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Abstract. Image processing, including image restoration, image en-
hancement, etc., involves generating a high-quality clean image from
a degraded input. Deep learning-based methods have shown superior
performance for various image processing tasks in terms of single-task
conditions. However, they require to train separate models for different
degradations and levels, which limits the generalization abilities of these
models and restricts their applications in real-world. In this paper, we
propose a text-induced Unified image Processor for low-level vision tasks,
termed UniProcessor, which can effectively process various degrada-
tion types and levels, and support multimodal control. Specifically, our
UniProcessor encodes degradation-specific information with the subject
prompt and process degradations with the manipulation prompt. These
context control features are injected into the UniProcessor backbone
via cross-attention to control the processing procedure. For automatic
subject-prompt generation, we further build a vision-language model for
general-purpose low-level degradation perception via instruction tuning
techniques. Our UniProcessor covers 30 degradation types, and exten-
sive experiments demonstrate that our UniProcessor can well process
these degradations without additional training or tuning and outper-
forms other competing methods. Moreover, with the help of degradation-
aware context control, our UniProcessor first shows the ability to individ-
ually handle a single distortion in an image with multiple degradations.
Code is available at: https://github.com/IntMeGroup/UniProcessor.

1 Introduction

During image acquisition, storage, transmission, and rendering, degradations
(such as noise, blur, rain, compression, etc.) are often introduced, which signifi-
cantly influence the quality of an image [14]. Image processing, including image
⋆ Corresponding authors.
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Fig. 1: UniProcessor is capable of processing various degradations in one model
with text control. (a) For single degradation, UniProcessor can well restore images.
(b) For an image with multiple degradations, our UniProcessor can process individual
distortion with text control, which demonstrates the superior distortion perception
and disentangling abilities. (c) For images with multiple degradations, Uniprocessor
can process each degradation step by step to restore or enhance the images.

restoration, image enhancement, etc., aims at improving the quality of a de-
graded image and generating a high-quality clean output. Due to the ill-posed
nature, this problem is highly challenging and generally requires strong image
priors for effective processing [14, 65]. With the availability of large-scale train-
ing datasets, deep learning-based image processing methods have been widely
developed to tackle various low-level vision tasks, such as denoising [71,73], de-
blurring [24,63], deraining [64,68], enhancement [57,62], etc., owing to its strong
ability to learn generalizable image priors [4, 13,54,65].

Many deep neural networks (DNNs) have been proposed to handle single low-
level vision tasks [40, 44, 45]. These methods mainly incorporate task-specific
features into the network to process a single problem, such as denoising [44,
72], deblurring [40, 74], etc., which lack the generalization ability to be used on
other degradation processing tasks. Some DNN-based methods have focused on
designing a robust network architecture to tackle various distortions using one
model [4, 14, 53, 60, 65]. Although using one network model, they need to train
separate copies with different weights for solving different degradation types
or degradation levels. This limits the application of these models in practical
scenarios due to the tedious process and complex deployment, and they need
to select an appropriate pre-trained weight during the inference process, which
requires prior knowledge and additional manipulations.

Recently, several methods towards handling multiple weather degradations
using one model with one weight have been proposed [8,28,32,36,42,55]. Some of
these methods train parallel encoders or decoders for each specific weather degra-
dation, which is hard to scale to more distortion types [32, 36, 55]. AirNet [28]
proposes an all-in-one restoration model by utilizing an extra encoder and em-
ploying contrastive learning to differentiate various corruption types. However,
it can not well disentangle different degradation representations [42]. Promp-
tIR [42] proposes to use learnable prompts to disentangle different degradation
representations. However, the learned prompt collection is a complete black-box,
which is hard to understand and control. Since in some cases, we may just want
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to tackle one specific distortion but ignore other degradations, it is important to
develop a model that can well disentangle distortion representations and han-
dle each degradation independently. Moreover, these aforementioned models can
only handle several degradations, which still have limitations in a wide range of
practical applications.

In this paper, we propose an all-in-one text-induced Unified image Processor
(UniProcessor) to tackle various low-level vision image-processing tasks. Our
method supports multimodal control, which first encodes input image and sub-
ject prompt to obtain degradation-specific information, i.e., subject prompt em-
bedding, then this embedding and the manipulation prompt are fed into the text
encoder to obtain the context control embedding for flexible image manipula-
tion. By interacting context control embedding with the feature representations
of the main processor network, we dynamically control and enhance the rep-
resentations with the degradation-specific knowledge and manipulation-aware
information. As shown in Fig. 1, benefiting from the explicit text induction, our
UniProcessor can not only well restore images with a single degradation, but also
separately or gradually process individual distortions in an image with multiple
degradations using text control. In order to facilitate interaction and control,
we further develop a vision-language model for general-purpose low-level vision
degradation perception via instruction tuning techniques, which can be used to
automatically generate the subject prompt for text control. Our UniProcessor
is trained on 30 degradation types with various levels to conform to a variety of
applications. The main highlights of this work include:

– We present a text-induced framework UniProceesor for all-in-one blind low-
level image processing tasks, which has flexible and convenient text control
ability.

– We propose a multimodal control module to achieve flexible control ability,
which encodes degradation-specific information from the input image and
subject prompt, and combines the obtained subject prompt embedding with
the manipulation prompt to get the context control embedding.

– An effective processor backbone is developed, which contains a context inter-
action module to interact with the obtained context control embedding. The
multimodal control module and the context interaction module are plug-in
modules, which can be easily integrated into any existing image processing
network.

– For automatic subject-prompt generation, a vision-language model for general-
purpose low-level degradation queries is devised via instruction tuning tech-
niques.

– Beyond the state-of-the-art performance on single distortion processing, our
UniProcessor can process multi-degradations individually, which manifests
the superior degradation disentangling ability. Moreover, to the best of our
knowledge, this is the first work that attempts to solve so many degradation
problems using one network.
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2 Related Work

2.1 Image Processing

With the development of deep learning techniques and the establishment of var-
ious databases and benchmarks, many DNN networks have been developed to
handle various image restoration and image enhancement tasks, such as denois-
ing [71,73], deblurring [24,63], deraining [64,68], low-light enhancement [57,62],
etc., and have achieved state-of-the-art performance. Many previous works have
focused on the network design, and have proposed numerous robust architec-
tures. Some early studies have adopted convolutional neural network (CNN)
as the backbone [66, 67, 71, 78, 79], and have devised many general-purpose
or task-specific modules for various tasks, such as residual and dense connec-
tion [26,59,71,79], channel attention [13,41,66,67], spatial attention [13,35,58,67],
multi-scale or multi-stage networks [6, 7, 22, 25, 67, 69], etc. Recently, with the
success of using transformer architecture across various computer vision (CV)
tasks, many transformer-based networks have been developed to solve image
processing problems, such as IPT [4], SwinIR [34], Uformer [60], Restormer [65],
CSformer [14], etc. However, the aforementioned models can only solve one image
restoration problem with one weight value, which lacks the generalization ability
to be applied to various scenarios. Some works have proposed unified models to
tackle the images corrupted due to multiple weather conditions, such as snow,
rain, haze [32,36,55]. However, they need parallel multiple encoders or decoders
for different tasks, which is hard to extend to more degradation types due to the
dramatically increasing computational overhead. AirNet [28] and PromptIR [42]
are two recent methods towards achieving all-in-one image restoration using con-
trastive learning or prompt learning. They are still methods that simply learn the
mapping from various degraded domains to one clean domain. However, in many
cases, we may want to control each degradation separately, which is beyond the
capabilities of the above models.

2.2 Vision-language Model

In recent years, many large-scale vision-language models have been proposed and
have greatly promoted the development of the CV field. Some vision-language
models have tried to build foundation models for vision-language feature align-
ment. CLIP [43] is an influential method that aligns image features and text fea-
tures using contrastive learning. FLIP [33] presents a mask pre-training method
for the scaling vision-language pre-training process. Based on the multimodal fea-
ture alignment pre-training methods, BLIP [31] proposes a pre-training method
for vision-language understanding and visual question answering (VQA). Bene-
fiting from the rapid evolution of large language models (LLMs) [52], BLIP-2 [30]
presents to use frozen image encoders and LLMs, and only train a lightweight
querying transformer to save training costs. InstructBLIP [9] attempts to train
general-purpose vision-language models based on BLIP-2 [30] and LLMs [52]
with instruction tuning. Based on these general-purpose large-scale multimodal
pre-training techniques, many text-to-image generation and editing methods
have also been proposed [23,29,46,48].
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Fig. 2: An illustration of the overview and the examples of UniProcessor. (a) An
overview of the proposed UniProcessor. (i) Our UniProcessor first learns low-level
vision-language model via instruction tuning, which can adapt to various degradation-
aware visual questions and generate the subject prompt. (ii) The subject prompt and
the extracted input image embedding are encoded to obtain the subject prompt em-
bedding, which is then combined with the manipulation prompt to obtain the context
control embedding. (iii) The guidance information is injected into the Processor back-
bone at multiple decoding stages. (b) An illustration of the examples generated by
Uniprocessor, which demonstrates the good control ability and degradation disentan-
gling capability.

3 Approach

Given an input degraded image I ∈ RH×W×3 with an unknown degradation D,
we aim to learn a single model M to process this image and obtain a high-quality
output Î. Fig. 2 shows the overview and the examples of our UniProcessor.
Our UniProcessor mainly contains three parts, which include an instruction-
tuned VQA module, a context control module, and a processor backbone. Our
UniProcessor supports human-in-loop manipulation with user-supplied text and
automatic manipulation with the prompt generated by the instruction-tuned
VQA module. For automatic manipulation, the overall pipeline is given as
follows. For the degraded input I, UniProcessor first uses the instruction-tuned
VQA module to automatically generate a subject prompt. The subject prompt
and the extracted input image embedding are then encoded using a multimodal
Q-Former to obtain the subjective prompt embedding, which is then combined
with the manipulation prompt using a text encoder to obtain the context control
embedding. Finally, the context control embedding is injected into the Processor
backbone at three decoding stages to control the process procedure and generate
the output restored image Î.

3.1 Low-level Vision-language Instruction Tuning

We develop an instruction-tuned VQA module for UniProcessor, which can adapt
to various degradation-aware visual questions and generate the subject prompt.
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Data preparation. In order to enable the low-level vision perception and in-
struction ability of our UniProcessor, we first establish a new VQA database for
low-level vision. We devise a distortion bank including 30 types of degradation
(see supplementary material for more details). Based on this distortion bank,
we generate numerous degraded images with various corruption types and levels
for over 70000 image patches. Since the degradation types and levels for these
images are known, we further generate various degradation-related or quality-
related questions and answers for training the low-level vision VQA model. To
avoid the risk of model overfitting, we follow the InstructBlip [9] to craft 10 to
15 distinct instruction templates in natural language to articulate the task and
the objective (see supplementary material for more details).

Instruction-aware visual feature extraction. UniProcessor first extracts
instruction-aware visual features for feasible question answering. As shown in
Fig. 2 (a)-(i), the instruction-tuned VQA module encodes the input degraded
image with a well pre-trained frozen CLIP image encoder [43] to obtain the im-
age embedding. Moreover, the instruction text is also encoded by a pre-trained
text encoder to obtain the instruction prompt. Then a multimodal Query Trans-
former, i.e., Q-Former, is utilized to extract instruction-aware visual features by
jointly interacting image embedding, text prompt, and K learnable query em-
beddings. The output of the Q-Former consists of K visual vectors, of which the
number is the same as the learnable query embeddings.

Instruction-tuned low-level vision VQA. The above extracted instruction-
aware visual features are then fed into a frozen LLM as soft prompt input
to perform instruction-guided VQA. The frozen LLM adopted in UniProces-
sor is LLaMA [52]. The connection between the Q-Former and LLM is a fully-
connected layer, which adapts the output instruction-aware visual features of the
Q-Former to the input dimension of the LLM. The Q-Former is pre-trained with
InstructBLIP [9], and we instruction-tune the model, especially the Q-Former,
with the language modeling loss to generate the response.

3.2 Degradation-aware Subject and Manipulation Representation
Learning

With the help of the aforementioned instruction-tuned VQA module, UniPro-
cessor can automatically generate the degradation-aware subject prompt for an
input image. However, it should be noted that UniProcessor also supports user-
supplied subject prompts for feasible control. With the development of large-
scale vision-language models, including text-image feature alignment such as
CLIP [43] and FLIP [33], and text-aligned visual representation extraction such
as BLIP [31] and BLIP2 [30], it is achievable to obtain text-image alignment
features. However, these features are not specifically tailored to serve as the
guidance or control information. To achieve text-guided unified image process-
ing, we further devise a context control module to obtain the context control
embedding for guidance, which is described in detail as follows.
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Fig. 3: An overview of the Processor backbone. (a) The architecture of the Proces-
sor backbone. (b) The illustration of a Transformer block. (c) The illustration of a
ConvFormer block. (d) The illustration of the ConvBlock. (e) The illustration of the
Gated Conv Feed-Forward Network (GCFFN). (f) The demonstration of the Context
Interaction Module (CIM). LN indicates a LayerNorm layer. CA is a channel-attention
layer. G-MSA represents the global multi-head self-attention. GRN means the global
response normalization.

Multimodal degradation-aware subject representation extraction. Only
injecting text information to the image generation backbone can not well control
a generation process [46, 48, 76], thus many recent works have explored multi-
modal control methods [18, 21, 76]. As shown in Fig. 2 (a)-(ii), we adopt the
BLIP2 [30] to acquire multimodal degradation-aware subject representation.
Specifically, the input image is first encoded with a frozen pre-trained CLIP
image encoder [43], and then passed through a multimodal Q-Former to in-
teract with the learnable queries and subject prompt. The Q-Former produces
a degradation-aware subject visual representation aligned to the subject text
prompt, which is used to generate context control embedding in the next step.

Context-aware manipulation representation extraction. To achieve context-
aware manipulation, the output of the above multimodal encoder is transformed
using a feed-forward network containing two fully connected layers with a GELU
activation in-between to obtain the subject prompt embedding, which is con-
formed to the input format of the text encoder. The subject prompt embedding
is then appended to the manipulation prompt with the template “[manipula-
tion prmpt], the [subject prompt] is [subject prompt embedding]” to obtain a
soft visual subject manipulation prompt. Finally, the combined manipulation
and subject embeddings are fed into a CLIP text encoder [43] to produce the
context control embedding, which serves as the guidance information for the
processor backbone to achieve controllable generation.

3.3 UniProcessor with Context Control

Processor pipeline. Fig. 3-(a) demonstrates the architecture of the proces-
sor backbone of UniProcessor. Our UniProcessor follows the design principles
of encoder-decoder with skip connections, similar to UNet [47]. For an input
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degraded image I, UniProcessor first uses a 3 × 3 convolutional layer to ex-
tract low-level feature embeddings Fin ∈ RH×W×C . Next, these shallow feature
maps Fin are passed through a 5-level encoder-decoder network, then output
feature maps Fout ∈ RH×W×C . Each stage of the encoder-decoder contains mul-
tiple ConvFormer or TransFormer blocks, with the number of blocks gradually
increasing from the shallow level to the deep level to maintain computational
efficiency. The context interaction module (CIM) is injected into three decoding
layers to guide and control the image processing procedure. Fig. 3-(a) shows the
feature dimensions of each level. The pixel-unshuffle and pixel-shuffle [50] meth-
ods are adopted for the down-sampling process and the up-sampling process,
respectively. We finally refine the output feature maps Fout from the encoder-
decoder network with a 3 × 3 convolutional layer to get the estimated residual
map R̂ ∈ RH×W×3, and obtain the restored image by Î = I + R̂. The UniPro-
cessor is optimized using the L1 loss: L = ||Î − I′||, where I′ is the ground-truth
image.

ConvFormer and TransFormer blocks. Transformer [12, 56] has been suc-
cessfully applied to the image processing tasks [4]. Due to the huge computa-
tional costs of transformer architecture when applied among global image pixels,
many image processing methods have been proposed to use transformer archi-
tecture in the local context or channel dimension [14, 34, 60, 65]. As shown in
Fig. 3 (a), our UniProcessor is a hybrid architecture, which applies ConvFormer
blocks (Fig. 3 (c)) to perform local context processing and adopts TransFormer
blocks (Fig. 3 (b)) to execute global context learning. Both the ConvFormer
block and the TransFormer block contain two parts, including an attention part
and a feed-forward part. The attention part in the TransFormer block contains a
channel-attention (CA) module and a global multi-head self-attention (G-MSA)
module, and the feed-forward part contains a gated convolutional feed-forward
network (GCFFN). The ConvFormer block is similar to the TransFormer block,
but uses a ConvBlock to perform local context awareness rather than the global
context perception. We adopt the ConvNext v2 block as the ConvBlock as shown
in Fig. 3 (d).

Channel-attention module and gated convolutional feed-forward mod-
ule. UniProcessor adopts a channel-attention module [5] to perform channel-wise
feature refinement. Given an input tensor X, the output of the CA layer can be
formulated as: CA(X) = X ∗ MLP(Avg(X)), where Avg is an average pooling
layer, MLP is a multilayer perceptron, ∗ indicates a channel-wise product oper-
ation. As shown in Fig. 3 (e), UniProcessor adopts a gated convolutional feed-
forward network (GCFFN) [10, 14, 49, 65] as the feed-forward network. Give an
input tensor X, the GCFFN process can be formulated as: X1 = W 1

d (W
1
p (X)),

X2 = W 2
d (W

2
p (X)), X̂ = W 3

p (ϕ(X1)⊙ X2), where Wp represents a 1× 1 point-
wise convolution, Wd indicates a 3 × 3 depth-wise convolution, ϕ is the GELU
operation, ⊙ denotes element-wise multiplication.

Context Interaction Module. The highlight of our UniProcessor is to achieve
text-guided image processing, which is mainly accomplished by the context in-
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Table 1: Comparison results for 30 degrations with heavy level on the CBSD68
dataset [39]. Our model outperforms other state-of-the-art models for almost all degra-
dation types in terms of the three most commonly used evaluation metrics, i.e., PSNR
↑, SSIM ↑ [61], and LPIPS ↓ [77]. The best results are colored in red and the second-
best results are colored in blue. The distortion levels in this table and more results for
other distortion levels can be found in supplemental files.

DRUNet [70] MPRNet [67] AirNet [28] TAPE [36] SwinIR [34] Uformer [60] Restormer [65] PromptIR [42] UniProcessor (Ours)
Degradation PSNR / SSIM / LPIPS PSNR / SSIM / LPIPS PSNR / SSIM / LPIPS PSNR / SSIM / LPIPS PSNR / SSIM / LPIPS PSNR / SSIM / LPIPS PSNR / SSIM / LPIPS PSNR / SSIM / LPIPS PSNR / SSIM / LPIPS

JPEG comp. 25.58 / 0.718 / 0.395 25.38 / 0.718 / 0.413 24.90 / 0.709 / 0.407 25.21 / 0.714 / 0.400 24.88 / 0.709 / 0.438 25.19 / 0.722 / 0.378 25.74 / 0.729 / 0.374 25.85 / 0.731 / 0.367 26.03 / 0.737 / 0.367
Gauss. blur 23.39 / 0.578 / 0.580 23.29 / 0.573 / 0.597 22.46 / 0.528 / 0.668 22.56 / 0.532 / 0.624 22.70 / 0.539 / 0.648 22.99 / 0.556 / 0.617 24.17 / 0.621 / 0.528 24.37 / 0.635 / 0.517 24.64 / 0.647 / 0.493
Lens blur 24.08 / 0.633 / 0.447 24.22 / 0.646 / 0.387 22.25 / 0.500 / 0.616 22.15 / 0.491 / 0.561 22.19 / 0.493 / 0.595 23.24 / 0.575 / 0.545 26.39 / 0.759 / 0.278 26.16 / 0.757 / 0.286 27.35 / 0.798 / 0.212
Motion blur 22.09 / 0.548 / 0.537 21.78 / 0.532 / 0.555 20.96 / 0.485 / 0.587 21.12 / 0.499 / 0.592 21.09 / 0.498 / 0.602 21.75 / 0.528 / 0.562 24.81 / 0.720 / 0.306 24.61 / 0.700 / 0.378 25.94 / 0.761 / 0.270
Color diffuse 21.05 / 0.862 / 0.223 23.15 / 0.900 / 0.174 20.45 / 0.870 / 0.215 21.95 / 0.876 / 0.197 21.64 / 0.887 / 0.184 21.92 / 0.890 / 0.187 23.78 / 0.910 / 0.158 24.42 / 0.909 / 0.154 26.03 / 0.922 / 0.140
Color shift 34.59 / 0.986 / 0.055 36.71 / 0.993 / 0.034 36.00 / 0.991 / 0.039 35.77 / 0.991 / 0.038 34.84 / 0.991 / 0.040 36.16 / 0.991 / 0.035 39.29 / 0.995 / 0.020 38.68 / 0.995 / 0.024 41.29 / 0.996 / 0.014
Color saturate 17.41 / 0.881 / 0.288 17.94 / 0.890 / 0.275 17.12 / 0.880 / 0.291 20.66 / 0.881 / 0.264 19.59 / 0.897 / 0.243 19.37 / 0.903 / 0.239 26.04 / 0.944 / 0.101 27.21 / 0.951 / 0.084 33.15 / 0.978 / 0.024
Color saturate2 23.44 / 0.881 / 0.152 25.27 / 0.914 / 0.113 22.24 / 0.883 / 0.167 24.19 / 0.893 / 0.142 23.97 / 0.905 / 0.126 23.18 / 0.901 / 0.126 25.21 / 0.915 / 0.107 25.88 / 0.919 / 0.099 27.39 / 0.929 / 0.084
Gauss. noise 26.40 / 0.723 / 0.297 26.48 / 0.723 / 0.301 26.34 / 0.721 / 0.269 25.87 / 0.677 / 0.303 26.42 / 0.723 / 0.285 26.32 / 0.732 / 0.228 26.45 / 0.739 / 0.258 26.34 / 0.747 / 0.238 26.51 / 0.766 / 0.230
GN (ycbcr) 29.52 / 0.839 / 0.164 29.68 / 0.841 / 0.166 29.52 / 0.841 / 0.144 29.15 / 0.818 / 0.164 29.49 / 0.834 / 0.166 29.44 / 0.845 / 0.128 29.93 / 0.853 / 0.136 29.93 / 0.855 / 0.134 30.40 / 0.868 / 0.125
Impulse noise 39.08 / 0.985 / 0.013 40.38 / 0.988 / 0.009 36.49 / 0.971 / 0.030 38.76 / 0.982 / 0.018 40.44 / 0.986 / 0.012 37.71 / 0.982 / 0.015 42.28 / 0.992 / 0.006 42.06 / 0.992 / 0.006 42.74 / 0.993 / 0.003
Multipli. noise 29.66 / 0.867 / 0.146 30.38 / 0.877 / 0.137 30.02 / 0.873 / 0.127 29.74 / 0.856 / 0.135 30.23 / 0.872 / 0.136 30.28 / 0.883 / 0.099 30.62 / 0.885 / 0.114 30.55 / 0.887 / 0.113 31.25 / 0.901 / 0.102
Denoise 24.78 / 0.657 / 0.553 24.73 / 0.648 / 0.568 24.18 / 0.616 / 0.626 24.14 / 0.623 / 0.593 24.05 / 0.613 / 0.636 24.72 / 0.657 / 0.531 24.76 / 0.646 / 0.586 24.75 / 0.658 / 0.519 25.15 / 0.673 / 0.475
Over bright 15.01 / 0.742 / 0.269 18.01 / 0.800 / 0.228 14.06 / 0.683 / 0.313 16.90 / 0.757 / 0.265 19.08 / 0.842 / 0.178 13.94 / 0.770 / 0.226 20.63 / 0.877 / 0.149 21.64 / 0.882 / 0.141 23.76 / 0.905 / 0.112
Low-light 14.67 / 0.613 / 0.286 19.60 / 0.751 / 0.232 12.59 / 0.466 / 0.363 17.86 / 0.706 / 0.260 18.90 / 0.744 / 0.240 21.27 / 0.801 / 0.175 20.37 / 0.787 / 0.179 24.07 / 0.837 / 0.154 24.23 / 0.846 / 0.138
Mean shift 19.13 / 0.866 / 0.070 22.74 / 0.913 / 0.052 16.91 / 0.777 / 0.072 18.51 / 0.859 / 0.089 19.28 / 0.862 / 0.093 23.26 / 0.926 / 0.041 23.26 / 0.915 / 0.035 24.41 / 0.927 / 0.031 27.99 / 0.947 / 0.023
Bicubic resize/SR 20.98 / 0.462 / 0.734 20.84 / 0.455 / 0.740 20.73 / 0.450 / 0.766 20.72 / 0.449 / 0.748 20.74 / 0.449 / 0.775 20.94 / 0.461 / 0.730 21.12 / 0.468 / 0.709 21.17 / 0.469 / 0.723 21.25 / 0.474 / 0.697
Bilinear resize/SR 20.83 / 0.457 / 0.737 20.68 / 0.451 / 0.736 20.25 / 0.437 / 0.791 20.33 / 0.439 / 0.757 20.47 / 0.442 / 0.767 20.75 / 0.457 / 0.726 21.05 / 0.466 / 0.706 21.10 / 0.468 / 0.725 21.21 / 0.472 / 0.701
Nearest resize/SR 22.08 / 0.574 / 0.481 21.95 / 0.572 / 0.508 21.73 / 0.569 / 0.475 21.81 / 0.563 / 0.534 21.80 / 0.563 / 0.526 22.06 / 0.573 / 0.493 22.07 / 0.579 / 0.483 22.16 / 0.579 / 0.478 22.32 / 0.585 / 0.452
Lanczos resize/SR 21.01 / 0.461 / 0.749 20.91 / 0.456 / 0.748 20.85 / 0.453 / 0.763 20.86 / 0.452 / 0.745 20.87 / 0.452 / 0.774 20.99 / 0.461 / 0.742 21.15 / 0.468 / 0.714 21.17 / 0.468 / 0.728 21.27 / 0.473 / 0.702
Sharpening 25.24 / 0.887 / 0.123 25.03 / 0.884 / 0.123 25.30 / 0.874 / 0.144 25.10 / 0.866 / 0.146 25.39 / 0.896 / 0.106 25.11 / 0.881 / 0.128 25.69 / 0.896 / 0.118 26.65 / 0.917 / 0.088 27.60 / 0.930 / 0.072
Contrast imbal. 21.97 / 0.889 / 0.124 22.01 / 0.887 / 0.122 21.92 / 0.888 / 0.122 26.52 / 0.936 / 0.088 23.66 / 0.872 / 0.160 22.67 / 0.902 / 0.117 30.00 / 0.976 / 0.043 33.13 / 0.982 / 0.023 40.43 / 0.994 / 0.004
Color block 30.83 / 0.958 / 0.072 30.55 / 0.959 / 0.074 24.80 / 0.936 / 0.139 28.20 / 0.951 / 0.095 30.74 / 0.959 / 0.065 32.08 / 0.965 / 0.057 32.01 / 0.964 / 0.061 32.30 / 0.966 / 0.058 33.09 / 0.969 / 0.051
Pixelate 24.22 / 0.697 / 0.331 24.00 / 0.696 / 0.334 23.99 / 0.695 / 0.348 23.85 / 0.689 / 0.383 23.91 / 0.692 / 0.372 23.98 / 0.698 / 0.339 24.14 / 0.702 / 0.332 24.22 / 0.703 / 0.327 24.41 / 0.710 / 0.306
Discontinuous 26.76 / 0.897 / 0.074 26.37 / 0.898 / 0.061 25.16 / 0.886 / 0.076 25.03 / 0.884 / 0.088 25.14 / 0.886 / 0.080 25.00 / 0.887 / 0.077 29.04 / 0.920 / 0.068 27.33 / 0.907 / 0.057 29.65 / 0.929 / 0.062
Jitter 23.85 / 0.634 / 0.387 23.91 / 0.647 / 0.404 23.55 / 0.625 / 0.373 23.27 / 0.618 / 0.418 23.59 / 0.629 / 0.425 23.84 / 0.638 / 0.390 24.07 / 0.652 / 0.405 24.13 / 0.652 / 0.412 24.29 / 0.661 / 0.426
Mosaic 36.46 / 0.984 / 0.017 35.66 / 0.972 / 0.017 34.70 / 0.978 / 0.025 36.45 / 0.977 / 0.025 35.07 / 0.976 / 0.021 11.45 / 0.423 / 0.428 38.18 / 0.983 / 0.016 38.21 / 0.984 / 0.018 40.62 / 0.990 / 0.009
Irregular mask 27.43 / 0.885 / 0.161 28.29 / 0.889 / 0.155 26.74 / 0.868 / 0.177 26.84 / 0.875 / 0.167 27.17 / 0.882 / 0.154 27.74 / 0.894 / 0.143 28.57 / 0.891 / 0.153 29.38 / 0.894 / 0.150 29.97 / 0.900 / 0.138
Block mask 27.72 / 0.916 / 0.129 29.10 / 0.920 / 0.123 27.27 / 0.906 / 0.134 26.35 / 0.905 / 0.140 27.05 / 0.913 / 0.124 29.22 / 0.923 / 0.115 28.69 / 0.920 / 0.122 30.67 / 0.923 / 0.119 32.07 / 0.926 / 0.114
Rain streak 24.34 / 0.769 / 0.203 25.26 / 0.808 / 0.173 17.17 / 0.668 / 0.300 20.32 / 0.756 / 0.216 23.38 / 0.804 / 0.170 16.39 / 0.702 / 0.254 26.89 / 0.847 / 0.123 27.80 / 0.867 / 0.099 28.67 / 0.890 / 0.082
Snow streak 22.89 / 0.644 / 0.382 24.14 / 0.716 / 0.318 24.64 / 0.745 / 0.284 25.19 / 0.781 / 0.233 25.64 / 0.806 / 0.215 26.94 / 0.830 / 0.170 21.47 / 0.620 / 0.398 24.67 / 0.723 / 0.294 30.20 / 0.885 / 0.116
Clean image 41.23 / 0.990 / 0.009 53.36 / 0.999 / 0.001 47.76 / 0.996 / 0.003 41.98 / 0.994 / 0.011 39.31 / 0.995 / 0.006 45.20 / 0.996 / 0.003 49.17 / 0.997 / 0.002 62.24 / 0.998 / 0.001 80.16 / 1.000 / 0.000

Average 25.24 / 0.765 / 0.287 26.31 / 0.779 / 0.277 24.47 / 0.743 / 0.308 25.23 / 0.759 / 0.295 25.40 / 0.769 / 0.293 24.85 / 0.761 / 0.283 27.41 / 0.801 / 0.243 28.35 / 0.809 / 0.236 30.35 / 0.827 / 0.211

teraction module (CIM). In Section 3.2, we have obtained the degradation-aware
context control embedding, which is represented as E here. The primary goal of
the context interaction module is to enable interaction between the input fea-
ture F and the context control embedding E. As shown in Fig. 3 (f), the CIM
contains a self-attention block and a cross-attention block with LayerNorm (LN)
layers before. The overall process of the CIM is:

F′ = Self-Attn(LN(F)) + F, (1)
F′′ = Cross-Attn(LN(F′),E) + F′, (2)

where LN, Self-Attn, Cross-Attn represent layernorm, self-attention, and cross-
attention, respectively, and F′ is the middle feature, F′′ is the output integrated
feature of the CIM module. CIM is a plug-in module, which controls the process-
ing procedure by interacting image features and contextual control embeddings
through cross-attention layers.

4 Experiments
In this section, we conduct experiments to validate the effectiveness of the pro-
posed method in learning an all-in-one image processing model, and demonstrate
the good degradation awareness and disentangling ability of our UniProcessor.
Due to the page limitation, more experimental results are shown in the supple-
mentary material.

4.1 Experimental Setup

Implementation details. To enable the degradation-aware VQA capabilities
of our model, we first adopt the vision language instruction tuning strategy to
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Snowy image Snowy patch Reference MPRNet [67] SwinIR [34] Restormer [65] PromptIR [42] UniProcessor

Rainy image Rainy patch Reference MPRNet [67] SwinIR [34] Restormer [65] PromptIR [42] UniProcessor

Over bright Over bright Reference MPRNet [67] SwinIR [34] Restormer [65] PromptIR [42] UniProcessor

Color Saturate Color Saturate Reference MPRNet [67] SwinIR [34] Restormer [65] PromptIR [42] UniProcessor

Motion-blur Motion-blur Reference MPRNet [67] SwinIR [34] Restormer [65] PromptIR [42] UniProcessor

Fig. 4: Visualization results on 5 different degradation types. UniProcessor produces
more visually pleasant results.

tune the VQA module of UniProcessor. Specifically, we initialize the weights
of the multimodal Q-Former in the instruction-tuned module with pre-trained
InstructBLIP [9], which empowers the model with initial ability of complex visual
scene understanding. The frozen visual encoder is a ViT-G from EVA-CLIP [16],
and the frozen LLM used in UniProcessor is Vicuna [80], which is a decoder-
only LLM fine-tuned from LLaMA [52]. We fine-tune it on the constructed low-
level VQA dataset to adapt the frozen LLM to give detailed feedback for the
degradations of an image. The model is trained using the standard language
modeling loss.
The image encoder in CIM is same as that in the VQA module, and the text
encoder is from BLIP [31]. The architecture of our UniProcessor consists of
a five-level encoder-decoder, with [4, 6, 6, 8, 8] ConvFormer or TransFormer
layers from level-1 to level-4, respectively. For CIM-plugged decoding layers,
each layer contains two CIM blocks, and the total number of CIM components
in UniProcessor is 6. The UniProcessor model is trained on 224 × 224 random-
cropped patches with random data augmentation methods including horizontal
and vertical flips, 90◦ rotations, etc. We use AdamW Optimizer to train the
network for 150 epochs with a batch size of 36. The initial learning rate is 2e−4

and gradually reduces to 1e−6 with cosine annealing [37].

Database preparation. We adopt a combined set including 900 images from
DIV2K [2], 2650 images from Flickr2K, 400 images from BSD500 [3], and 4744
images from WaterlooED (WED) [38], as the training dataset, and use four
datasets, including CBSD68 [39], Urban100 [20], Kodak24 [17], and McMaster
[75], as the test dataset. We first crop the training images into 512×512 patches
with a stride of 416 to generate 71580 small patches [65] for training. During the
training process, we randomly crop desired patches from the 512× 512 patches
prepared above as training patches. The degradations are generated on-the-fly
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during training process. We first develop a distortion bank, which includes 30
common degradations with various levels (see the supplementary material for
more details). During training, we randomly adjust the degradation level to cover
a wide perception range for improving the generality of the proposed model. For
testing, we set three levels of degradations including heavy, middle and slight.

4.2 Multiple Degradation All-in-one Results
We conduct extensive experiments to evaluate the all-in-one image processing
results of our proposed UniProcessor as well as six state-of-the-art image restora-
tion methods. These representative methods include DRUNet [70], MPRNet [67],
SwinIR [34], Restormer [65], and PromptIR [42]. These competing methods are
retrained in the experiments with their publicly released codes and following
their original settings, under our data preparation setting. All models are trained
for 150 epochs using the same training set and degradation generation methods.
Quantitative comparison results. Table 1 quantitatively demonstrates the
performance results of our UniProcessor and six competing models for processing
30 severe degradations on the CBSD68 dataset [39]. It can be observed that our
UniProcessor achieves state-of-the-art performance and outperforms other mod-
els for almost all degradation types in terms of three commonly used evaluation
metrics, i.e., PSNR, SSIM [61], and LPIPS [77], which manifests the effectiveness
of the proposed method. Moreover, our method achieves consistent improvement
but different amounts for various tasks, e.g., 0.2dB for JPEG but 5.5dB for snow
removal compared to PromptIR, indicating saturate improvement for some tasks.
More quantitative results can be found in the supplementary material.
Qualitative comparison results. Fig. 4 shows the visual comparisons of the
results from our UniProcessor and other state-of-the-art restoration models on 5
different degradation types. It qualitatively demonstrates that our UniProcessor
can well process these degraded inputs and restore high-quality clean images
using an all-in-one model. Moreover, compared to other competing methods,
UniProcessor generates more visually-faithful results.
tSNE results. Fig. 5 shows the tSNE plots of the degradation embeddings
in UniProcessor and the state-of-the-art all-in-one restoration model Promp-
tIR [42]. Distinct colors represent different degradation types. The embeddings
for the three tasks are better clustered in our case, which manifests that UniPro-
cessor can effectively learn discriminative features for recognizing the degrada-
tions.

PromptIR UniProcessor

Color saturate

Over bright

Low-light

Fig. 5: tSNE plots of the degra-
dation embeddings in UniProces-
sor (ours) and the state-of-the-art
model PromptIR [42]. Our results
are better clustered, manifesting
the effectiveness of text-induced
prompt method for learning dis-
criminative degradation context.
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Input image Output of PromptIR

Output of UniProcessor Output of UniProcessor

Subject prompt: a low-quality 
image with low-light degradation

Subject prompt: a low-quality 
image with rain streak distortion

Input image The 1st stage output The 2nd stage output

Subject prompt: 
a low-quality image 
with noise distortion

Subject prompt: 
a low-quality image with color 
saturation degradation

has color 
saturation and 
impulse noise 
distortion

(a) Separately processing (b) Sequentially processing

Fig. 6: UniProcessor can independently handle individual degradations in an image
with multiple distortions through different subject prompt controls, and can gradually
process the multiple distortions step by step.

Table 2: Quantitative comparison for multi-degradation separately processing and
multi-degradation gradually processing. PromptIR 2-step: process an image using
PromptIR twice. Degradation contains d1 and d2 . The rm d1 , rm d2 , rm d1+d2 ,
rm d2+d1 means: remove d1 , remove d2 , first remove d1 then d2 , first d2 then
d1 , respectively.

Restormer [65] PromptIR [42] PromptIR [42] 2-step UniProcessor rm d1 UniProcessor rm d2 UniProcessor rm d1+d2 UniProcessor rm d2+d1
Degradation PSNR / SSIM / LPIPS PSNR / SSIM / LPIPS PSNR / SSIM / LPIPS PSNR / SSIM / LPIPS PSNR / SSIM / LPIPS PSNR / SSIM / LPIPS PSNR / SSIM / LPIPS

Low-light + resize 19.3 / 0.63 / 0.39 19.3 / 0.63 / 0.38 20.1 / 0.64 / 0.38 21.2 / 0.60 / 0.42 19.4 / 0.64 / 0.37 22.9 / 0.68 / 0.36 22.8 / 0.67 / 0.37
Color saturate + resize 18.4 / 0.63 / 0.51 18.4 / 0.63 / 0.50 19.1 / 0.63 / 0.47 20.6 / 0.58 / 0.47 18.5 / 0.63 / 0.49 22.0 / 0.65 / 0.41 22.5 / 0.65 / 0.40
Rain + low-light 21.8 / 0.83 / 0.13 22.2 / 0.85 / 0.11 23.3 / 0.86 / 0.10 23.0 / 0.87 / 0.09 19.3 / 0.58 / 0.38 28.4 / 0.89 / 0.08 28.4 / 0.90 / 0.07
Color saturate + noise 20.8 / 0.93 / 0.20 21.1 / 0.93 / 0.19 21.6 / 0.94 / 0.15 22.6 / 0.87 / 0.26 20.8 / 0.93 / 0.20 24.4 / 0.93 / 0.14 33.9 / 0.98 / 0.02
Over bright + noise 16.1 / 0.79 / 0.17 16.1 / 0.79 / 0.18 18.0 / 0.81 / 0.17 16.0 / 0.78 / 0.18 17.8 / 0.72 / 0.22 19.6 / 0.83 / 0.15 18.0 / 0.73 / 0.21

Multi-degradation separately processing results. Due to the degradation-
aware and context manipulation capabilities, our UniProcessor can well disen-
tangle the degradations and achieve the ability to individually process a single
degradation in an image with multiple distortions. As shown in Fig. 6 (a), for
the input image with low-light and rain streak degradations, the PromptIR [42]
model can only output one restored image, and only removes the most influ-
ential degradation, i.e., rain streaks. However, for UniProcessor, with different
subject prompt control, we can control the process more flexibly and generate
the desired output.

Multi-degradation gradually processing results. The above experiment
demonstrates that UniProcessor can well disentangle degradations and indi-
vidually process them. We further conduct an experiment to demonstrate that
UniProcessor has the ability to remove multiple degradations step by step. As
shown in Fig. 6 (b), for an input with color saturation and noise distortion,
UniProcessor can first remove noise with the noise-related subject prompt. The
output is served as the second stage input and we process the image with the
color saturation-corresponding subject prompt to obtain the final high-quality
image.

Quantitative results of multi-degradation processing. As shown in Ta-
ble 2, the results of rm d1 and rm d2 have obvious distinctions, due to the
remained degradations are different. Moreover, the better results in rm d1
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Table 3: Comparisons under All-in-one restoration setting [28,42]: single model trained
on a combined set of images originating from different degradation types.

Method
Dehazing Deraining Denoising on BSD68 dataset [39]

Average
on SOTS [27] on Rain 100L [15] σ = 15 σ = 25 σ = 50

BRDNet [51] 23.23/0.895 27.42/0.895 32.26/0.898 29.76/0.836 26.34/0.836 27.80/0.843
LPNet [19] 20.84/0.828 24.88/0.784 26.47/0.7782 24.77/0.748 21.26/0.552 23.64/0.738
FDGAN [11] 24.71/0.924 29.89/0.933 30.25/0.910 28.81/0.868 26.43/0.776 28.02/0.883
MPRNet [67] 25.28/0.954 33.57/0.954 33.54/0.927 30.89/0.880 27.56/0.779 30.17/0.899
DL [15] 26.92/0.391 32.62/0.931 33.05/0.914 30.41/0.861 26.90/0.740 29.98/0.875
AirNet [28] 27.94/0.962 34.90/0.967 33.92/0.933 31.26/0.888 28.00/0.797 31.20/0.910
PromptIR [42] 30.58/0.974 36.37/0.972 33.98/0.933 31.31/0.888 28.06/0.799 32.06/0.913
UniProcessor (Ours) 31.66/0.979 38.17/0.982 34.08/0.935 31.42/0.891 28.17/0.803 32.70/0.918

Table 4: Ablation study results of UniProcessor. We report the PSNR/SSIM/LPIPS
results on two tasks including rain streak removal, and low-light enhancement.

Method Rain streak Low-light

only text encoder 27.76/0.873/0.092 23.85/0.836/0.152
w/o Q-Former 28.23/0.884/0.087 24.05/0.840/0.143
UniProcessor 28.67/0.890/0.082 24.23/0.846/0.138

(a) Ablation study for the context control mod-
ule

Method Rain streak Low-light

w/o CIM 27.30/0.862/0.101 23.03/0.832/0.156
level 5 28.30/0.877/0.097 23.65/0.839/0.150
level 5+4 28.44/0.882/0.088 24.10/0.842/0.141
level 5+4+3 28.67/0.890/0.082 24.23/0.846/0.138

(b) Ablation study for the block position of the
context interaction module.

and rm d2 are better than Restormer [65] and PromptIR [42], which mani-
fests the effectiveness of UniProcessor. Furthermore, after sequential processing
(rm d1+d2 and rm d2+d1 ), the performance can be greatly improved com-
pared to the smaller improvement of PromptIR with twice inference. The order
affects the sequential process depending on tasks and the 1st stage results. For
that both the first stage processes are well, the order effect on the results is
small. For cases that the first degradation process strongly destroys the feature
of another distortion, as processing low-light 1st for low-light+noise, the order
strongly affects the second results.

Results on an all-in-one restoration benchmark. We further conduct an
experiment following the all-in-one settings proposed in AirNet [28] and Promp-
tIR [42]. As shown in Table 3, our UniProcessor achieves better performance
compared to other state-of-the-art models, which further demonstrates the su-
periority and generality of the proposed method.

4.3 Ablation Study

We further conduct ablation studies for the UniProcessor as shown in Table
4a & 4b. Table 4a demonstrates the ablation results for the context control
module. It can be observed that when only using text encoder to extract control
information, the performance decreases obviously, and without using Q-Former
to encode subject-aligned image representation, the performance also reduces.
Table 4b demonstrates the ablation results for the context interaction module.
We observe that without CIM, the performance decreases a lot. Adding CIM to
shallow level can improve the performance but also increase computational cost.
Thus, we only add the CIM to level-5, level-4 and level-3 stages.
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Table 5: Comparisons of the computational overhead of UniProcessor.

variant GMACs PSNR

u. swin as sa 13.50 39.77
r. ca w/ sa 13.40 39.75
r. sa w/ ca 11.94 39.78
UniProcessor 12.67 39.81

(a) Computational overhead ablation of the
Processor backbone of the UniProcessor.

Model processor processor+CCM processor+CCM+VQA

GMacs 153.40 239.83 678.52

Model MPRNet [67] PromptIR [42] UniProcessor (w/o VQA)

GMacs 761.00 158.40 239.83

(b) Computational overhead comparisons with
other models.

We further conduct ablation experiments for the computational overhead.
We first test the performance and the computing overhead of the proposed pro-
cessor backbone on SIDD dataset [1], and show the results in Table 5a. “u. swin
as sa” represents using swin transformer as the spatial attention, i.e., replac-
ing the ConvFormer block with the swin transformer block. “r. ca w/ sa” and
“r. sa w/ ca” indicate replacing channel attention with spatial attention and
replacing spatial attention with channel attention, respectively, i.e., repeating
spatial attention and repeating channel attention twice for each block, respec-
tively. We can observe that, compared to CSformer [14], replacing swin blocks
with large-kernel convolutional blocks can effectively improve the performance.
Moreover, we observe that the channel attention (ca) and spatial attention (sa)
(large-kernel convolution layer) together contribute to the final improvement,
and replacing one module with another module will decrease the performance.

Furthermore, we compare the computational overhead for different modules
and models. UniProcessor contains three modules, which include a VQA module,
a context control module (CCM), a processor backbone. As shown in Table 5b,
the GMacs for the processor, processor+CCM, processor+CCM+VQA are 153.4,
239.83, 678.52, respectively. The LLM in the VQA module is the main overhead.
Since we can only use processor+CCM for processing, thus the overall processing
GMac for UniProcessor is 239.83, which is comparable to other models (GMacs
for PromptIR [42], MPRNet [67] are 158.4, 761).

5 Conclusion

In this work, we present a text-induced unified image processor, termed UniPro-
cessor, for all-in-one image processing. UniProcessor first has the ability to per-
ceive low-level degradations and perform quality or degradation-related VQA,
which can be used for generating the low-level subject prompt for subsequent
processing procedure. Moreover, to achieve controllable and unified image pro-
cessing, we develop a text-induced processor, which encodes degradation-specific
information from input image and subject text prompt, and incorporates the
manipulation prompt into the degradation-aware embedding to obtain context
control information. The control embedding is interacted with the processor
backbone to achieve controllable and unified image processing. Extensive exper-
imental results demonstrate that UniProcessor can well process 30 degradations
in one model which outperforms other competing methods, and achieve the abil-
ity to process individual distortion in an image with multiple degradations.
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