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A Implementation Details of Crowd-SAM

Table I: Summarization of hyper-parameter setting in Crowd-SAM

Hyper-Parameter Value Meaning
K 500 Maximum of prompts used in each crop
Gs 192 Grid size of in generating prompts
Nc 2 Number of levels in multi-cropping
Rs 512/1500 Overlapping ratio of cropped boxes
Tn 0.7 NMS threshold in merging crops
Tc 0.3 Confidence threshold
Tm 0.65 NMS threshold in each crop
Ts 0.8 Stability score threshold
δ 1 Mask jittering amplititude

We summarize the hyper-parameters used in automatic mask generation in
Tab. I.

Inference details. For the multi-cropping setting, we employ N = 2 which
means two-level of scales are utilized and an overlapping ratio of Rs = 512/1500,
to strike a balance between performance and efficiency. The pre-processing of the
input image and the mask post-processing is the same as that in SAM [4]. In the
foreground location, we initialize a 192 × 192 grid and use a threshold t = 0.5
for filtering positive points. For mask decoding, we sample 32-point prompts in
each iteration and set an upbound of K = 500 for the total sampled prompts.
For EPS, we set the confidence threshold T = 0.5 to only utilize highly confident
samples. We also adopt the same post-processing as SAM does including mask
quality evaluation and NMS.

Training details. For the training of Crowd-SAM, we first need to generate
mask labels to supervise PWD-Net. This step can be done with the help of
SAM itself, and we utilize SAM (ViT-L) with GT bounding boxes as inputs
to predict the masks. In the training process, we randomly pick several points
inside the masks as positive points and several points outside as negative points.
For positive points (prompts), we compute the IoU between the point-prompted
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mask and the box-prompted mask as the target. For negative points (prompts),
we set the target equal to zero. The positive and negative points are kept with a
ratio of 1:3 for balance. We train the model on one GPU with 2,000 iterations.

Post-processing. Post-processing. For the multiple masks predicted by
SAM, we use the refined confidence score to select only the best confident one.
This step helps reduce the time of processing massive masks. We use a score filter
with a confidence threshold Tc = 0.2 to filter the predictions associated with
background. Also, we compute a stability score s as defined in [4] by jittering on
the masks as follows:

s =
area(M + δ)

area(M − δ)
, (1)

where M ∈ R256×256 is a raw predicted mask and δ is a hyper-parameter to
control the amplitude of jittering. The low-quality masks are filtered with a
threshold Ts = 0.8. Then for each crop, we use NMS with Tm = 0.65 to filter
redundant predictions. We also filter those incomplete objects whose boundaries
are close to the cropping edge. Finally, the results of different levels are merged
before another step of NMS, where the IoU threshold Tn is 0.7.

B Training-free Version of Crowd-SAM

We devise a training-free version of Crowd-SAM as a complementary method.
In this version, no learnable parameter is introduced and all computation uses
only the pre-trained foundation models. We find that it also shows promising
performance.

Given a query image I0, several supporting images I1, I2, ...In and their masks
M1,M2, ...,Mn, we first extract the features of supporting images with an image
encoder and obtain F1, F2, ..., Fn. Then, we compute the masked feature F ′

n by
multiplying the mask Mn with Fn. This step filters out the background part of
the extracted features. These masked features are aggregated into a single pro-
totype P encoding the semantic of pedestrians. This prototype can be computed
and cached offline.

During inference, we compute the cosine similarity between the embedding
of query image F0 ∈ Rh×w×c and P ∈ R1×c, where h,w, c are the height, width,
and channel of the feature map, respectively. The result is a heatmap H ∈ Rh×w.
Then, the foreground mask is calculated as H ′ = H > sp, where sp is a similarity
threshold set to 0.15 in our experiments. H ′ is converted to point prompts and
then decoded with EPS.

For mask selection, we adopt a heuristics-based rule that selects the mask
with a maximum area. We find that this rule performs better than the single-
output mode and the maximum-IoU rule. We use a joint confidence score by (i)
gathering the average similarity score of each mask and (ii) multiplying it with
the predicted IoU score. The quantitative results are shown in Tab. II, where
we can see that training-free Crowd-SAM still outperforms its counterpart, i.e.
Matcher [5].
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Table II: Comparison results (%) of training-free few-shot detectors. TF-Crowd-SAM
means the training-free version of Crowd-SAM. Experiments are conducted on the
CrowdHuman [9] val set. Multi-cropping is not used for fair comparison.

Method #Shot AP Recall MR
Matcher [5] 1 8.0 23.9 88.9

TF-Crowd-SAM 1 52.4 65.4 91.6

C Additional Experiments on Few-shot settings

Influence of #Shot. We conduct comprehensive analysis on the influence of
supporting images, with results presented in Tab. IV. Generally, increasing the
number of training images leads to improved results, although the performance
tends to plateau when the number of supporting images exceeds 20. Notably,
we observe that with very limited training images, such as 1 and 5 shots, there
is a significant increase in the standard deviation of the average precision (AP),
indicating an instability in its training. We assume that this phenomenon arises
because our training procedure still relies on high-quality annotated images for
effective training.

Table III: Comparative results (%) with other label-efficient methods on COCO val.
nAP represents novel AP.

Methods Backbone AP nAP
STAC [10] ResNet50-FPN 9.8 -
UB-Teacherv2 [6] ResNet50-FPN 21.3 -
Ours (v1) ViT-L 23.0 33.0
TFA [13] ResNet101-FPN 28.7 10.0
De-FRCN [8] ResNet101 33.9 18.5
Ours (v2) ViT-L 22.0 25.0

Comparison on COCO. We conduct simple comparative studies on COCO
with two versions of Crowd-SAM. The first (v1) adopts a trainable head that
utilizes 0.5 % percent of labeled data in the COCO trainval set and the other (v2)
employs a prototype-based classification head that uses the prototypes extracted
by De-ViT [17]. The results are shown in Tab. III. As it can be seen, our method
derives competitive results in both the settings by leading Unbiased Teacher by
1.7% AP and De-FRCN by 6.5% nAP.
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Table IV: Results (%) on CrowdHuman [9] with different numbers of supporting
images. No multi-cropping is used.

#Shot 1 5 10 20 30
AP 51.3± 7.05 68.1± 2.6 69.1± 0.62 71.6± 0.67 72.5± 0.78

D Dicussion and Limitation

D.1 Discussion

Parameter-efficiency. Thanks to the exceptional representational capabilities
of vision foundation models, we require only a minimal number of parameters to
tailor it for pedestrian detection tasks. We highlight that our model introduces
only 0.8M learnable parameters within the segmentation head and PWD-Net.
This is remarkably lightweight compared to the 304M parameters of the ViT-
L/14 backbone. Consequently, Crowd-SAM can be regarded as a parameter-
efficient transfer learning approach, encompassing techniques such as LoRA [1],
TIP-Adapter [15], and prompt-tuning [2]. This characteristic facilitates seamless
transfer across diverse domains and datasets with a minimal overhead.

Table V: Comparison of efficiency to existing state-of-the-art methods on CrowdHu-
man val. All the experiments are conducted on a 3090Ti GPU. * represents applying
multi-cropping. All the rows use ViT-L as base models except the ones with +, where
SAM (ViT-B) and DINOv2 (ViT-S) are employed

Methods Foundation Models AP Secs/Img
Iter-SRCNN [18] - 85.9 0.11
Matcher [5] SAM [4] + DINOv2 [7] 8.0 22.0
Crowd-SAM SAM [4] + DINOv2 [7] 71.4 1.7
Crowd-SAM HQ-SAM [3] + DINOv2 [7] 64.6 2.4
Crowd-SAM+ Mobile-SAM [14] + DINOv2 [7] 33.0 0.7
Crowd-SAM* SAM [4] + DINOv2 [7] 78.4 8.1

Extensibility. Remarkably, our method exhibits robust performance in pedes-
trian detection. Since our method focuses on crowded scenes with occlusions ap-
pearing, it can also be employed for other tasks that involve similar issues like
remote sensing, vehicle detection, fruit counting and etc. On the other hand, han-
dling multi-class few-shot object detection poses greater challenges compared to
binary classification tasks. Nevertheless, extending Crowd-SAM to accommodate
multi-class classification is relatively straightforward. Approaches such as con-
structing class prototypes [5,17] or employing transfer learning techniques [11,13]
can be effectively leveraged. Additionally, given the impressive k-NN classifica-
tion performance demonstrated by DINOv2, a k-NN classifier may suffice for
many scenarios. However, we defer the exploration of this topic to future work.
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As for the SAM version, we apply our adaptation to multiple SAM-variants [3,
14] to validate its extensibility. The performance and efficiency (Secs/Img) are
reported in Tab. V. It is noteworthy that HQ-SAM [3] trains only the best-
fitting mask in a single granularity, e.g . the whole object, and cannot improve
the overall quality of mask predictions in any granularity. Moreover, consider-
ing the data bias in HQ-SAM, mask predictions at a certain granularity could
be even worse, e.g . the part-level predictions. Unfortunately, in our method, all
mask predictions are re-evaluated regarding their IoU scores and the mask at any
level of granularity could be chosen for outputs. Thus, this conflict of training
goals incurs a decline in AP.

Human interaction. It is notable that Crowd-SAM not only supports au-
tomatic annotation but also allows humans to interact with it. For example,
human annotators can verify the results produced by Crowd-SAM or interact
with it by adjusting the prompts or adding new prompts. As we maintain the
original SAM frozen, these adjustments can be made using the same model. We
argue that this verification process is still much faster than annotating a new
object.

(a) (b)

(c) (d)

Fig. 1: Qualitative comparison of Crowd-SAM tuned on CrowdHuman (a, b) and
CityPersons (c, d). False positives are pointed out with (red arrows).

D.2 Limitation

Semantic ambiguity. Despite its strong results, Crowd-SAM still faces a lim-
itation in being confused by unseen backgrounds, which stems from insufficient
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representation of background samples. Occasionally, this leads to misclassifica-
tion of objects from background categories as foreground. To illustrate this issue,
we compare the visualization results of two models in Fig. 1. In panels (a) and
(b), cars are assigned high confidence scores by the model trained on CrowdHu-
man, likely due to the rarity of cars in the CrowdHuman dataset. We propose
a potential method to address this limitation by augmenting the dataset with
more background samples, as outlined in Per-SAM [16]. This can be achieved by
selecting potential backgrounds using a prototype or a fine-tuned classification
model, thereby enhancing the robustness of the model. This method is in our
scope for the next work.

Lack of efficiency. Another limitation of our model lies in its reliance on two
foundation models, i.e. DINOv2 [7] and SAM [4], to achieve promising results,
which introduces computational overhead in image encoding, as it necessitates
forwarding each image twice. This incurs an extra 0.3-0.4s latency on a 3090Ti
GPU card with a ViT-L/14 backbone. Unfortunately, there is currently no cost-
effective solution to seamlessly integrate these two models without compromising
their effectiveness. A closely related approach, SAM-CLIP [12], attempts to dis-
till features from CLIP into SAM. However, their method relies on extensive data
for training, which is not suitable for our objective of lightweight adaptation.

Furthermore, the scale variability of objects in real scenes continues to pose
a challenge for SAM and SAM-based methodologies, including Crowd-SAM. At
present, we tackle this issue by employing multi-cropping, albeit at the expense
of a 4x or 5x increase in inference time. But we must highlight that our method
without multi-cropping is still faster and more accurate than Matcher [5] which
employs expensive computations in matching and clustering. Despite exploring
alternative approaches such as feature-level cropping, none have yielded satisfac-
tory results. Hopefully, our method without multi-cropping still retains strong
and promising results. We will work for a faster and more efficient version of
Crowd-SAM in the future by investigating additional prompt types, such as
boxes.
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