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This supplementary contains additional experimental results and discussions of our
ECCV 2024 submission: AMD: Automatic Multi-step Distillation of Large-scale Vision
Models, organized as follows:

– §1 presents more details on the implementation of Structural Pruning.
– §2 provides additional experiments on the effectiveness of structural pruning.
– §3 considers the effect of joint optimization with parameter sharing during AMD,

and further gathers an additional architectural design.
– §4 discusses the efficiency of optimal selection.
– §5 includes additional diagnostic experiments of AMD.
– §6 adds more discussions on the current multi-teacher distillation approach.
– §7 provides extensive results on traditional comparisons on convolutional neural

networks. We further conduct additional experiments on semantic segmentation.
– §8 discusses related license, reproducibility, technical contributions, social impact,

complexity, limitations and directions of our future work.

1 Details on Pruning

We follow common practices [3,8], and arrange structural pruning based on the ranking
of important parameters, defined by important scores. Specifically, we first initialize
learnable vectors/masks to ones in self-attention head and feed-forward layer. Formally,
for a self-attention head with X̂ as input, we have:

Z = SelfAttention(X̂)

=

I∑
i

ψi · softmax(
QhKh

T

√
d

)Vh,
(1)

where Qh = X̂WQ,Kh = X̂WK , Vh = X̂WV . WQ,WK and WV are projection
matrices. i represents the i-th head among I head, and ψi is the learnable mask. After
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the self-attention layer, a feed-forward network is applied with two fully-connected
layers [5, 7, 18], transforming the features along the embedding dimension. We insert
learnable mask in feed-forward layer as:

Y = FeedForward(Z)

=

N∑
n

δn · f(ZW1)W2,
(2)

where f(·) is a non-linear activation function. n represents the n-th feed-forward layer
among N layers, and δn is the learnable mask. The importance score is defined as the
expected sensitivity of the model to the mask variables [8, 21]:

SI
i = Ex∼Dx

∣∣∣∣∂L(x)∂ψi

∣∣∣∣ ,
SN
n = Ex∼Dx

∣∣∣∣∂L(x)∂δn

∣∣∣∣ , (3)

where L is the loss function, Dx is the training data distribution [21], and E is the
expectation. The importance scores assigned to each self-attention and feed-forward
layer reflect their contribution to the model performance. Specifically, a low importance
score suggests a minor or even negative impact while a high importance score stands
for the significance of corresponding structure.

We take a global ranking in Vision Transformer (ViT) [5], and a partial ranking
within each stage for Swin Transformer [20] due to the unique design of self-attention
layers. Before ranking the importance scores for the structures from the same type (i.e.,
separate for self-attention and feed-forward layer), a l2 normalization is taken for bal-
anced pruning [23]. In our study, we adopt a pruning method that, while straightforward,
has proven to be efficacious. Although more sophisticated pruning approaches [6, 36]
might offer incremental improvements in performance, our primary aim lies in delineat-
ing the optimal training schedule for large-scale vision models. For CNN-based archi-
tectures, we follow common practices [17, 23] for pruning. Specifically, we utilize the
greedy pruning stated in [17]. Consequently, we posit that the exploration of advanced
pruning methods may represent a fruitful avenue for future research.

2 Effect of Structural Pruning

In order to verify the effectiveness of our proposed Structural Pruning, we further con-
duct experiments on comparing AMD and MMD with pruning via dropping layers and
hidden dimensions (i.e., by restricting the numbers of layers and hidden dimensions,
one can significantly reduce the GPU overhead of models), denoted as ViT− Base2L.
The results are shown in Table 1. As seen, with a lower computational demand (i.e.,
2.64G FLOPS vs 2.93G FLOPS), traditional practices with structural pruning get no-
ticeable performance advantages when comparing to pruning via dropping layers. For
example, ViT− Base2L DKD [42] is 1.16% lower in accuracy when comparing to
ViT− Base15% DKD [42]. Furthermore, both MMD and AMD present consistently
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Fig. 1: Manual Multi-step Distillation with Optimal Selection (MMD-OS) can be considered as
the intermediate stage between our proposed MMD and AMD.

superior performance when comparing to ViT− Base2L practices. These two obser-
vations indicate that the simply drop from transformer layers could deteriorate the per-
formance of knowledge distillation. Our structure pruning method, on the other hand,
offers an efficient yet simple solution in §1.

3 Effect of Joint Optimization

A point of consideration regarding our proposed AMD is the effectiveness of the Joint
Optimization proposed in §3.3. We thus devise an intermediate architectural design that
strategically positions itself between our previously proposed MMD and AMD, named
MMD-OS. The primary objective is to conduct a focused ablation study, isolating and
evaluating the impact only from the Joint Optimization component. Specifically, it iden-
tifies a set of teacher-assistants with different scales and selects the optimal teacher as-
sistant through Optimal Selection (Figure 1). We follow our experimental settings in
§4.3 and present results on ViT-Base trained on CIFAR-10 and CIFAR-100 [15]. The
results are shown in Table 2. As seen, while MMD-OS can demonstrate a marginally su-
perior performance relative to AMD (i.e., 95.53% vs 95.52% on CIFAR-10), its signif-
icant computational overhead associated with MMD-OS cannot be overlooked. MMD-
OS incurs a high computational cost (i.e., 10× vs 2.2×). Consequently, we argue that
AMD represents the most efficient and effective approach among all the solutions pro-
posed in our study.

4 Effect of Optimal Selection

We further replace the NPSD-based Optimal Selection with manual selection, i.e., distill
the student with all teacher-assistant candidates produced by the Joint Optimization, and
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Table 1: We further investigate the impact of structural pruning techniques by comparing with
pruning via dropping layers and hidden dimensions (see §2 on ViT-Base CIFAR-100 [15] . We
apply 15% student model scale since it has similar computational cost w.r.t. 2-layer transformer
student (i.e., 2.64G FLOPS vs 2.93G FLOPS). The highest accuracy among all approaches are
shown in bold. The second highest are shown in underline. Same for Table 3.

CIFAR-100 [15]
Method FLOPs

top-1
GPU hours

ViT− Base100% (teacher) 17.6G 98.01% -
ViT− Base2L KD [arXiv15] [12] 2.93G 59.85% 1×
ViT− Base2L DKD [CVPR22] [42] 2.93G 69.10% 1×
ViT− Base2L CRD [ICLR20] [31] 2.93G 74.15% 1×
ViT− Base2L TAKD [AAAI20] [22] 2.93G 69.73% 20×
ViT− Base15% KD [arXiv15] [12] 2.64G 60.13% 1×
ViT− Base15% DKD [CVPR22] [42] 2.64G 70.26% 1×
ViT− Base15% CRD [ICLR20] [31] 2.64G 78.40% 1×
ViT− Base15% TAKD [AAAI20] [22] 2.93G 71.02% 20×
ViT− Base15% MMD 2.64G 80.25% 20×
ViT− Base15% AMD 2.64G 80.23% 2.2×

Table 2: Performance and GPU overhead w.r.t. different proposed architectures.

Method Dataset Performance GPU hours

ViT− Base100% (teacher) 98.01% -
– MMD 95.54% 20×
– MMD-OS (m = 9) 95.54% 10×
– AMD (m = 9)

CIFAR-10 [15]

95.52% 2.2×
ViT− Base100% (teacher) 89.33% -

– MMD 80.11% 20×
– MMD-OS (m = 9) 80.10% 10×
– AMD (m = 9)

CIFAR-100 [15]

80.19% 2.2×

choose the best student. We concur that the derived baseline ensures no degradation in
student performance with approximately 10× training time.

5 Additional Diagnostic Experiments

5.1 Impact of Different Loss Components.

To analyze the impact of different loss components, we further conduct ablation studies
on three variants of AMD: ❶ AMD without cross-entropy loss Lce; ❷ AMD without
logit-based loss Llogit; ❸ AMD without feature-mimicking based Lfeat. As seen in
Table 4, we observe a significant performance drop (80.19% → 75.24%) by removing
the supervision on hidden states (i.e., Lfeat), which is consistent with our observa-
tions (i.e., performance are suboptimal via logit-based methods). The removal of Lce

and Llogit also cause a marked performance degradation (i.e., 80.19% → 78.32% and



Automatic Multi-step Distillation 5

Table 3: Ablation study on various optimizers and learning rate. The experiments are conducted
on ViT-Base [5] CIFAR-100 [15] using AMD.

Optimizer Learning Rate CIFAR-100 [15] top-1

3× 10−1 0.01% (Failed)
3× 10−2 0.01% (Failed)
3× 10−3 0.01% (Failed)

SGD

3× 10−4 0.13%
3× 10−1 0.01% (Failed)
3× 10−2 42.48%
3× 10−3 80.19%AdamW

3× 10−4 75.38%

Table 4: Impact of different loss components, including three variants from original training
objectives.

Method Performance

AMD 80.19%
– w/o LCE 78.32%
– w/o Llogit 78.01%
– w/o Lfeat 75.24%
– w/ Ldkd 80.22%

80.19% → 78.01%, respectively), underscoring the integral role both losses play in
enhancing model efficacy. Note that the influence of getting rid of Llogit has a higher
impact on performance, which is consistent with our claim in the previous ablation
study (i.e., α = 1). For completeness, we also conduct experiments on combining
DKD [42] loss, which introduces target class knowledge distillation (i.e., TCKD) and
non-target class knowledge distillation (i.e., NCKD) to further decompose Lce. Specif-
ically, we have Ldkd = ζTCKD+ ηNCKD, incorporating balancing parameters ζ and
η. The result indicates that the DKD loss further improves the model performance (i.e.,
80.19% → 80.22%). However, it is imperative to underscore that the incorporation of
the DKD loss introduces additional hyper-parameters, which consequently engenders
increased fluctuations in the quest to achieve optimal results. Therefore, we retain the
original design as delineated in Eq. 2 for the purpose of maintaining stability in the
model’s performance.

5.2 Learning Rate Schedule

Table 3 reports the performance AMD with respect to different learning rates and opti-
mizers on ViT-Base [5] CIFAR-100 [15]. As seen, the SGD optimizer exhibits a marked
sensitivity to the learning rate, characterized by a notable incidence of failure cases (i.e.,
we employed various learning rate schedulers, including linear, cosine, and cosine with
restarts, to investigate their impact on model performance. However, it was observed
that all these scheduling methods consistently resulted in low accuracy levels). AdamW
optimizer with learning rate 3 × 10−3 in large-scale vision model, on the other hand,
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Table 5: Impact of candidate scaling m.

Method Performance GPU hours

ViT− Base100% (teacher) 89.33% -
– MMD 80.11% 20×
– AMD (m = 1) 78.39% 2×
– AMD (m = 3) 79.46% 2×
– AMD (m = 6) 79.84% 2.1×
– AMD (m = 9) 80.19% 2.2×
– AMD (m = 15) 80.22% 2.6×

Table 6: The result of knowledge distillation compared to [2].

CIFAR-100
Method

top-1

[ICML2023] [2] 78.91%
AMD 79.17%

presents a robust and superior performance. We thus apply AdamW as the default opti-
mizer for all methods.

5.3 Impact of Candidate Sampling Rate.

We further study the variation of candidate sampling rate by changing the number of
sampled candidates m ∈ {1, 3, 6, 9, 15}. A higher value of m signifies a more refined
granularity in the sampling rate. This increased granularity is directly correlated with
an extended duration of training time. The GPU hours and their corresponding student
performance are reported in Table 5. We set m = 9 for a satisfying tradeoff between
performance and computational overhead. An increased sampling rate invariably leads
to a longer training time, which yields marginal enhancements in performance. For
example, when having m = 15, we observe 0.03% performance gain can be achieved
with 18% GPU hour increment. We argue that this is inefficient for training schedule.

6 Discussion on Multi-teacher Distillation

We observed that a recent study by [2] comprehensively discusses the disparity gap in
knowledge distillation. Specifically, they identify a method involving sequential distil-
lation from multiple teachers organized into a curriculum, which notably enhances the
effectiveness of knowledge distillation and mitigates the capacity gap between teacher
and student models. It is important to note that [2] is orthogonal to ours, which can be
distinguished by two primary facets:

– The most profound distinction lies in the fact that AMD is primarily oriented to-
wards image classification, in contrast to [2], which endeavors to tackle the task
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Table 7: The results of knowledge distillation methods on various CNN-based architectures on
CIFAR-100 [15].

Teacher WRN40×2 ResNet56 VGG13
Student WRN16×2 ResNet20 VGG8

Teacher 76.46% 73.44% 75.38%
Student 73.64% 69.63% 70.68%
KD [12] 74.92 70.66 72.98
FitNet [27] 75.75% 71.60% 73.54%
AT [39] 75.28% 71.78% 73.62%
SP [33] 75.34% 71.48% 73.44%
VID [1] 74.79% 71.71% 73.96%
RKD [24] 75.40% 71.48% 73.72%
PKT [26] 76.01% 71.44% 73.37%
AB [11] 68.89% 71.49% 74.27%
FT [14] 75.15% 71.52% 73.42%
CRD [31] 76.04% 71.68% 74.06%
SSKD [37] 76.04% 71.49% 75.33%
TAKD [22] 75.04% 70.77% 73.67%
DGKD [30] 76.24% 71.92% 74.40%
AMD 76.06% 71.95% 74.47%

of object detection. We contend that image classification serves as a more founda-
tional aspect and has the potential to engender broader social impacts, especially
when considering the scarcity of knowledge distillation approaches applied to large
vision foundation models.

– While [2] constructs the teacher sequence through the application of the heuristic
algorithm BGS, predicated on the representation similarities among diverse mod-
els, our work introduces AMD as a more sophisticated alternative. We elegantly
reduced the capacity gap between models by designing Joint Optimization, en-
abling the direct inheritance of parameters by student models from their teacher
counterparts within the same, singular architectural design. Our approach is there-
fore characterized by an accelerated convergence rate, and a more efficient training
schedule, thereby presenting a more refined solution.

For completeness, we try our best to accommodate [2] into image classification task
and report the top-1 performance on ViT-Small CIFAR-100 [15] dataset in Table 6.
As seen, AMD reaches superior performance when compared to [2].

7 Extension to CNNs

For fairness and completeness, we further extend our AMD into traditional CNN-based
architectures. We follow common practices with teacher-assistant design [22, 30], and
compare AMD to other competitive methods. The results are shown in Table 7, com-
paring on various CNN architectures, i.e., WideResNet [40], ResNet [9] and VGG [29].
The results show that our approach is also a promising approach with respect to CNN-
based architectures. Specifically, AMD reaches the best performance among all the
other competitive methods on ResNet distillation, and gets competitive results under
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Table 8: Semantic segmentation results on Cityscapes [4] val dataset.

Method mIOU
DeepLabV3-R101 (teacher) 78.07%
SKD [CVPR19] [19] 75.42%
IFVD [ECCV20] [34] 75.59%
CWD [ICCV21] [28] 75.55%
CIRKD [CVPR22] [38] 76.38%
DIST [NeurIPS22] [13] 77.10%
AMD 77.23%

the other two settings. Acknowledging the fact that AMD is not specifically designed
for CNN-based architectures, an avenue for the development of a unified solution in
the realm of knowledge distillation is viable, applicable to both transformer-based and
CNN-based architectures.

We then explore and compare AMD with latest knowledge distillation methods on
semantic segmentation task [10, 32] in Table 8 (using the same setting, i.e., AMD re-
places ResNet18 student with 15% ResNet101 on Cityscapes [4] val dataset). It can be
seen that AMD achieves consistently competitive results without task-specific design,
demonstrating its generalization capability.

8 Discussion

8.1 Asset License and Consent

Vision transformers are available under separate license terms: huggingface/transform-
ers is licensed under Apache-2.0; Swin-Transformer [20] and ViT-pytorch [5] are li-
censed under MIT.

8.2 Reproducibility

AMD is implemented in Pytorch [25]. Experiments are conducted on 16 NVIDIA
A100-40GB GPUs. To guarantee reproducibility, our full implementation shall be pub-
licly released upon paper acceptance. We further provide the pseudo code of our pro-
posed AMD in Algorithm 1.

8.3 Technical Contributions

The main contributions of AMD is of threefold. First, the motivation behind this work
stems from our empirical observation of the optimal performance of the teacher assis-
tant, prompting the introduction of the new NPSD metric. Second, although the indi-
vidual pieces are not new, the design of the joint optimization framework with certain
approximations (incremental property via structure pruning) has not been attempted

https://github.com/huggingface/transformers
https://github.com/huggingface/transformers
https://www.apache.org/licenses/LICENSE-2.0
https://github.com/microsoft/Swin-Transformer
https://github.com/jeonsworld/ViT-pytorch
https://opensource.org/license/mit/
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Algorithm 1 Pseudo-code of AMD in a PyTorch-like style.

# numTA: number of teacher assistants (default=1)
# numWarmupSteps: number of warmup steps
# numTrainSteps: number of training steps
# numTrainEpochs: number of training epochs
# teacher_model_path: model path of teacher/teacher assistant

def AMD(numTA, teacher_model_path, numWarmupSteps, numTrainSteps,
numTrainEpochs):

for iteration in range(1, numTA):
t_config = config_class.from_pretrained(teacher_model_path)
t_model = model_class.from_pretrained(teacher_model_path,

config=t_config)
t_model = t_model.to(device)

s_config = config_class.from_pretrained(teacher_model_path)
s_model = model_class.from_pretrained(teacher_model_path,

config=s_config)
s_model = s_model.to(device)

sandwich_sparsities = [s for s in s_config.sparsity_map]

optimizer = AdamW(s_model.named_parameters(), lr=learning_rate)

scheduler_name = "cosine_with_restarts"
lr_scheduler = get_scheduler(
scheduler_name, optimizer, numWarmupSteps, numTrainSteps)

t_model.eval()
base_model = s_model.module

for epoch in range(numTrainEpochs):
for step, batch in enumerate(train_loader):

s_model.train()
with torch.no_grad():

t_output = t_model(batch)

loss_item = 0.
for sparsity in sandwich_sparsities:

base_model.sparsify(sparsity)
s_output = s_model(batch)
loss = model_class.loss_fn(t_output, s_output) / len(

sandwich_sparsities)

loss_item += loss.item()
loss.backward()

train_losses.update(loss_item)
optimizer.step()
lr_scheduler.step()
s_model.zero_grad()

before, leading to much efficient distillation. Third, we focus on the overlooked prob-
lem of scale reduction in Transformer-based vision models. Our comprehensive studies
demonstrate competitive results with efficient distillation.

8.4 Complexity

One thing should be noted that multi-step distillation introduces additional complex-
ity. However, the multi-step design proves particularly advantageous when a substantial
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capacity gap exists between the teacher and student model. With the progressive scal-
ing of vision models, this capacity gap becomes increasingly pronounced. While the
proposed NPSD method does introduce additional computation, our efficient joint opti-
mization approach allows for the effective identification of the optimal teacher-assistant,
ultimately resulting in significantly faster overall training speeds compared to existing
multi-step methods.

8.5 Social Impact and Future Works

In the evolving landscape of vision models, the trend towards increasingly expansive
sizes has rendered their deployment a matter of pressing significance. Current approaches
have predominantly centered on CNN architectures of a modest scale, overlooking
the potential advantages and performance improvements that large-scale vision models
could offer to low-power processors and mobile devices. This narrow focus on smaller
architectures may inadvertently constrain the exploration of more efficient or power-
ful models that could enhance the computational capabilities of devices with limited
processing power. As such, there is a pressing need to expand the scope of research
to include and optimize large-scale vision models. In acknowledgment of this fact, our
research introduces an innovative method for knowledge distillation applied to large-
scale vision models. AMD is meticulously designed to optimize the efficiency of the
training regimen whilst simultaneously enhancing the model’s performance when com-
paring to competitive methods. We believe our work bring fundamental insights into
related fields (e.g., object detection [16, 41, 43]). For potential limitations, our method
as well as common practices [35] requires two hyper-parameters (i.e., α and β for the
overall training objective, Eq. 3), which needs further tune on datasets. Though in prac-
tice, we find both hyper-parameters are relatively stable (See §4.3 in our paper), and are
sufficient enough to outperform all current methods, there is still possible integration
of generating optimal combinations or having less number of hyper-parameters. This
indicates a possible direction for our future research. Also, as stated in §1, we apply
a straightforward pruning method, more studies on complex pruning methods can be
developed for future research.
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