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Abstract. This supplementary material provides additional details and
results that could not fit in the main manuscript. Sec. 1 describes in detail
the 4D dataset we used throughout all our experiments. Sec. 2 provides
the detailed spatial registration algorithm used to compute branchwise
correspondences between 3D trees belonging to the same 4D tree and
across 4D trees. Sec. 3 analyzes the computation time of each component
of the proposed framework. Finally, Sec. 4 provides additional results to
demonstrate the effectiveness of the proposed framework.

1 The Pheno4D dataset

Throughout the paper, we used the Pheno4D dataset [3], which contains 4D
models of seven tomato and seven maize plants captured at different points in
time during their growth season. All the models were captured in the form of 3D
point clouds and are spatially unregistered; see Fig. 1-(top row) for an example
of a growing tomato plant.

The 4D maize plants have been captured at the same points in time. The
tomato plants, on the other hand, have been captured at different intervals. In
both cases, the plants exhibit significant variability in their growth rates since
plants, even if they have been grown under the same conditions, grow at different
rates. Thus, all the 4D plants are neither spatially nor temporally registered.

Before using this data in the proposed framework, we first extract, from the
3D point clouds, their 3D skeletal structures using the method proposed in [2];
see the top row of each example in Fig. 1, and organize the skeleton into layers
of branches; see the bottom row of each example in Fig. 1.
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2 Detailed spatial registration algorithm

Since every 4D tree shape is composed of a sequence of 3D trees, we first spatially
register the 3D shapes. First, since two 3D trees can have different numbers of
branches, we add null branches so that the two 3D trees have the same num-
ber of branches. Algorithm 1 describes the process of putting in correspondence
the 3D tree shapes within each 4D sequence. In this algorithm, the function
apply(α(j), O,γ,σ) refers to the process of applying the rotation O, diffeomor-
phism γ, and permutations σ to the 3D tree shape α(j). We refer to this phase
of the spatial registration as within 4D sequence registration. Following that,
we register every 3D sample across 4D shapes as described in ?? in the main
manuscript and we refer to that phase as cross-sequence registration.

In more detail, assume that we have two 3D trees α(j) and α(j+1). We aim
to find a rotation O∗, a reparameterization γ∗ of branches, and a permutation
σ∗ of the order of branches that minimize the distance between α(j) and α(j+1)
as defined in ?? and as of ?? in the main manuscript, where Q1 is equivalent to
α(j) and Q2 is equivalent to α(j + 1).

The first term of ?? in the main manuscript measures the distance between
two main branches, which is independent of the other two terms. So, we first
optimize that first term and get the optimal rotation O∗ and reparameterization
γ0∗ that elastically aligns the main branch of α(j + 1) onto the main branch of
α(j). we solve this problem of finding the optimal rotation O∗ and reparame-
terization γ0∗ using dynamic programming introduced as in [4]. Then, we solve
the problem of finding which side branch of α(j + 1) corresponds to which side
branch of α(j) by solving the other two terms of ?? in the main manuscript,
as a linear assignment problem. let n1 be the number of side branches of the
main branch of α(j) and n2 the number of side branches of the main branch of
α(j + 1). We build a pairwise distance matrix E of size n1 × n2 as follows:

Eij = λs inf
O,γ

∥qi1 −O(qj2,γ)∥2 + λp

(
si1 − sj2

)2

, (1)

where, q1, q2 denote the side branches and s1 and s2 are the bifurcation points
(connecting points) of those side branches to their parent branches of α(j) and
α(j + 1), respectively.

When we generate the matrix, we find the optimal O∗ and γ∗ for each pair
of branches using the same approach of dynamic programming introduced in [4].
Then, we apply the Hungarian Algorithm to the matrix E to find out the optimal
matching σ∗ between the side branches. At each layer of the trees, and for each
branch, we build this matrix and recursively solve all from the highest layer to
the main branch.

3 Computation time

The framework proposed in this paper was implemented using MATLAB(2022)
running on a CPU with 3.2 GHz Intel Core i7 processor and 16 GB of RAM.
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Algorithm 1 Registration within 4D tree sequences
Input and Definition:

– 4D tree shapes, α1, α2, . . . αn and n = number of 4D trees
– n_samples: the number of 3D samples within each 4D tree. Note that different 4D

tree shapes have different n_samples.

Procedure:

for i← 1 to n do
n_samples ← size(αi)
for j ← 1 to n_samples do

find: (O∗,γ∗,σ∗) = argmin
O,γ,σ

dCQ(αi(j), αi(j + 1)) [?? in main manuscript]

update: α̃i(j + 1) = apply(αi(j + 1), O∗,γ∗,σ∗)
end for
output spatially registered 4D tree: α̃i

end for

Spatial registration Temporal registration
SRVF space SRVF space PCA space

Tomato Maize Tomato Maize Tomato Maize
235s 17s 1, 786s 176s 0.037s 0.006s

Table 1: Maximum computational time for the spatiotemporal registration (in sec-
onds).

Tabs. 1 and 2 provide a detailed breakdown of the computation time of the dif-
ferent components of the proposed framework. The maximum time required for
the spatial registration of two 4D maize plants was around 17 seconds and was
235 seconds for the tomato plants. From Tab. 1, we can see that the computa-
tion time required for the spatial registration increases with the complexity of
the branching structure of the tree-shaped 3D objects. For instance, the maize
plants have only two levels of layers and the computation time for putting in
correspondence two such 3D objects is 17s on average. The tomato plants, on the
other hand, which can have up to four layers, require, on average, 235 seconds.

One important contribution of this paper is the mapping of 4D tree-shaped
structures to a low-dimensional PCA space where 4D tree-shaped structures
become trajectories in a low-dimensional space. This resulted in a significant
improvement in the computation time of the temporal registration: in the original
SRVF space, the temporal registration takes on average 176s for the maize plant
and 1, 786s for the tomato plant. In the proposed PCA space, this computation
time is significantly reduced to 0.006 seconds for the maize plant and 0.037
seconds for the tomato plant. The gain in computation time comes without
sacrifying the quality and accuracy of the temporal registration.
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Geodesic Mean Modes of variation Synthesis
Tomato Maize Tomato Maize Tomato Maize Tomato Maize
0.025s 0.007s 0.0006s 0.0004s 0.002s 0.001s 0.001s 0.0006s

Table 2: Maximum computation time (in seconds) for computing 4D geodesics be-
tween two 4D tree-shaped structures, 4D statistics (mean and modes of variation), and
generating (synthesizing) one 4D tree-shaped structure..

Once the spatiotemporal registration is performed, the subsequent steps, i.e.,
computing 4D geodesics, means and modes of variation, and generating new 4D
tree-shaped structures is very fast, in the order of milliseconds as shown in Tab. 2.

4 Additional results

In this section, we provide more results and analysis that could not fit within
the main manuscript. In what follows, Sec. 4.1 discusses the spatiotemporal
registration. Sec. 4.2 presents additional results about geodesics between 4D
tree-shaped structures. Sec. 4.3 provides additional results on summary statistics
while Sec. 4.4 provides more examples of randomly generated 4D tree-shaped
structures.

4.1 Spatiotemporal Registration

Spatial registration. Figs. 2 and 24 show two examples of the spatial reg-
istration of the 3D trees within two 4D tomato plants, hereinafter referred to
as the source and target plants. In the figures, we show the source and target
4D plants before and after spatial registration. Here, for clarity purposes, we
only show the branch-wise correspondences up to the 2nd layer. Fig. 3 provides
a zoom-in on the highlighted 3D trees while Fig. 4 shows the computed corre-
spondences at the third level of the tree hierarchy. These figures show that our
proposed framework is efficient in finding correct branch-wise correspondences
between complex 4D plants.

Fig. 13 provides another example showing the computed spatial registrations
within and across a 4D maize plant.

In addition to the performance metrics used in the main manuscript, we also
evaluate the quality of the proposed spatial registration and compare it to [2]
and [1] using the the description length defined as the number of eigenvectors
needed to characterize x% of the variability within the dataset. x is referred
to as the cumulative energy. To this end, we take a collection of twenty-eight
3D trees, compute their spatial correspondences using the three methods, and
then perform PCA on the aligned dataset. If the spatial correspondences are
correct then the number of eigenvectors needed to describe x% of the variability
in the dataset should be small. x is referred to as the cumulative energy while
the number of eigenvectors is referred to as the description length. Fig. 5 plots
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the cumulative energy vs. the description length before spatial registration and
after the spatial registration using our method and the methods of [2] and [1]. As
we can see, our method performs slightly better than [2] and [1]. This difference
becomes significant for cumulative energies that are below 65%. However, on
average, [1] requires 30s, [2] requires 20.1s, while our method requires only 2.3s
to register two 3D trees. This shows that the proposed method is significantly
faster than [1] and [2] without sacrificing the quality of the registration. In the
contrary, our method performs slightly better as shown in Fig. 5.

Temporal registration: In this section, we demonstrate the proposed frame-
work’s performance in temporally aligning 4D plants that grow at different rates.
Using the datasets described above, we first randomly remove some samples to
simulate unsynchronised 4D plants and use these re-sampled 4D sequences to
validate our proposed temporal registration tools. Fig. 6 shows an example where
the target 4D tree has been temporally warped, using the proposed framework,
to temporally align it onto the source 4D tree. To visually evaluate the quality
of the proposed temporal alignment, we also show the ground-truth target 4D
plant in Fig. 6 along with the temporally registered 4D target plant. From the
figure, we can see that, after the temporal registration, the growth rate becomes
closer to the ground truth. The supplementary material provides more results of
temporal registration of 4D tomato and maize plants.

Fig. 14 shows another example of temporal registration between two 4D maize
plants. Further, we add more temporal registration results between 4D tomato
plants in Figs. 25 to 27.

Ablation study. The importance of the SRVF representation in spatial reg-
istration of 3D tree shapes has already been established in [5]. Thus, in this
paper, we only analyze the importance of the SRVF representation in perform-
ing temporal registration. To this end, we take a ground truth 4D source plant
and generate a target 4D plant by temporally warping the source. Hence, the
target becomes non-synchronized with the source. We then register the source
and target 4D plants in the spatial domain as well as in the SRVF domain. We
can observe in Fig. 7 that in the original space, the temporal registration failed
to synchronize the target with the source. Also, we observe a significant shrink-
age in the 4D target plant, and thus cannot properly represent the growth of the
target plant; see the region highlighted with a green box. We can clearly see in-
correct temporal registration results when using the L2 metric. This is expected
since the tree shape space has a non-linear structure. Also, when working in
the original space, we observe that branches get disconnected from their parent
branch at the bifurcation points; see the red box in Fig. 7. Fig. 7b and Fig. 7c
show a zoom-in on the regions highlighted with a red box in Fig. 7.

4.2 Geodesics between 4D Trees

Fig. 8 shows a geodesic path, before spatiotemporal registration, between a
source 4D plant (top row) and a target 4D plant (bottom row). The in-between
rows correspond to 4D plants sampled at equidistances along the geodesic path
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between the source and target. In this example, the target has a different growth
rate than the source 4D plant. It also has missing samples. Thus, we interpolate
it and sample it at the same time intervals as the source but we do not perform
spatiotemporal registration. Consequently, the target follows a different growth
pattern than the source. As we can see in this figure, since the two 4D plants are
not spatio-temporally registered, the 4D geodesic does not look realistic as the
intermediate 4D plants along the geodesic exhibit significant shrinkage. Fig. 9
shows the geodesic between the same 4D plants but after performing spatiotem-
poral registration using the proposed framework. We can clearly see now that
the target 4D plant (last row) is temporally well aligned with the source 4D plant
(first row). Also, we can clearly see that the branches of the intermediate plants
along the geodesic path (intermediate rows) do not suffer from the shrinkage
observed in Fig. 8, prior to the registration.

Fig. 15 and Fig. 16 show another example of geodesics between 4D maize
plants before (Fig. 15) and after (Fig. 16) temporal registration. We also com-
puted the geodesic between 4D maize plants by mapping the 3D trees into curve
space from their original tree shape space CT , instead of SRVFT space CQ. We
show this result in Fig. 17 where we can notice a significant noise added in the
geodesic path.

4.3 Summary Statistics

We take seven unregistered 4D tomato plants from the Pheno4D dataset and
compute their mean and modes of variations using the proposed framework.
Fig. 10 shows the seven 4D tomato plants before (Fig. 10a) and after (Fig. 10b)
co-registering using the proposed spatiotemporal registration. In the figure, each
row corresponds to a 4D plant and the color codes represent the branch-wise
correspondences. Before registration, the branch correspondences were not cor-
rect. Although the growth rate varies across the 4D plants, and thus the plants
are not temporally registered, we have further removed some samples in some
of the 4D plants to simulate highly unsynchronized 4D plants. After spatiotem-
poral co-registration, we can observe that the branches of the 4D plants become
in correspondence. Further, all the 4D plants become temporally synchronized
with each other irrespective of their growth rates.

Fig. 11 shows the average 4D plant of these seven registered 4D plants com-
puted using the proposed framework. We can see that the mean captures the
main characteristics of these seven 4D plants.

In addition to the mean, Fig. 12 shows the principle directions of varia-
tion that represent the spatiotemporal shape variability in the seven 4D tomato
plants.

We also perform the same task on seven unregistered 4D maize plants (Fig. 18)
from Pheno4D. Fig. 19 shows the same 4D plants after their co-registration (spa-
tially and temporally), Fig. 20 shows their computed 4D mean while Figs. 21
and 22 show, respectively, the first and second modes of variation.
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4.4 4D Tree-shape Synthesis

In addition to the examples presented in the main manuscript, Fig. 23 shows
four randomly synthesized 4D maize plants.
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(a) An example of a growing tomato plant.

(b) An example of growing maize plant.

(c) Another example of a growing maize plant.

Fig. 1: Examples of 4D plants from the Pheno4D dataset. For each example, we show
the original point cloud with the computed 3D skeleton overlayed on it (first row), and
the decomposition of the 3D skeleton into layers (second row). The red branch is the
main branch, blue corresponds to the 2nd layer of branches, yellow to the 3rd layer,
and purple to the 4th layer.
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Fig. 2: Example of spatial registration of 3D tree-shaped structures within and across
4D trees. The colors indicate branch-wise correspondences before (1st and 2nd rows)
and after (3rd and 4th rows) spatial registration. We only show correspondences up
to the second level of the tree hierarchy. Figs. 3 and 4 provide a close zoom-in on the
highlighted trees.
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03-2503-24

03-2503-24

9th

9th

10th

10th

Source before spatial registration

Target before spatial registration

(a) Before spatial registration.

(b) After spatial registration.

Fig. 3: A zoom-in on the the 9th and 10th trees of Fig. 2, before and after spatial
registration. The correspondences are shown up to the second layer. Fig. 4 provides a
zoom-in on the correspondences at the third layer of the tree section highlighted with
a red box.
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Fig. 4: Illustration of the branchwise correspondences at the third layer of the 4D
tree-shaped structures of Figs. 2 and 3. The correspondences are shown for the region
highlighted with a red box in Fig. 3.
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Fig. 6: An example of the temporal registration of 4D tomato plants. The numbers
below each tree are the dates, in MM-DD format, when each sample is captured.
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(a) temporal registration in the SRVF space (third row) and the original space (fourth row) of the
source (top row) and the target (second row). The green box highlights some incorrect temporal
registration that happens in the original space. 7b and Figure 7c provide a zoom-in on the region
highlighted with a red box.

(b) The zoom-in view of a 3D plant from the
4D target temporally registered in SRVF space
(top one in the red box of Figure 7a This plant
exhibits no bifurcation points separation.

(c) The zoom-in view of a 3D plant from the 4D
target temporally registered in the original space
(bottom one in the red box of Figure 7a). This
plant exhibits bifurcation points separation.

Fig. 7: Significance of the SRVF representation for the temporal registration.
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Fig. 8: Example of a 4D geodesic path, before spatiotemporal registration, computed
between a 4D tree shape (top row) and a target 4D tree shape (bottom row). The
highlighted middle row corresponds to the mean of the source and target 4D plants.
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Fig. 9: Example of a 4D geodesic path between the two 4D tree shapes of Fig. 8 but
this time after performing spatiotemporal registration. The top row corresponds to the
source, while the bottom row corresponds to the target. The middle row, highlighted
with a red rectangle, corresponds to the mean of the source and the target 4D plants.



16 K. Tahmina et al.

03-17

03-25

03-19

03-25

03-25

03-15

03-07

03-19

03-05

03-1903-15

03-24

03-24

03-19

03-05

03-25

03-25

03-17

03-11

03-13

03-0703-09

03-05

03-09

03-19

03-19 03-2403-07

03-17

03-25

03-11

03-07

03-09

03-17

03-13

03-09

03-05

03-13

03-05

03-11

03-13

03-1503-05

03-13

03-05

03-09

03-15

03-17

03-15

03-1503-13

03-11

03-09

03-25

(a) Seven unregistered 4D tomato plants (one per row). The number under each plant indicates
the capture date, written in MM-DD format.

(b) The seven 4D plants (one per row) after their co-registration.

Fig. 10: Seven 4D tomato plants from Pheno4D dataset before and after their spa-
tiotemporal registration. Color codes represent the branch-wise correspondences.
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Fig. 11: The mean 4D plant shape of the seven registered 4D tomato plants in Fig. 10b.
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(a) First mode of variation.
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(b) Second mode of variation.

Fig. 12: First (a) and second (b) principal directions of variation. Each row corre-
sponds to one 4D plant sampled between −1.5 to 1.5 times the standard deviation
along the principal direction of variation. The mean 4D plant is highlighted in red.
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Source before spatial registration

Target before spatial registration

Source after spatial registration

Target after spatial registration

Fig. 13: Example of spatial registration of two 4D tree-shaped structures (of maize
plants). Colors indicate branch-wise correspondences before (1st and 2nd rows) and
after (3rd and 4th rows) spatial registration.
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Ground truth source

Target with missing samples

Target after interpolation

Target after temporal registration

Fig. 14: An example of the temporal registration of 4D maize plants.
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Fig. 15: The 4D geodesic between two 4D maize tree shapes before spatiotemporal
registration. The top row corresponds to the source and the bottom row corresponds
to the target.
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Fig. 16: The 4D geodesic between the two 4D maize tree shapes of Fig. 15 after
spatiotemporal registration. The top row corresponds to the source and the bottom
row corresponds to the target.
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Fig. 17: The 4D geodesic between two 4D maize tree shapes (same 4D shapes of
Figs. 15 and 16 ) calculated in the original tree shape space. The top row corresponds
to the source and the bottom row corresponds to the target. Since we compute the
geodesic in the original space (not the SRVFT space of trees) we notice a significant
noise in the output.
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Fig. 18: Seven unregistered 4D maize plants. Each row corresponds to a 4D plant. The
colors indicate the correspondence between trees.
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Fig. 19: The co-registered seven 4D maize plants. Each row corresponds to the 4D
plants of the same row in Fig. 18. The colors indicate the correspondence between
trees.
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Fig. 20: The mean 4D plant shape of the seven registered 4D maize plants in Fig. 19.
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Fig. 21: First principal directions of variation of the set of maize plants in Fig. 19.
Each row corresponds to one 4D plant sampled between −1.5 to 1.5 times the standard
deviation along the principal direction of variation. The mean 4D plant is highlighted
in red.
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6

Fig. 22: Second principal directions of variation of the set of maize plants in Fig. 19.
Each row corresponds to one 4D plant sampled between −1.5 to 1.5 times the standard
deviation along the principal direction of variation. The mean 4D plant is highlighted
in red.
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Fig. 23: Three randomly synthesized 4D maize plants. Each row corresponds to a
random 4D plant.
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Source before spatial registration

Target before spatial registration

Source after spatial registration

Target after spatial registration

Fig. 24: An Example of spatial registration of 3D tree-shaped structures across two
4D tomato trees. The colors indicate branch-wise correspondences before (1st and 2nd
rows) and after (3rd and 4th rows) spatial registration. We only show correspondences
up to the second level of the tree hierarchy.
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Fig. 25: An example of the temporal registration of 4D tomato plants. The numbers
below each tree are the dates, in MM-DD format, when each sample is captured.
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03-05 03-07 03-09 03-11 03-13 03-15

Source

03-17 03-19 03-24 03-25

03-05 03-09 03-13 03-15
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Fig. 26: Another example of the temporal registration of 4D tomato plants. The num-
bers below each tree are the dates, in MM-DD format, when each sample is captured.
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Fig. 27: Another example of the temporal registration of 4D tomato plants. The num-
bers below each tree are the dates, in MM-DD format, when each sample is captured.
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Fig. 28: Example of a 4D geodesic path, before spatiotemporal registration, computed
between a simulated 4D neuron shape (top row) and a simulated target 4D tree shape
(bottom row). The highlighted middle row corresponds to the mean of the source and
target 4D neurons.
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Fig. 29: Example of a 4D geodesic path between the two simulated 4D neuron shapes
of Fig. 28 but this time after performing spatiotemporal registration. The top row
corresponds to the source, while the bottom row corresponds to the target. The middle
row, highlighted with a red rectangle, corresponds to the mean of the source and the
target 4D neurons.
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