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Abstract. Accurately recognizing a revisited place is crucial for embodied agents

to localize and navigate. This requires visual representations to be distinct, despite

strong variations in camera viewpoint and scene appearance. Existing visual place

recognition pipelines encode the whole image and search for matches. This poses

a fundamental challenge in matching two images of the same place captured from

different camera viewpoints: the similarity of what overlaps can be dominated

by the dissimilarity of what does not overlap. We address this by encoding and

searching for image segments instead of the whole images. We propose to use

open-set image segmentation to decompose an image into ‘meaningful’ entities

(i.e., things and stuff). This enables us to create a novel image representation as a

collection of multiple overlapping subgraphs connecting a segment with its neigh-

boring segments, dubbed SuperSegment. Furthermore, to efficiently encode these

SuperSegments into compact vector representations, we propose a novel factor-

ized representation of feature aggregation. We show that retrieving these partial

representations leads to significantly higher recognition recall than the typical

whole image based retrieval. Our segments-based approach, dubbed SegVLAD,

sets a new state-of-the-art in place recognition on a diverse selection of bench-

mark datasets, while being applicable to both generic and task-specialized im-

age encoders. Finally, we demonstrate the potential of our method to “revisit

anything” by evaluating our method on an object instance retrieval task, which

bridges the two disparate areas of research: visual place recognition and object-

goal navigation, through their common aim of recognizing goal objects spe-

cific to a place. Source code: https://github.com/AnyLoc/Revisit-

Anything.
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1 Introduction

Visual Place Recognition (VPR) is an important capability for embodied agents to

localize and navigate autonomously. A predominant solution for VPR is to encode
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an image into a global vector and retrieve similar vectors as coarse localization hy-

potheses [19, 44, 60, 67]. Thus, for almost a decade, researchers have focused on learn-

ing/finetuning image encoders so that global descriptors are induced with invariance to

appearance [3,56,69], viewpoint [3,8], and clutter [27]. On the other hand, there is a vast

literature on local descriptors (point/pixel-level), mainly relevant for geometric rerank-

ing in hierarchical VPR [11,16,25,57,68]. In the middle of local and global descriptors

exists a variety of methods that use regions/patches [4, 25], lines/planes [17], objects

(things/stuff) [21, 31, 45, 65], and segments [26, 33, 50] to represent images. However,

these methods are still only aimed at either improving global descriptors based coarse

retrieval or local feature matching based reranking. In this work, in contrast to conven-

tional retrieval-based VPR, we explore an alternative: retrieval via encoding segments

instead of the whole image. This is particularly enabled by recent advances in open-

set image segmentation [37] which can meaningfully deconstruct a place into ‘things’

(and/or ‘stuff’) [10]. Thus, we reformulate the VPR problem of revisiting places as that

to revisiting things by enabling recognition of these specific things within the context

of their place. While such a segment-level place recognition approach provides a direct

link to higher-level semantic tasks, such as object-goal navigation [12,20,24,43], it also

addresses a fundamental issue in matching partially-overlapping images from across

significant viewpoint change. Segments-based partial image representation avoids the

mismatches caused by the whole-image representation when the similarity of what over-

laps is dominated by the dissimilarity of what does not overlap. Our novel segments-

based VPR method, dubbed SegVLAD (Segment based Vector of Locally Aggregated

Descriptors), is illustrated in Figure 1, which makes the following novel contributions:

1. an image representation as a collection of multiple overlapping subgraphs of seg-

ments, dubbed SuperSegments, which enables accurate recognition across partially-

overlapping images;

2. a factorized representation of feature aggregation to effectively accommodate both

segment-level information as well as segment neighborhood information; and

3. a similarity-weighted ranking method to convert segment-level retrieval into image-

level retrieval.

Using a diverse set of data sources, we demonstrate that our proposed segments-

based retrieval enables place recognition under wide viewpoint variations, where global

descriptor based retrieval suffers. SegVLAD achieves a new state-of-the-art on multiple

challenging datasets. We also introduce an evaluation of our method on an instance-

level object retrieval task – a novel capability of our pipeline unlike conventional VPR

methods. We conduct several ablations and parameter studies to justify the design

choices and emphasize the effectiveness of our method as an open-set segments-based

coarse retriever.

2 Related Works

Image retrieval-based Visual Place Recognition (VPR) is a well-established area of re-

search in visual localization [19,44,60,67]. It is important both during mapping for loop
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closures [67] as well as for relocalization [51, 58]. The underlying task in both the sce-

narios remains the same: how to recognize a previously seen place. The state-of-the-art

methods in VPR use a global descriptor-based approach which converts an image into

a compact vector to enable fast retrieval [2, 3, 6, 29, 32, 56]. The top retrieved hypothe-

ses are often then re-ranked through compute-intensive local feature matching using

geometric information [11, 16, 25, 33, 57, 68]. In contrast to previous approaches, we

aim to explore image segment level descriptors in this work. This representation falls

between point-based local descriptors and the whole-image based global descriptors.

Our approach can be considered as ‘semi-global’, with the proposed segment (and Su-

perSegment) based descriptors being a ‘spatially-reduced’ form of whole-image global

representation. This is motivated by our hypothesis that to deal with viewpoint varia-

tions in VPR with partially-overlapping images, we need a way to partially represent

and match them.

2.1 Whole Image Encoders

Earlier works in whole-image representation used methods like Gist [48], BoW (Bag

of Word) [63], and VLAD (Vector of Locally Aggregated Descriptors) [30], often

defined using hand-crafted features such as SIFT [41]. In recent years, deep learn-

ing based methods have demonstrated remarkable performance, with initial successful

methods like NetVLAD [3] now rapidly outperformed by better alternatives such as

CosPlace [6], MixVPR [2], EigenPlaces [8], TransVPR [68], and more recently Any-

Loc [32], SALAD [29] and VLAD-BuFF [35]. All these learning-based methods im-

prove different aspects of representation learning: training datasets [1, 6, 69], objec-

tive/loss functions [2, 8], aggregation methods [29, 54, 56, 68], and generalization [32].

Our approach complements these existing methods as we mainly focus on the use of

segment-based information, where the segments can be described by any of the image

encoders from the aforementioned techniques. In particular, we demonstrate that both

– an off-the-shelf encoder, e.g., DINOv2-AnyLoc [32, 49] or that finetuned specifically

for the VPR task, e.g., DINOv2-NetVLAD [35] – can be used in conjunction with our

segment-based approach to further elevate place recognition capability.

2.2 Region/Patch Based Methods

There exist several methods that employ region or patch level information to enhance

representational power [13,14,34,40,52,71,73]. However, most of these methods only

use this additional information to generate a single (or concatenated) compact vector

representation of an image. Other methods such as Patch-NetVLAD [25] create mul-

tiple features per image but their primary purpose is to perform local matching based

reranking. In contrast to these methods, we aim to use multiple segment descriptors per

image to directly retrieve from a database of segments, without using any geometric

information or reranking. The motivation behind this stems from the very nature of hi-

erarchical VPR pipelines: reranking recall is upper bounded by the coarse retriever. A

better coarse retriever can improve reranking performance without needing to rerank

from a longer list of top hypotheses. MultiVLAD [4] is similar to our method in the

spirit of retrieving multiple features per query image. However, like aforementioned
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methods, MultiVLAD defines regions arbitrarily, whereas we use image segments ob-

tained from Segment Anything Model (SAM) [37] which are semantically meaningful.

2.3 Segments-Enhanced Methods

There exist several methods that use semantic segmentation information to improve

VPR, as also surveyed in [22]. These methods vary in terms of type of segmentation

used and the specific ways in which it is integrated in the VPR pipeline, e.g., planes [17],

objects [15,31,45], landmarks [65], outdoor semantics [21,23,46,47], utility/confusion

based [33, 38], domain adaptation [26] and even learning to segment for VPR [50].

However, neither these methods aim to perform segment-level retrieval nor do they use

open-set segmentation. We also review two concurrent works: MESA [75] and Region-

Revisited [61]. Similar to our method, they both use SAM to segment images but for

different specific tasks. MESA [75] proposes a graph-based local feature/area matching

method to obtain point correspondences. Our method complements this, as we per-

form coarse retrieval for VPR, which could potentially use MESA for reranking. Re-

gions Revisted [61] delves into the advantages of using SAM masks in conjunction with

SLIC [36] to improve semantic segmentation, activity recognition and object category

retrieval. In contrast, we aim to improve instance-level recognition by recognizing spe-

cific things belonging to specific places that a robot encounters during a revisit. Similar

to our work, [20] creates an image sequence-based topological graph of segments where

its segment neighbourhood aggregation is based on average pooling, similar to [61]. In

Section 5.3, we show that such segment average pooling deteriorates recognition per-

formance for the VPR task.

2.4 Open-set VPR

Researchers have recently started to shift their focus to open-set, generally-applicable

techniques, including that for VPR [31, 32, 45, 62]. FM-Loc [45] uses GPT [9] to rec-

ognize object and place labels, whereas [31] uses CLIP [55] for open-set place recog-

nition. LIP-Loc [62] proposes pretraining for cross-modal VPR, but is limited in its

zero-shot capabilities. AnyLoc [32] proposes to use DINOv2 with domain-level vocab-

ularies and hard-assignment based VLAD. It achieves state-of-the-art performance par-

ticularly on non-streetview datasets, where current VPR-trained methods tend to fail. In

this work, we propose a generally-applicable approach which is built on top of models

like SAM [37] and DINOv2 [49], and works with both VPR-agnostic [32] and VPR-

specific [35] backbone models. We particularly aim for a new paradigm in retrieval

based VPR, where we move away from the conventional whole image global descrip-

tors to segments based descriptors and retrieval, which achieves a new state-of-the-art

on diverse domains under wide viewpoint variations.

3 Proposed Approach

Despite recent advances in place recognition, viewpoint variations continue to be an

open challenge for an embodied agent to recognize the same specific things in its envi-

ronment. Current methods in visual place recognition tackle this problem by converting
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Fig. 1: Overview of our segment-retrieval based VPR pipeline, dubbed SegVLAD: We use open-

set segmentor (SAM) to extract segment masks, which are converted into SuperSegments using

the neighbouring image segments. Using pixel-level DINOv2 descriptors with VLAD-based ag-

gregation, we obtain SuperSegment descriptors, which are matched against a flat index of Super-

Segment descriptors obtained from all the images of the entire reference database.

an image as a whole into a global descriptor, which does not explicitly deal with the

problem of partial visual overlap caused by viewpoint variations. We propose an alter-

native solution by representing images partially with the help of image segments. In

the following subsections, we describe our representation and retrieval method, which

deviates from the conventional VPR techniques but creates a new capability in terms of

recognizing objects/things that constitute a place.

3.1 Problem Formulation

We represent an image as a set of segment descriptors instead of a single global de-

scriptor. For an image I , we obtain binary image segment masks M ∈ {0, 1}S×N and

dense pixel-level descriptors fp ∈ RD, where S represents the number of segments per

image, D is the descriptor dimension, and p ∈ [1, N ] represents spatial elements across

the width (W ) and height (H) of the image encoder’s output, flattened intoN =W×H
for convenience. Figure 1 shows an illustration of our proposed pipeline, as explained

in the following subsections.

3.2 Super Segments

Humans are remarkable at visual recognition, where existing studies suggest that we

often leverage spatial associations among objects in an environment to represent it in-

ternally [5, 28]. This enables us to distinguish between two different scenes through

the surrounding context of the objects of interest. In this work, we imbibe this context

through the spatial neighbourhood of the image segments. For each image, we con-

struct a graph of segments through their pixel centers using Delaunay Triangulation.
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Fig. 2: Neighborhood expansion (Eq. 1) of a window in the leftmost image to the whole building

in the rightmost image, progressing from no neighborhood aggregation to a third-order aggrega-

tion. This neighborhood expansion is in stark contrast with a typical regular grid- or patch-based

approach which may not capture semantically-meaningful SuperSegments.

Fig. 3: Illustration of four SuperSegments obtained from the same image. All four of these spa-

tially overlap with each other, which is different from coarse segmentation methods that do not

typically allow overlap across segments.

This provides us with a binary adjacency matrix A ∈ {0, 1}S×S to define the neighbor-

hood for individual segments. We use this adjacency information to expand the context

of individual segments to generate new SuperSegment masks (M) as below:

MS×N = 1(Ao
S×S ·MS×N ) (1)

where o ≥ 0 refers to the order for expanding the neighborhood by multiplying the

adjacency matrix by itself asAo+1 = Ao ·A. This is matrix-multiplied with the original

segmentation masks M to expand the neighborhood at pixel level. M is obtained af-

ter element-wise binarization (denoted with 1()) so that all pixels in the SuperSegment

mask may only contribute once to the subsequent feature aggregation. In Figure 2, we

illustrate the extent of image area covered with different orders of mask expansion.

Unlike, a patch or regular grid-based approach, the expanded mask of the window in

the leftmost image covers a meaningful entity (building) in the rightmost image. Our

approach to creating SuperSegments differs from coarse segmentation methods or su-

perpixels in terms of the ‘self-overlap’. By expanding neighborhood of each individual

segment, we obtain several partially overlapping SuperSegments. A coarse segmentor

will need to make assumptions about the right sub-segments to be coalesced so that

it can enable accurate recognition from a different viewpoint, which could otherwise

lead to the same limitation as that of the whole-image descriptors. Figure 3 presents

examples of multiple overlapping SuperSegments from the same image.

3.3 SuperSegment Descriptors

In this section, we describe our feature aggregation method to obtain SuperSegment

descriptors. Recent state-of-the-art method AnyLoc [32] demonstrated that using off-

the-shelf powerful image encoders such as DINOv2 with hard assignment based VLAD
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aggregation achieves superior recognition performance. However, AnyLoc does not

use segmentation information and only operates at the whole-image level. More re-

cently, [61] showed that average pooling works well for segment-level descriptors, but

it didn’t consider segment neighborhood information. In this work, we propose a uni-

fied formulation for feature aggregation that can easily switch across segments, segment

neighborhood and the whole image as well as different aggregation types (see supple-

mentary for details). This simply extends Equation 1 as below:

FS×D = 1(Ao
S×S ·MS×N ) · TN×D (2)

where T represents the features to be aggregated. By replacing A and M with ones

matrices, one can obtain the whole-image global descriptor. For methods like Global

Average Pooling (GAP), T can be directly used as the output of the image encoder. In

our work, we use Hard-VLAD, for which T is the residual feature matrix per cluster

and is obtained as below with respect to each of the cluster centers ck:

T k
Nk×D = {αk(fp)(fp − ck) | αk(fp) = 1} (3)

where αk(fp) ∈ {0, 1} is 1 if fp belongs to ck. The cluster centers (vocabulary) can be

constructed using the map or the domain [32]. The SuperSegment VLAD descriptors

obtained from Eq. 2 are intra-normalized, concatenated across clusters and then finally

l2-normalized, following existing works [3, 32].

3.4 Image Retrieval via Segments

Existing global descriptor based VPR techniques produce a single vector per image to

search against a database of reference image vectors. In our method, we obtain multiple

SuperSegment descriptors per image. We perform retrieval at segment-level, that is, we

search for the top matches for each query segment against a flat index of all segments

from all the images of the reference database/map. To evaluate in the form of image

retrieval-based VPR, we convert the top retrieved segment indices across all segments

of a query image into top reference image indices. This is achieved through a weighted

frequency measure (i.e., weighted bin/word counting). We first map the topK ′ retrieved

segment indices for each of the query segments s ∈ [1, S] to their respective reference

image indices, denoted with r. Then, for each of the unique retrieved image indices rj ,

we accumulate its segment similarity θ and then use the cumulative similarity score θ̂

to rank the image indices to obtain the top image match r∗j :

r∗j = argmax
rj

θ̂(rj); θ̂(rj) =
S∑

s=1

K′∑

k=1

θsk · 1{rsk=rj} (4)

In Section 5.3, we compare our similarity-weighted ranking with other alternatives

based on frequency or similarity alone.
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4 Experimental Setup

Datasets: VPR datasets are in abundance, as can be found in several benchmarks

including VPR-Bench [74], Deep Visual GeoLocalization Benchmark [7], and Any-

Loc [32]. In this work, we used a variety of datasets covering both outdoor and in-

door environments. Outdoor datasets include Pitts30k [66], AmsterTime [72], Mapil-

lary Street Level Sequences (MSLS) [69], SF-XL [6], VPAir [59], Revisted Oxford5K

and Revisited Paris6k [53] . Indoor datasets include Baidu Mall [64], 17Places [76] and

InsideOut [27]. Additional datasets-related details are provided in the supplementary.

Evaluation and Benchmarking: We evaluate our method as an image retrieval task

using Recall@K metric, where top K’ (= 50) retrieved segments per query segment

are used to obtain top K (= 5) images (see Eq. 4). We compare against the most recent

and high-performing VPR baseline methods. This includes CosPlace [6], MixVPR [2]

and EigenPlaces [8], which are trained on large-scale urban datasets for VPR tasks.

We further include two very recent state-of-the-art methods that use DINOv2 as the

backbone. These include AnyLoc [32] which uses an off-the-shelf DINOv2 model and

SALAD [29] which uses a finetuned DINOv2 backbone. Given the dichotomy between

general-purpose VPR benchmarking of AnyLoc and the typical outdoor-focused bench-

marking in SALAD and other methods, we evaluated our method using two different

backbones. a) SegVLAD-PreT: we use the same backbone and aggregation as AnyLoc,

i.e., off-the-shelf pretrained DINOv2 (ViT-G) backbone with hard VLAD assignment,

but the key difference is in the use of SuperSegments for our method as opposed to

whole-image description of AnyLoc. b) SegVLAD-FineT: since our default aggrega-

tion method is VLAD, we use a finetuned DINOv2 (ViT-B) backbone which is similar to

SALAD but replaces its aggregation layer with the original NetVLAD aggregation [3]

using 64 clusters, as described in [35]. We use this finetuned backbone with hard VLAD

based assignment, similar to AnyLoc. For both these models, we reduce the descriptor

dimensions of the VLAD descriptor to 1024 using PCA, as commonly done in previous

works [3, 32]. We train PCA transform in a map-specific manner using the database

images of the dataset.

5 Results

We first present benchmark comparison of our method against state-of-the-art VPR

methods. This is followed by detailed analysis of our proposed aggregation technique.

Lastly, we demonstrate results on a downstream task of Object of Interest (OOI) re-

trieval, showcasing the versatility of our method.

5.1 State-of-the-art comparisons

Table 1 presents Recall@1/5 comparison against state-of-the-art VPR methods on stan-

dard outdoor street-view datasets, which are similar to the typical training datasets used

for VPR [2,3,6]. Table 2 covers ‘out-of-distribution’ datasets, inspired by AnyLoc [32],

covering indoor environments (Baidu Mall and 17 Places), aerial imagery (VPAir),
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Table 1: Recall@1/5 benchmark comparison on outdoor street-view datasets.

Method Pitts- MSLS MSLS SF-XL RO5k RO5k RP6k RP6k

30K SF CPH Val Med Hard Med Hard

CosPlace 90.4/95.7 93.4/97.5 84.9/92.0 94.6/97.6 85.7/87.1 27.1/45.7 94.3/95.7 7.1/15.7

MixVPR 91.5/95.5 91.3/95.9 87.1/92.4 87.8/93.8 68.6/80.0 32.9/54.3 94.3/100 10.0/32.9

EigenPlaces 92.6/96.7 92.6/97.1 87.1/92.8 96.4/98.2 85.7/88.6 42.8/57.1 95.7/98.6 4.3/11.4

AnyLoc 87.7/94.7 83.4/94.6 79.9/89.1 84.4/91.9 88.6/92.9 40.0/58.6 97.1/100 11.4/44.3

SALAD 92.6/96.5 91.7/97.1 92.3/96.1 93.6/97.3 82.9/90.0 37.1/54.3 95.7/98.6 14.3/58.6

SegVLAD-PreT 86.7/94.2 88.4/94.2 81.7/90.7 90.9/96.4 91.4/95.7 60.0/81.4 94.3/100 8.6/48.6

SegVLAD-FineT 93.2/96.8 94.6/97.1 90.9/95.7 94.9/98.1 87.1/95.7 51.4/70.0 95.7/100 10.0/48.6

Table 2: Recall@1/5 benchmark comparison on ‘out-of-distribution’ datasets.

Method Baidu AmsterTime InsideOut 17Places VPAir

CosPlace 41.6/55.0 47.7/69.8 0.2/2.0 81.3/88.2 4.6/13.7

MixVPR 64.4/80.3 40.2/59.1 0.0/1.8 85.2/90.1 6.8/16.1

EigenPlaces 56.5/72.8 48.9/69.5 0.4/1.4 83.0/90.1 6.5/17.9

AnyLoc 75.2/87.6 50.3/73.0 2.4/8.0 95.3/97.3 66.7/79.2

SALAD 74.8/86.5 55.4/75.6 0.6/1.8 82.5/88.2 25.8/38.7

SegVLAD-PreT 78.5/93.8 56.8/77.7 4.2/9.4 95.3/98.0 69.8/83.7

SegVLAD-FineT 68.1/89.0 58.9/79.3 7.4/15.6 95.1/97.5 35.4/55.3

indoor-to-outdoor viewing (InsideOut), and historical image matching (AmsterTime).

Below, we discuss two key aspects of this comparative analysis: i) how our segment-

based approach compares against whole-image global descriptor based methods and

ii) how performance trends vary depending on the choices of feature backbone with

regards to task-specific (VPR) training.

Aggregating Segments vs Whole Images Table 1 and Table 2 show that our proposed

method SegVLAD achieves a new state-of-the-art on the majority of datasets, consid-

ering both the backbone variants: PreT and FineT. AnyLoc and SALAD respectively

differ from SegVLAD-PreT and SegVLAD-FineT in terms of the aggregation scope

(global vs segments). Thus, the superior performance of SegVLAD clearly highlights

the role of segments based retrieval over whole-image based approach. On the Baidu

Mall dataset – highly-aliased indoor environment – our method improves over AnyLoc

by 3% for R@1 and 6% for R@5 in absolute gains. On the InsideOut dataset – match-

ing outdoor images viewed from within indoors – our method leads to a ‘meaningful’

recall, unlike all other baselines. Overall, these results highlight that even with the use

of powerful image encoders (DINOv2), global aggregation struggles to deal with the

challenges of matching images across major viewpoint shifts – it is thus the partial im-

age representation and matching (using the same encoder) which is needed to obtain

superior recognition performance.

VPR Fine-tuned Encoders + Segments For SegVLAD-FineT, we used a DINOv2

backbone finetuned for the purpose of VPR, mainly to observe the benefit of segments

over global descriptor based approach in a task-specific manner. Table 1 and Table 2



10 K. Garg et al.

Table 3: Recall@1 results for various approaches on Object-Instance Retrieval Task

Method SegVLAD NoNbrAgg SegVLAD Segment-to-Global Global-to-Global

R@1 64.1 92.7 30.0 86.4

show that, on the outdoor street-view datasets, SALAD (finetuned DINOv2) generally

performs better than AnyLoc (its pretrained counterpart), whereas the latter generally

outperforms the former on ‘out-of-distribution’ datasets. It can be clearly observed that

these performance patterns translate well from global- to segment-level results.

5.2 Revisiting Objects of Interest (OOI): Object Instance Retrieval

A typical requirement of an embodied agent is to understand the context of its task

through its memory/map information, which is composed of visual and/or semantic

cues. For example, navigating to a given object goal requires a robot to visually rec-

ognize the goal and not be confused by perceptually-similar items. In this section, we

demonstrate our method’s ability to retrieve the correct image given just an Object Of

Interest (OOI) as a query segment. For this purpose, we use an extended version of the

Baidu dataset [70] which annotates OOI as various discriminative areas that can be re-

liably detected under variable viewpoint and lighting conditions. In total, there are 220

OOI, which cover various things such as logos, brand names, posters, etc., in a highly

cluttered mall environment. To cast this dataset in terms of revisiting things, we use the

original query images of the Baidu Mall [64] dataset as the database and the images

with OOI as the queries. This allows us to evaluate the OOIs directly. This is similar

to VPR evaluation of recall in terms of image retrieval but with querying of a specific

segment instead of using all the segments of the query image.

We consider four different methods of recognizing known objects in this study. i)

Global-to-Global: as a baseline method, we use whole images to represent and

retrieve, i.e., without using the OOI mask; this resembles object-goal recognition prob-

lem for an InstanceImageNavigation task [39]. ii) Segment-to-Global: this is the

same as the previous setting except that the query image descriptor is aggregated only

using the OOI mask; this tests the ability of the image encoder/aggregator to match

segment-level descriptor against global descriptors. iii) SegVLAD and iv) SegVLAD

NoNbrAgg, which are our proposed methods but the latter does not use any neighbor-

hood information; this highlights the relevance of spatial context around the OOI for

recognition. For SegVLAD, we create a virtual segment mask for the OOI, append it

to the other masks of the image, and then perform our neighborhood expansion and

feature aggregation, as described in Section 3.

Table 3 reports Recall@1 for different recognition methods. It can be observed that

SegVLAD outperforms Global-to-Global matching by a large margin, which

shows that recognizing specific object instances through their images (as in Instan-

ceImageNav) is more prone to failures. It can further be observed from low recall of

SegVLAD NoNbrAgg that neighborhood aggregation around segments is crucial to

capture the required context. Finally, poor recall of Segment-to-Global highlights
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Table 4: Recall@1/5 for Baidu mall dataset

for different aggregation methods and dif-

ferent orders of neighborhood expansion.

Order SegVLAD SAP

0 73.1/89.9 74.6/91.1

1 77.4/91.7 65.6/87.2

2 76.3/92.4 53.2/81.3

3 77.7/92.6 49.8/78.0

Table 5: Recall@1/5 comparison between

different methods for ranking images based

on segment-level retrieval.

Method Baidu AmsterTime

Max Seg 78.5/93.9 53.9/70.4

Max Sim 65.2/92.7 34.4/62.4

Ours 78.5/93.8 54.4/76.3

that matching a part of an image (OOI) with the whole image is not a viable solution

for object instance recognition.

5.3 Ablation Studies

Aggregation method & Order of Neighborhood Expansion Previous studies on

VPR such as AnyLoc [32] have shown VLAD to be better than other aggregation

methods for whole-image based global descriptors. However, in an increasing number

of segment-based approaches [12, 20, 24, 61], segment average pooling (SAP) is used

more commonly. Thus, we compare hard-assignment VLAD against SAP on Baidu

dataset. For SAP, we upsample the DINOv2 features to match the resolution of our

SAM masks – this upsampling is shown to enhance performance in [61]. For VLAD

aggregation, we use our proposed method SegVLAD, where we downsample masks to

match with the low resolution of DINOv2. Table 4 shows that SAP performs well for

order 0 aggregation (i.e., no neighborhood aggregation) but its performance reduces as

the neighborhood expands. On the other hand, SegVLAD has low recall when no neigh-

borhood is considered but benefits significantly even with its immediate neighborhood

(order 1). We attribute these inverted trends of SegVLAD and SAP to the very nature of

these aggregation methods: as more information becomes available SAP smooths out

the overall information content whereas SegVLAD benefits from additional informa-

tion which gets distributed across its clusters, thus minimizing any possible smoothing

effect. It can be observed that R@5 increases for SegVLAD with an increasing order

of neighborhood expansion but margins diminish for higher orders. Overall, SegVLAD

(order 3) achieves the best results, despite aggregating at a 14× lower resolution than

SAP’s upsampling based aggregation.

Segment to Image Retrieval Unlike conventional global descriptor retrieval based

VPR, we perform retrieval for multiple SuperSegments of the query image. To obtain

retrieval output in terms of images (as that is what VPR is typically evaluated on), there

exist multiple ways to combine the top segment-level matches across all the query seg-

ments. We consider the following alternative options. i) MaxSeg: we obtain the best

matching segment for each query segment, associate the matched segments to their

respective reference image indices, and then rank these image indices based on their
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Fig. 4: Qualitative results: Columns respectively represent the query image, correct match of

SegVLAD and incorrect match of AnyLoc. Examples from different datasets: AmsterTime, Baidu

Mall, Pitts-30K are presented across the rows.

frequency; this method weakly resembles an inverted index list based counting of com-

mon segments between the query and the reference. ii) MaxSim: across the best match-

ing reference segments, we order their image indices based on the segment similarity;

this method is similar to that used in MultiVLAD [4]. iii) Similarity-Weighted

Frequency: this is our proposed method as defined in Section 3.4. Table 5 shows that

our proposed method for combining segment-level hypotheses consistently achieves su-

perior results for both the datasets. While MaxSeg achieves a similar performance on

Baidu, it suffers a drop in recall for AmsterTime. Both the methods outperform MaxSim

at R@1 by a large margin.

Patches vs Segment While open-set segmentation [37] is aimed at a meaningful seg-

regation of visual entities, a simple alternative to our segment-based retrieval is to use

uniformly defined regions/patches. Table 6 compares SegVLAD with a patch-based ap-

proach, where we consider arbitrary square patch sizes to segment an image. It can

be observed that SegVLAD outperforms its patch-based counterparts, where smaller

patches perform the worst, and for larger patches, R@1 saturates while R@5 reduces.

These results are also in line with similar findings of a recent work [61].
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Fig. 5: Recall vs storage/retrieval time on Am-

sterTime.

Table 6: Patch vs Segments on AmsterTime

(Reso. 256×256)

Patch Size NumSegDb NumSegIm R@1/5

16×16 315136 256 35.7/62.1

32×32 78784 64 45.9/72.5

64×64 19696 16 52.0/75.1

128×128 4924 4 53.5/65.6

SegVLAD 129637 105 56.8/77.7

5.4 Limitations, Storage, Compute Time & IOU Based Filtering

A key limitation of our method is its large map size, i.e., large storage requirement for

segment-level descriptors (see supplementary for further details). In this section, we an-

alyze the resource requirements in terms of database (index) storage and query retrieval

time for our method, along with a preliminary study on IOU (Intersection over Union)

based filtering of SuperSegments to reduce such costs. We compute IOU between all

pairs of SuperSegments in a given image, and remove segments with IOU(si, sj) >
ψ ∀ i ∈ [1, S], j ∈ [i, S], where ψ ∈ [0, 1] is a threshold on IOU and si refers to the list

of SuperSegments sorted by their pixel area in a descending order. We only perform this

culling on the database segments. We use the outdoor-finetuned DINOv2 backbone for

this purpose and compare SegVLAD with SALAD on AmsterTime (see supplemen-

tary for additional results on Pitts30K). Figure 5 shows that SegVLAD outperforms

SALAD while requiring less storage (annotated on points) and comparable retrieval

time (excludes extraction time), using IoU-based filtering threshold ranging from 0.2 to

0.8 (left to right) with a step size of 0.2. In particular, at 0.4 IOU threshold, only 20%
of SuperSegments are retained (0.05 GB) while still outperforming the baseline.

5.5 Qualitative Analyses

In this section, we further demonstrate the capabilities of our method through qualita-

tive visualizations. We compare our method against AnyLoc, where the only difference

between the two methods is Global aggregation/retrieval vs SuperSegment aggrega-

tion/retrieval. We particularly consider the queries for which our approach successfully

retrieved the correct match but AnyLoc failed to do so (additional examples can be

found in the supplementary). Figure 4 shows triplets of images in the order of query,

correct match (ours), and incorrect match (Anyloc). The segmented part shows one of

the correctly matched SuperSegments, displayed as a subgraph in white color overlaid

on the corresponding segment masks.

The first row shows a triplet from AmsterTime where our proposed method is able

to correctly recognize a subgraph of building across the image pair, whereas Anyloc

retrieves an incorrect image of a street-view with buildings, cars, and road, laid out

similarly across the image pair. This highlights that a global descriptor can get con-

fused with perceptually-aliased global context. In contrast, our SuperSegment based
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SegVLAD is not only able to retrieve the correct image but it also correctly finds the

mutually-overlapping area. A similar trend follows for the Baidu Mall (middle row) and

Pitts30K (last row). In the Baidu Mall example, our approach identifies the piano and

the region around it in the query image. It correctly retrieves an image having similar

spatial context with the piano. This is akin to how humans use spatial context to iden-

tify places. AnyLoc, on the other hand, retrieves an image with similar floor tiles and

railings. This example particularly highlights our hypothesis that dissimilarity of non-

overlapping regions can dominate the similarity of overlapping regions in global whole-

image descriptors. Finally, the Pitts30K example (last row) shows a case of strong view-

point change. While SegVLAD correctly matches the traffic signal and signboards to

retrieve the correct match, AnyLoc retrieves a similar looking image while missing the

finer details. This example particularly reinforces the idea of ‘revisiting things’, as even

though the background mountain is common across the triplet, it is the context of the

things near the camera/robot which helps in uniquely recognizing a place.

6 Conclusion and Future Work

In this paper, we presented a novel visual place recognition pipeline SegVLAD based

on image segments-based description and retrieval, which is akin to ‘revisting things’

as a means to recognize specific instances of what constitute a place. Our proposed

SuperSegments based image representation and a novel factorization based feature ag-

gregation enables us to effectively represent and retrieve images using our segment

similarity-weighted image ranking. Our results show that despite using powerful im-

age encoders such as DINOv2 (pretrained or VPR-finetuned), existing global descrip-

tor based techniques are unable to deal with the challenges of viewpoint variations.

In contrast, SegVLAD is able to correctly retrieve images through its ability to match

partially-overlapping images with its partial image representation in the form of semi-

global subgraphs of segments, i.e., SuperSegments. Thus, our method achieves state-of-

the-art results on three diverse datasets (indoor and outdoor) that exhibit strong view-

point variations on top of other challenges of appearance shift and high perceptual alias-

ing. Through an additional object instance retrieval study, we demonstrate the unique

ability of our method to recognize objects instances within their specific place contexts

– an open-set recognition capability that existing VPR methods lack.

Our approach shifts the paradigm in retrieval based VPR research, as the conven-

tional methods predominantly classify into either whole-image global descriptor based

coarse retrieval or local feature based geometric reranking. Our approach complements

recent concurrent works like MESA [75]; future work can explore a hierarchical VPR

pipeline that closely integrates a segment-based coarse retriever with segments-based

reranker such as MESA, thus doing away entirely with global whole-image descriptors.

Furthermore, segments-based representation with implicitly baked semantics provide

a natural way for creating text-based interfaces through CLIP [55] and LLMs (Large

Language Models) [9], which can be easily integrated with recent efforts in this direc-

tion [12, 18, 20, 24, 42, 43, 77].
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