: Here, RMSE denotes Root Mean Square Error, and AME represents Average
Max Error.

model Polynomial Bézier
2-ord 3-ord 4-ord 2-ord 3-ord 4-ord

RMSE 14.833 4.724 4.229 5.280 3.587 2.762
AME 26.768 11.080 9.981 15.181 9.274 7.061

The PyTorch framework implements the training procedure, spanning 36 epochs
on a single GPU. Data augmentation techniques such as random affine trans-
formations and horizontal flips are employed further to augment the robustness
and diversity of the dataset.

5 6D Pose Estimation Evaluation

We train the FFB6D model on the DTLD dataset for thirty epochs using an
NVIDIA RTX 3090 GPU. Evaluating the 6D estimation performance of the
FFB6D model, we compute the Area Under the Curve (AUC) percentage based
on the ADD-S metrics:

ADD-S =
1

M
∑

c1∈M
min
c2∈M

∥∥∥(Rc1 + T )−
(
R̂c2 + T̂

)∥∥∥, (14)

where, c1, c2 are points in the point cloud model M of the object, R, T are
the predicted 6D pose matrix and R̂, T̂ are the ground truth. The ADD-S metric
evaluates the 6D pose by averaging the closest point distance. ADD-S metrics
for each object instance are reported in Tab. 8. Our analysis reveals that T25
flasks, characterized by their smaller volume, are more susceptible to occlusion
by other objects, resulting in inferior ADD-S performance.

Table 8: The ADD-S AUC for each object reported for evaluating 6D pose estimation
accuracy on the DTLD Dataset.

Object T25 Cell Flask T75 Cell Flask T175 Cell Flask G-rex bioreactor

ADD-S 56.88 79.45 80.95 90.77

6 Evaluation of detection and estimation performance

We present additional evidence to support the accuracy evaluation of contact line
detection and liquid level estimation. Specifically, Fig. 13 offers visualizations
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of the contact lines predicted by various modules, along with comparisons to
the ground truth data. Additionally, Tab. 10 presents the estimated liquid level
for each object instance within an image depicted in Fig. 13. The estimations
conducted by PBLTs are also listed for comparison.

a.

b.

c.

d.

e.

f.

BCRM TCLDGround Truth

i.

j.

k.

l.

g.

h.

Fig. 13: Visualizations of contact line predictions.

7 Comparative Analysis with Thermal Imaging Methods

Several existing papers [7] have employed Thermal Imaging (TI) to detect liq-
uid level positions. To compare the advantages of our proposed method over
TI methods, we conducted a new experiment on TI data. We observed that,
in many scenarios, thermal signatures of air and liquid in thermal images are
nearly indistinguishable. We collected a test set of 64 samples using a TI
camera (Dahua BF3241) and an RGB-D camera at 37°C and 25°C, shown in
Fig. 14. We selected these two temperatures because of the stringent tempera-
ture protocol of biomedical experiments. Maintaining 37°C in incubators and
gradually decreasing to a controlled room temperature (18∼26 °C) during
short operations is one of the crucial conditions for ABL experiments [1, 6, 8].

We conducted another experiment by implementing TI method that refer-
ences and adapts the mask segmentation approach based on threshold segmen-
tation proposed by [7] as cited in the related work section to segment the
container and liquid masks. Similar to the CMU-Liquid [5], we calculate the
height ratio of two masks to estimate the liquid level. Evaluating TI method
and our TCLD on the test set, we observed that MAPE results in Tab. 9 indicate
TCLD, with an average of 0.219, outperforms the TI method (0.502).
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37℃ 37℃ 25℃ 25℃

Fig. 14: Random selected TI and RGB image samples.

Table 9: MAPE result of thermal imaging approach.

Method T25 Cell Flask T75 Cell Flask T175 Cell Flask G-rex Bioreactor Average

TI method 0.435 0.554 0.423 0.596 0.502
TCLD-FFB6D 0.132 0.119 0.173 0.453 0.219

8 DTLD’s limitations

During the data collection, we aimed to reduce potential biases, ensure broad cov-
erage of scenes and challenging factors, and balance these feature distributions.
We acknowledge current limitations and propose extending DTLD based on your
advice to increase coverage and diversity by including common container types
that differ in structure, material, size, thickness, and four challenging scenarios
depicted in Fig. 15, including 1) severe occlusion, 2) coexistence of multiple iden-
tical objects, 3) label occlusion, and 4) extreme low-light. We propose curating
a large-scale realistic dataset of new objects and scenarios to reduce biases and
the gap between DTLD and real ABLs.

challenge1 challenge2 challenge3 challenge4

Fig. 15: Four challenging scenarios to extend DTLD.
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Table 10: Liquid levels for each object type estimated by different approaches and
annotated ground-truth.

Index T25 Cell Flask T75 Cell Flask T175 Cell Flask G-rex Bioreactor
PBLT BCRM TCLD GT PBLT BCRM TCLD GT PBLT BCRM TCLD GT PBLT BCRM TCLD GT

a 40.00 40.89 40.23 40.40 95.00 74.00 88.14 88.00 50.00 44.62 44.99 42.00 87.00 70.82 64.83 66.90
b 45.00 37.59 37.77 40.40 93.50 90.55 89.46 88.00 45.00 47.01 46.19 42.00 85.00 70.72 68.61 66.90
c 45.00 39.72 38.71 40.40 95.00 79.38 84.07 88.00 40.00 44.19 41.65 42.00 83.00 71.44 66.16 66.90
d 40.00 38.53 39.21 40.40 96.00 14.38 87.65 88.00 38.00 27.80 42.49 42.00 80.00 78.36 73.56 66.90
e 37.50 32.83 34.17 34.60 60.00 55.38 53.69 52.20 70.00 71.39 71.72 72.30 32.50 28.62 22.12 23.40
f 35.00 38.72 35.40 34.60 60.00 54.05 53.26 52.20 63.00 78.96 70.94 72.30 30.00 33.08 20.55 23.40
g 40.00 38.34 35.55 34.60 65.00 49.49 50.89 52.20 80.00 65.30 70.25 72.30 32.00 30.65 25.62 23.40
h 30.00 19.34 19.09 34.60 45.00 55.74 55.02 52.20 70.00 79.97 75.18 72.30 22.00 91.01 99.53 23.40
i 60.00 43.56 44.33 45.10 68.00 65.77 63.04 62.10 60.00 54.70 52.41 51.20 45.00 43.10 40.18 39.00
j 0.00 53.46 44.40 45.10 68.00 82.12 64.94 62.10 55.00 53.39 54.98 51.20 45.00 39.68 39.31 39.00
k 55.00 46.11 47.91 45.10 70.00 63.47 63.84 62.10 58.00 52.56 52.39 51.20 45.00 57.82 56.04 39.00
l 46.00 49.51 45.94 45.10 60.00 60.52 61.91 62.10 40.00 60.89 50.06 51.20 40.00 39.78 39.17 39.00
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