
Easing 3D Pattern Reasoning with Side-view
Features for Semantic Scene Completion

Linxi Huan1, Mingyue Dong1 , Linwei Yue2 , Shuhan Shen3 , and Xianwei
Zheng1

1 The State Key Lab. LIESMARS, Wuhan University
2 School of Geography and Information Engineering, China University of Geosciences

3 Institute of Automation, Chinese Academy of Sciences

Abstract. This paper proposes a side-view context inpainting strategy
(SidePaint) to ease the reasoning of unknown 3D patterns for semantic
scene completion. Based on the observation that the learning burden on
pattern completion increases with spatial complexity and feature spar-
sity, the SidePaint strategy is designed to decompose the complex 3D
pattern learning into easier 2D context inpainting with dense feature
volumes. Specifically, our approach densely lifts image features into 3D
volume space with distance-aware projection, and reasons missing pat-
terns in 2D side-view feature maps sliced from feature volumes. With the
learning burden relieved by decreasing pattern complexity in 2D space,
our SidePaint strategy enables more effective semantic completion than
directly learning 3D patterns. Extensive experiments demonstrate the
effectiveness of our SidePaint strategy on several challenging semantic
scene completion benchmarks.

Keywords: Semantic scene completion · 3D pattern reasoning · Side-
view feature learning

1 Introduction

Semantic scene completion (SSC) requires to recover complete 3D scenes from
partially captured surface information by semantic volumetric occupancy infer-
ence. Pioneering works leveraged volumetric depth features for 3D pattern com-
pletion [36, 40, 41], while later efforts were devoted to exploiting RGB-D data
for SSC by two-stream deep models with delicate fusion mechanisms [14,23,39].
With the utilization of complementary multi-modality clues, the performance of
SSC has greatly advanced over the years.

Despite the progress achieved with extensive research, semantic scene com-
pletion is still hindered by the ill-posed problem of inferring unobserved areas
with partial observations. To complete the complex 3D spatial relationships, ex-
isting works tend to adopt a head-on but clumsy solution of expanding model
capacity with bulky multi-modality network architectures [5, 23, 24]. However,
the reasoning difficulty brought by the naturally high complexity of 3D context
patterns is seldom truly addressed, and the signal sparsity of 3D feature volumes
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derived by commonly-used depth-guided 2D-3D projection further toughens the
completion of dense 3D context.

Fig. 1: Comparison between directly completing 3D context with sparse signals and
our SidePaint strategy. (a) Reasoning complex 3D semantic patterns from a sparse
feature volume. (b) SidePaint strategy models a semantic scene by reasoning simpler
2D context with a denser feature volume.

As illustrated in Figure 1, compared to the 2D image, the spatial relations are
more sophisticated in 3D space. When only considering the neighbors of a sample
in a 3D or 2D grid, there are at most 26 different inter-voxel relations for a 3D
voxel, but only 8 inter-pixel ones for a 2D pixel. The 3D context becomes more
complicated w.r.t long-range relationships, inevitably resulting in the increasing
reliance on highly complicated deep SSC frameworks for more powerful learning
ability. Due to the relation complexity in 3D space, semantic completion errors
easily occur especially with sparse volumetric features as shown by Figure 1 (a).

Motivated by the observation above, we introduce a side-view context in-
painting strategy (SidePaint) to ease the reasoning burden for SSC. The Side-
Paint strategy is proposed to decompose the challenging 3D pattern completion
to simpler side-view 2D context inpainting, where spatial relation complexity is
reduced with a lower dimension. Concretely, our SidePaint strategy works by
regarding a feature volume as groups of 2D slices and propagating features to
fill undetected context in each 2D slice w.r.t three different side views. To guar-
antee sufficient information in each slice for side-view inpainting, the SidePaint
strategy generates dense volumetric features with a distance-aware 2D-3D pro-
jection ( Figure 1 (b)). In this case, occluded areas are initialized according to
their distance to observed object surfaces instead of being kept empty as in prior
works. With SidePaint strategy, we build a single-stream deep model that is free
of complicated dual-branch multi-modality learning design for effective SSC.

The main contributions are summarized as follows:
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- We introduce a side-view context inpainting (SidePaint) strategy to ease the
3D pattern learning burden by reasoning the simpler spatial relations in 2D
space with dense volumetric features.

- We build a single-stream framework with the SidePaint strategy to facilitate
semantic scene completion.

- Extensive experiments demonstrate the effectiveness of our SidePaint strat-
egy, and our SidePaint-based model achieves state-of-the-art performance on
three challenging semantic scene completion benchmarks.

2 Related Works

2.1 Semantic Scene Completion

Semantic scene completion is introduced by [36] to unify geometry completion
and semantic parsing into a problem of single-view dense voxel-wise labelling. [36]
pioneer to propose an end-to-end deep solution (SSCNet) to model semantic 3D
scenes with depth features embedded by modified truncated signed distance
function (TSDF), which is also adopted in followers for supporting SSC with
already known geometry priors [6,15,41]. The depth-only SSC is studied with not
only TSDF but also other geometry representations (e.g ., point cloud) [7,42,48],
but these methods stumble at inferring large-area unknown semantic context.
Increasing attention is thus turned to the joint utilization of the semantic cues
in RGB images and the geometric information in depth data for SSC.

Typical multi-modality approaches mainly work under dual-branch deep frame-
works with different feature fusion schemes and utilize the depth information
for 2D-3D feature projection. These methods generally first derive 2D features
from data of different modalities with two 2D feature extractors and then use
depth-guided 2D-3D projection to obtain two sparse 3D feature volumes for
subsequent cross-voxel 3D context propagation [24–27]. To leverage real 3D ge-
ometries rather than the 2.5D information in depth images, some works choose to
extract observed geometric cues from TSDF for later fusion with projected vol-
umetric RGB-based features [5,22,28]; while others deploy additional 3D object
detectors to refine coarse completion results with instance-level clues [2,13]. With
the focus on effective semantic guidance, works like SATNet [29], SPAwN [11],
and FFNet [39] leverage RGB-D semantic segmentation algorithms to provide
explicit semantic priors for dense voxel-wise semantic inference. Promoted by the
success gained in single-view RGB-D SSC, the exploration of SSC has also been
extended to more data types, including monocular RGB images [3], scans [8],
and outdoor lidar data [1, 34].

Some Tri-plane feature learning methods also leverage 2D clues for 3D learn-
ing [9, 19]. However, the 2D clues are taken as 3D spatial context information
that needs to be processed by cross-view hybrid networks for complex 3D seman-
tic pattern recovery. In contrast to prior arts that developed complex deep net-
work models for extracting and merging multi-view or multi-modality features,
this paper aims to tackle the learning difficulty brought by the high complexity
of 3D context patterns for SCC. To this end, we introduce the side-view context
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painting strategy to decompose complex 3D semantic patterns into simpler 2D
relations for easier pattern completion.

2.2 Complete 3D Reconstruction

Complete 3D Reconstruction has been studied with the purpose to recover intact
3D models with partial observations. The complete 3D models are generally
recovered without semantics [4, 12, 43], but increasing research attention has
been witnessed recently in building scene models with semantics in an end-to-
end manner.

For semantic-aware complete scene reconstruction, one popular way works
by the SSC framework mentioned above, while the other one relies on multi-task
systems. Different from the SSC framework that unifies geometry completion
and semantic understanding, multi-task reconstructors factorize the semantic
reconstruction into several sub-tasks, such as object detection and scene-aligned
instance shape completion [31,38]. The multi-task system is intuitively designed
to align CAD shapes to real scene space based on the information offered by
object bounding boxes or semantic segments derived from images [18, 20]. To
be free of the dependence on an off-line CAD pool, current studies prefer to
insert an instance shape completion branch into their deep end-to-end multi-task
networks [17,21,44]. Among these approaches, some systems are constructed for
scene-aligned instance completion only [16, 32, 37], while some are built with
additional consideration of the layout estimation [10].

Whether it is the single-task SSC framework or the multi-task semantic-
aware reconstruction system, each of the two solutions has its own merits for
different application requirements. The target of this paper is to realize SSC
with a single-task deep learning method, and we concentrate on addressing the
fundamental issue of 3D context reasoning burden in semantic scene completion.

3 Method

3.1 Overview

In Figure 2, we present the overview of a semantic scene completion system
deployed with the proposed side-view context inpainting strategy (SidePaint).
Given the 2D features extracted from an image, distance-aware projection is
first adopted to convert the 2D clues into a dense 3D feature volume. The 3D
features are next fed into a feature enrichment module, and then a side-view
context inpainter is applied to the enriched features for reasoning the unknown
semantic patterns in 2D space. With the inpainted features, voxel-wise semantics
are predicted by a linear classifier at the end. In the following, we will elaborate
on the two components of SidePaint: the distance-aware 2D-3D projection and
the side-view context inpainter.
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Fig. 2: Overview of our SidePaint-based SSC framework.

3.2 Distance-aware 2D-3D Projection

The common depth-guided 2D-3D feature projection leaves unobserved area vox-
els empty and thus results in highly sparse 3D feature volumes, where most 2D
slices hardly contain information for effective side-view context completion (Fig-
ure 3 (a)). Therefore, our SidePaint strategy first adopts a distance-aware 2D-3D
projection to provide dense feature volumes by computing the feature vector fv
for any given voxel v according to Equation (1).

fv = w [v]× f2d (v) ,where

w [v] =

1− sign (vtsdf )× vtsdf , if vtsdf ≤ δ;

0, else.

(1)

In Equation (1), f2d (v) denotes the corresponding 2D feature vector of v on the
image plane, vtsdf is the TSDF value at v, δ is a threshold hyper-parameter that
determines whether v should be initialized with non-empty features, and w[v]
controls how much information will be transferred to v. In practice, w[v] is set
to 1 if v is occupied to assign observed surfaces with non-filtered information.

The design of distance-aware projection takes inspiration from the phenomenon
that missing areas often share similar semantic patterns with front observed sur-
faces at a certain distance. Since the correlation between observable and unob-
servable areas decreases with distance, the distance-aware projection initializes
occluded voxels with intensity-decreasing signals. The attenuation degree of sig-
nal intensity is controlled by weights {w[v]} that are negatively correlated with
the distance, as shown by Equation (1).

With the distance-aware projection, many occluded voxels are initialized as
non-empty, making the 2D slices in a 3D volume more informative than those
yielded by general depth-guided projection as shown in Figure 3.

To enrich and further densify the volumetric features, a feature enrichment
module is subsequently set with an encoder-decoder architecture, which is com-
posed of dimensional decomposition residual blocks [24] and 3D transpose con-
volutions (Figure 2). By linking neighboring volumetric features, the feature
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enrichment module provides reliable context priors for constraining multi-view
consistency and rich semantic pattern priors to support the following 2D context
inpainting.

Fig. 3: Comparison between the 2D slices generated with the depth-guided projection
and our distance-aware projection. (a) The depth-guided projection outputs a sparse
3D volume that leaves only a little information in 2D slices. (b) Our distance-aware
projection ensures a dense 3D volume to provide rich semantic pattern priors in 2D
slices.

3.3 Side-view Context Inpainter

Considering a feature volume can be regarded as a group of concatenated 2D
maps, we propose a 2D context inpainter to perform semantic pattern comple-
tion in 2D space, alleviating the learning difficulty caused by directly reasoning
complex 3D relationships. As depicted by Figure 4, the 3D volume can be split
into groups of 2D feature slices in terms of three side views, and the side-view 2D
context inpainter is constructed to complete the unknown 3D semantic patterns
in 2D space with three side-view reasoning branches.

Specifically, the side-view reasoning branches independently process the 3D
feature volume in terms of top-down (TD), left-right (LR), and front-back (FB)
views. For example, the reasoning branch for the top-down view is only in charge
of inferring the 2D semantic patterns of feature maps sliced along the height
dimension. Each branch is made of three consecutive 3 × 3 convolution layers
with dilation values set to 1, 2, and 3. The 2D features inpainted from different
side views are fused with a 1×1×1 convolution for the final voxel-wise semantic
prediction. The detailed mechanism is formulated as
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FTD/LR/FB = CBR3
3×3

({
f
td/LR/FB
i

})
;

F̂ = CBR1×1×1

(
[FTD, FLR, FFB , F ]

)
.

(2)

where FTD/LR/FB refers to volumes obtained by inpainting 2D maps
{
f
TD/LR/FB
i

}
generated from the enriched feature volume input F w.r.t three views, CBR is a
combination of convolution, batch normalization and relu activation, and CBR3

is a sequence of three CBRs.

Fig. 4: Mechanism of the side-view 2D context inpainter.TD: top-down side view; LR:
left-right side view; FB: front-back side view.

The side-view context inpainter is deployed after the last 3D transpose con-
volution of the feature enrichment module and before the final linear classifier.
Such deployment benefits the optimization of the side-view context inpainter
with a short transmission distance of supervision signal, which also strengthens
the multi-view consistency in the 2D in-painting process.

3.4 Training Loss

We use a cross entropy loss Lce and a pattern matching loss Lpm for model
optimization. As revealed by Equation (3), Lce works with the prediction V pred

and the 3D semantic annotation V gt, while Lpm computes the mean squared
errors between the intermediately encoded features F enc and the real semantic
pattern priors F sem.

L = Lce(V
pred, V gt) + Lpm(F enc, F sem). (3)

In Lpm, F enc comes from the two encoding stages of the feature enrichment
module, and F sem is derived from the same stages of a copy module that is
fed and trained with the 3D semantic ground-truths. Lpm explicitly guides the
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learning of intermediate features, thereby guaranteeing reliable semantic pattern
priors for consistent side-view context inpainting.

4 Experiments

4.1 Experiment Settings

Datasets. We evaluated our method on three public semantic scene completion
benchmarks, including NYUv2 [35], NYUCAD [12] and SUNCG-RGBD [36].
The NYUv2 benchmark includes 1,449 RGB-D images, each of which has a com-
plete 3D semantic annotation offered by [12]. The NYUCAD dataset replaces the
depth data in NYUv2 with higher-quality depth maps derived from the 3D an-
notations. The SUNCG-RGBD benchmark used here is generated from synthetic
data by [29] and contains 13011 pairs of images and 3D annotations for training
while 499 for testing. As there are some wrongly generated 3D annotations, we
cleaned the SUNCG-RGBD dataset, leaving 10980 pairs for training and 426 for
testing.

Implementation Details. We implemented our method with Pytorch [33] and
conducted experiments on one NVIDIA RTX3090TI GPU. The 2D feature en-
coder in our model is built with a swin transformer backbone [30] pretrained
on NYUv2 and SUNCG-RGBD with semantic segmentation, and the threshold
δ in Equation (1) is set to 0.3 for NYUv2 while 0 for NYUCAD and SUNCG-
RGBD. Our model is trained by an SGD optimizer with momentum of 0.9,
weight decay of 5e − 4, and batch size of 8. The learning rate is initialized as
0.01 and multiplied by

(
1− iter

max_iter

0.9
)
. For NYUv2 and NYUCAD, the fea-

ture enrichment module for generating F sem is trained once for 50 epochs and
the whole model is trained for 500 epochs. As for SUNCG-RGBD, the former
training period is 20 epochs while the latter one is 50 epochs.

Evaluation metrics. We use the scores of category-wise intersection over union
(IoU) and mean IoU (mIoU) to evaluate the performance of semantic scene com-
pletion (SSC). The IoU metric is also leveraged to measure the scene geometry
completion (SC) by only categorizing voxels as occupied or empty.

4.2 Quantitative Comparison with Other Methods

Quantitative results on NYUv2 and NYUCAD datasets. Table 1 and Table 2
present the numeric comparison between our model and existing methods on
NYUv2 and NYUCAD. Our model outperforms prior arts under most metrics
with state-of-the-art performance. For example, our model gains over other meth-
ods by at least 8.1% and 7.2% mIoU on NYUv2 and NYUCAD for semantic scene
completion, respectively. It should be noted that our method only uses TSDF for
distance-aware projection while other multi-modality learning approaches gen-
erally rely on a sub-network to independently extract geometry features from
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depth, TSDF, or point cloud data. In this case, our model works via a single-
stream framework without a special design for geometry-focused learning but
still achieves competitive performance for scene geometry completion.

Table 1: Numeric comparison on NYUv2 dataset. Inputs: the letter D denotes the
depth or HHA images, and TSDF † means that the TSDF is not fed into a sub-network
for feature extraction. The best is bolded, while the second is underlined.

Methods Inputs SC IoU(%)
SSC Category-wise IoU(%) and mIoU(%)

ceil. floor wall win. chair bed sofa table TVs furn. objs. avg.

SSCNet [36] TSDF 55.1 15.1 94.7 24.4 0.0 12.6 32.1 35.0 13.0 7.8 27.1 10.1 24.7

ESSCNet [45] TSDF 56.2 17.5 75.4 25.8 6.7 15.3 53.8 42.4 11.2 0 33.4 11.8 26.7

ForkNet [41] TSDF 63.4 36.2 93.8 29.2 18.9 17.7 61.6 52.9 23.3 19.5 45.4 20.0 37.1

TS3D [14] RGB+D 60.0 9.7 93.4 25.5 21.0 17.4 55.9 49.2 17.0 27.5 39.4 19.3 34.1

SATNet [29] RGB+D 60.6 17.3 92.1 28.0 16.6 19.3 57.5 53.8 17.2 18.5 38.4 18.9 34.4

CCPNet [46] TSDF 63.5 23.5 96.3 35.7 20.2 25.8 61.4 56.1 18.1 28.1 37.8 20.1 38.5

DDRNet [24] RGB+D 61.0 21.1 92.2 33.5 6.8 14.8 48.3 42.3 13.2 13.9 35.3 13.2 30.4

AICNet [23] RGB+D 59.2 23.2 90.8 32.3 14.8 18.2 51.1 44.8 15.2 22.4 38.3 15.7 33.3

PALNet [25] TSDF+D 61.3 23.5 92.0 33.0 11.6 20.1 53.9 48.1 16.2 24.2 37.8 14.7 34.1

IPF-SPCNet [48] RGB+Point 39.0 32.7 66.0 41.2 17.2 34.7 55.3 47.0 21.7 12.5 38.4 19.2 35.1

AFMNet [28] RGB+D 57.2 20.0 78.7 27.3 20.5 21.8 56.5 53.9 19.5 18.8 40.1 19.5 34.2

IMENet [22] RGB+D 72.1 43.6 93.6 42.9 31.3 36.6 57.6 48.4 32.1 16.0 47.8 36.7 44.2

3D-Sketch [5] RGB+TSDF 71.3 43.1 93.6 40.5 24.3 30.0 57.1 49.3 29.2 14.3 42.5 28.6 41.1

FFNet [39] RGB+D+TSDF 71.8 44.0 93.7 41.5 29.3 36.2 59.0 51.1 28.9 26.5 45.0 32.6 44.4

MFF [13] RGB+TSDF+Point 73.1 45.4 92.3 41.1 25.6 32.6 58.3 49.8 30.5 17.1 44.1 33.9 42.8

Ours RGB+TSDF† 72.2 42.6 93.9 45.5 38.4 46.9 66.2 66.2 37.2 41.4 53.7 45.3 52.5

Table 2: Numeric comparison on NYUCAD. Inputs: the letter D denotes the depth
or HHA images, and TSDF † means that the TSDF is not fed into a sub-network for
feature extraction. The best is bolded, while the second is underlined.

Methods Inputs SC IoU(%)
SSC Category-wise IoU(%) and mIoU(%)

ceil. floor wall win. chair bed sofa table tvs furn. objs. avg.

SSCNet [36] TSDF 73.2 32.5 92.6 40.2 8.9 33.9 57.0 59.5 28.3 8.1 44.8 25.1 40.0

DDRNet [24] RGB+D 79.4 54.1 91.5 56.4 14.9 37.0 55.7 51.0 28.8 9.2 44.1 27.8 42.8

AICNet [23] RGB+D 80.5 53.0 91.2 57.2 20.2 44.6 58.4 56.2 36.2 9.7 47.1 30.4 45.8

TS3D [14] RGB+D 76.1 25.9 93.8 48.9 33.4 31.2 66.1 56.4 31.6 38.5 51.4 30.8 46.2

CCPNet [47] TSDF 82.4 56.2 94.6 58.7 35.1 44.8 68.6 65.3 37.6 35.5 53.1 35.2 53.2

3D-Sketch [5] RGB+TSDF 84.2 59.7 94.3 64.3 32.6 51.7 72.0 68.7 45.9 19.0 60.5 38.5 55.2

PALNet [25] TSDF+D 80.8 54.8 92.8 60.3 15.3 43.1 60.7 59.9 37.6 8.1 48.6 31.7 46.6

FFNet [39] RGB+D+TSDF 85.5 62.7 94.9 67.9 35.2 52.0 74.8 69.9 47.9 27.9 62.7 35.1 57.4

MFF [13] RGB+TSDF+Point 84.8 54.5 94.8 63.3 29.3 50.9 73.6 70.9 56.4 31.7 61.3 42.0 57.2

CasFusionNet [42] Point - - - - - - - - - - - - 49.5

Ours RGB+TSDF† 83.9 59.2 94.6 63.7 51.9 63.9 80.1 77.4 47.9 51.3 67.2 53.0 64.6
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Quantitative results on SUNCG dataset. We compare our method with three
multi-modality semantic scene completion models, including DDRNet, AICNet,
and 3D-Sketch, and present the results in Table 3. Our SidePaint-based model
gains over other approaches by at least 19.5% mIoU for semantic scene comple-
tion, as well as at least 3.5% IoU improvement for scene geometry recovery.

Table 3: Numeric results on SUNCG-RGBD. The best is bolded, while the second is
underlined.

Methods Inputs SC IoU SSC mIoU

DDRNet RGB+D 71.8 38.5

AICNet RGB+D 61.8 35.0

3D-Sketch RGB+TSDF 87.5 70.4

Ours RGB+TSDF† 91.0 89.9

4.3 Qualitative Analysis with Other Methods

We provide some visualization results on NYUv2, NYUCAD, and SUNCG-
RGBD datasets for perceptual understanding in Figure 5. Our SidePaint-based
model recovers the scenes with cleaner geometry structures and more consistent
semantic completion than other compared methods.

4.4 Ablation Studies

For a deep understanding of the proposed SidePaint strategy, we separately
study the distance-aware projection and the 2D context inpainter on NYUv2 and
NYUCAD datasets. The baseline is a model that shares a similar architecture
with our SidePaint-based framework. The only difference is that the baseline
model is equipped with depth-guided projection and a 3D inpainter, where the
2D kernels in the 2D inpainter are replaced with 3D 3× 3× 3 counterparts. We
also evaluated the performance improvement brought by the pattern matching
loss Lpm. The quantitative results are reported in Table 4.

Table 4 shows the effectiveness of the dense distance-aware projection and
the 2D context inpainter in our SidePaint strategy. The numeric results reveal
that the 2D context inpainter exceeds the 3D counterpart used in the baseline
by 1.1%-2.9% mIoU on NYUv2 and NYUCAD datasets, under the cases with
or without the distance-aware projection. This phenomenon suggests the supe-
riority of reasoning context in 2D space over in 3D space. With the assistance
of Lpm, the 2D context inpainter is further strengthened with reliable semantic
pattern priors and finally outperforms the baseline by at least 4.7% mIoU on the
two datasets. By comparing the results, it is interesting to find that the dense
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Fig. 5: Qualitative comparison for semantic scene completion on NYUv2, NYUCAD,
and SUNCG-RGBD datasets.
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Table 4: Ablation studies with NYUv2 and NYUCAD. Dist. Proj.: the dense distance-
aware projection; 2D Inp.: the 2D context inpainter; 3D Inp.: the 3D context inpainter.
The best is bolded, while the second is underlined.

Method 3D Inp. 2D Inp. Dist. Proj. Lpm
NYUv2 NYUCAD

SCIoU SSCmIoU SCIoU SSCmIoU

Baseline ✓ 65.3 46.3 81.7 59.9

Baseline ✓ ✓ 66.2 47.3 81.5 59.3

SidePaint ✓ 66.5 47.4 82.1 61.3

SidePaint ✓ ✓ 67.6 49.2 82.8 62.2

SidePaint ✓ ✓ ✓ 72.2 52.5 83.9 64.6

distance-aware projection fails with the baseline on NYUCAD but succeeds with
the 2D context inpainter on both datasets. The distance-aware projection even
works more effectively with the 2D inpainter than with the 3D one, especially
for NYUv2 where the depth data quality is lower.

We additionally investigate the influence of the 2D context inpainter position
in the model architecture. Table 5 shows that the 2D context inpainter performs
better when it is placed near the classifier.

Table 5: Ablation studies on the position of 2D context inpainter. Before: the 2D con-
text inpainter is inserted before the feature enrichment module; After: the 2D context
inpainter is inserted after the feature enrichment module and before the classifier. The
best is bolded.

Method
NYUv2 NYUCAD

SCIoU SSCmIoU SCIoU SSCmIoU

SidePaint Before 69.2 50.3 82.9 63.6

SidePaint After 72.2 52.5 83.9 64.6

In Figure 6, we present visualization examples to conceptually compare the
performance of the baseline and our SidePaint-based model. It can be found that
the baseline suffers from semantic errors and geometry defects while our Side-
Paint recovers the scenes with correct semantic completion. This demonstrates
that the SidePaint strategy facilitates SSC by learning context completion in 2D
space with dense distance-aware feature volumes, which is much simpler than
directly reasoning sophisticated 3D semantic patterns with sparse signals.
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Fig. 6: Qualitative comparison for ablation studies.

5 Conclusion

In this paper, we propose a side-view context inpainting strategy (SidePaint)
to alleviate the learning burden caused by reasoning highly complex 3D re-
lationships with sparse observations for semantic scene completion. The Side-
Paint strategy simplifies the 3D semantic pattern completion by inpainting 2D
side-view context with densely projected volumetric features. With the context
complexity reduced in 2D space, the SidePaint strategy guarantees a cushy com-
pletion of missing semantic patterns with a single-branch deep model. Experi-
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ments demonstrate that the spirit of recovering 3D semantic patterns in 2D
space is more effective than directly reasoning 3D relationships. In comparison
with state-of-the-art methods, the SidePaint-based model achieves competitive
performance for not only semantic scene completion but also geometry recovery.
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