
Supplementary Material - Adaptive Annealing for
Robust Averaging

Chitturi Sidhartha and Venu Madhav Govindu

Indian Institute of Science, Bengaluru, India
{chitturis,venug}@iisc.ac.in

1 Notation

We discuss the notation that is used commonly in the main paper as well as the supple-
mentary material. G = (V, E ,W) is a connected weighted graph where V , E , W repre-
sent the sets of vertices, edges (i, j) ∈ E and, weights Wij (symmetric matrices) on the
edges respectively. N = |V|, M = |E|. The weighted graph Laplacian matrix of G is
L = D−A, where D is the degree matrix (Dii =

∑
j∼i Wij) and A is the adjacency

matrix (Aij = Wij if (i, j) ∈ E , 0 otherwise) of G. A matrix has Laplacian structure
if it is equal to some graph Laplacian matrix. The Laplacian matrix corresponding to
a single edge in the graph is called the edge Laplacian matrix. Jx(·), Dx(·) denote the
Jacobian and differential operators respectively with respect to x. A ⊗ B denotes the
Kronecker product of two matrices A and B. ∥p∥ is the 2-norm of p. (A)k,∗, (A)∗,k
denote the kth row and kth column of A respectively. To avoid clutter, the arguments
of a function are sometimes omitted, e.g. rij (xi,xj ; zij) is referred to as rij , Wij(σ)
is Wij . If not mentioned, the dependence of matrices such as Wij , λmin(Wij), H on
σ is understood to be implicit. A single GNC stage refers to the optimization of the ro-
bust cost fσ (x) for a fixed σ. The cardinality of the set of {σk}’s used in GNC denotes
the number of GNC or annealing stages. We notate ∇2

xixj
f = ∂2f

∂xi∂xj
and use the two

definitions interchangeably. Also, we encounter large sparse matrices with non-zero en-
tries only at the ith and jth blocks (row and column wise). We represent such matrices
using the square 2×2 block matrices signifying the iith, ijth, jith, jjth block non-zero
entries.

The equations for the robust cost and the least squares cost for averaging problems
on Euclidean spaces are:

Robust Cost: fσ(x) =
∑
ij∈E

fσ,ij(x) =
∑
ij∈E

ρσ (∥rij∥) (1)

Least Squares Cost: f ls(x) =
∑
ij∈E

f ls
ij (x) =

∑
ij∈E

1

2
∥rij∥2 (2)

Assumption 1 The function rij : D ⊂ Rq × Rq → Rl has continuous second partial
derivatives in D and Jxi

(rij) = −Jxj
(rij).

In the next section, we discuss the proofs of all propositions and theorems stated in
the main paper.

https://orcid.org/0009-0007-7139-3357


2 Sidhartha C, Govindu VM

2 Proofs

2.1 Proof of Theorem 1

Theorem 1. The Hessian matrix Hij(σ) corresponding to fij(x) in Eq. (1) is a Lapla-
cian matrix if Assumption 1 holds true. Consequently, the Hessian of the total cost fσ(x)
in Eq. (1), H(σ) is given by:

H(σ) =
∑
ij∈E

Hij(σ) =
∑
ij∈E

Le
ij ⊗Wij(σ) (3)

where Le
ij is the N × N unweighted edge Laplacian matrix for a single edge (i, j),

given by:

Le
ij(m,n) =


1, if (m,n) = (i, i) or (m,n) = (j, j)

−1, if (m,n) = (i, j) or (m,n) = (j, i)

0 otherwise
(4)

Wij(σ) is the weight matrix for edge (i, j) ∈ E and is a function of σ, given by:

Wij(σ) = −lij
J⊤xi

(rij) rijr
⊤
ijJxi

(rij)

∥rij∥2
+mij

∂2

∂x2
i

(
∥rij∥2

2

)
(5)

where lij and mij are functions depending on the robust loss ρσ(·):

lij =
ρ′σ (∥rij∥)
∥rij∥

− ρ′′σ(∥rij∥);mij =
ρ′σ (∥rij∥)
∥rij∥

(6)

Proof. Let us notate the robust cost defined in Eq. (1) as fσ . Since we are concerned
only with a single edge (i, j) ∈ E , the variable x is the concatenation of the two node
variables xi,xj i.e. x =

[
x⊤
i x⊤

j

]⊤
. The gradient and the Hessian matrix of the robust

cost fσ,ij is:

∇xfσ,ij = ρ′σ (∥rij∥)∇x∥rij∥=
[
ρ′σ (∥rij∥)∇xi

∥rij∥
ρ′σ (∥rij∥)∇xj∥rij∥

]
(7)

Hij(σ) = Dx(∇xfσ,ij) = Dx (ρ
′
σ (∥rij∥)∇x∥rij∥) (8)

Since the least squares cost f ls
ij (x) =

1
2∥rij∥

2, we can derive the following:

∇x∥rij∥=
∇xf

ls
ij

∥rij∥
;∇2

xx∥rij∥=
1

∥rij∥
∇2

xxf
ls
ij − 1

∥rij∥3
∇xf

ls
ij∇xf

ls
ij

⊤
(9)

Thus, the expressions for the Hessian becomes:

Hij(σ) = ∇x∥rij∥∇x∥rij∥⊤ρ′′σ (∥rij∥) + ρ′σ (∥rij∥)∇2
xx∥rij∥

=
∇xf

ls
ij∇xf

ls
ij

⊤

∥rij∥2
ρ′′σ (∥rij∥) + ρ′σ(∥rij∥)

[
∇2

xxf
ls
ij

∥rij∥
−

∇xf
ls
ij∇xf

ls
ij

⊤

∥rij∥3

]

=

(
ρ′′σ (∥rij∥)
∥rij∥2

− ρ′σ(∥rij∥)
∥rij∥3

)
∇xf

ls
ij∇xf

ls
ij

⊤
+

ρ′σ(∥rij∥)
∥rij∥

∇2
xxf

ls
ij



Supplementary Material - Adaptive Annealing for Robust Averaging 3

⇒ Hij(σ) = −lij
∇xf

ls
ij∇xf

ls
ij

⊤

∥rij∥2
+mij∇2

xxf
ls
ij (10)

where, lij , mij are defined in Eq. (6).
We have to prove that if Jxi

(rij) = −Jxj
(rij), then the robust Hessian Hij(σ)

is a Laplacian matrix. If we can prove that the two terms in Eq. (10) are individually
Laplacian matrices, then the robust Hessian is also Laplacian. For that, we look at the
gradient and Hessian for the least squares cost as follows:

∇xf
ls
ij (x) =

[
∇xif

ls
ij (x)

∇xj
f ls
ij (x)

]
=

[
J⊤xi

(rij) rij
J⊤xj

(rij) rij

]
(11)

It is easy to observe that from Eq. (11), the first term in the expression for Hij(σ)
in Eq. (10) is Laplacian in structure under the assumption that Jxi

(rij) = −Jxj
(rij).

For the least squares Hessian,

∇2
xxf

ls
ij =

[
∇2

xixi
f ls
ij ∇2

xjxi
f ls
ij

∇2
xixj

f ls
ij ∇2

xjxj
f ls
ij

]
(12)

∇2
xixi

f ls
ij = Dxi

(
J⊤xi

(rij) rij
)

Let Jxi
(rij) = A =

 . . .
a1 a2 a3 . . .

. . .

 , Jxj
(rij) = B =

 . . .
b1 b2 b3 . . .

. . .


where ak =

[
∂r1
∂xik

,
∂r2
∂xik

, · · · , ∂rl
∂xik

]⊤
,bk =

[
∂r1
∂xjk

,
∂r2
∂xjk

, · · · , ∂rl
∂xjk

]⊤

⇒ ∇2
xixi

f ls
ij =


...

Dxi

(
r⊤ijak

)
...

 =


...

a⊤k Jxi
(rij) + r⊤ijDxi

(ak)
...

(
∵ Jxi

(rij) = Dxi
(rij)

)
⇒

(
∇2

xixi
f ls
ij

)
k,∗ = r⊤ijDxi

(ak) + a⊤k Jxi
(rij)

Similarly, we can derive the expressions(
∇2

xjxi
f ls
ij

)
k,∗

= r⊤ijDxj
(ak) + a⊤k Jxj

(rij) (13)(
∇2

xixj
f ls
ij

)
k,∗

= r⊤ijDxi
(bk) + b⊤

k Jxi
(rij) (14)(

∇2
xjxj

f ls
ij

)
k,∗

= r⊤ijDxj
(bk) + b⊤

k Jxj
(rij) (15)



4 Sidhartha C, Govindu VM

For the matrix ∇2
xxf

ls
ij to be Laplacian, we require

(
∇2

xixi
f ls
ij

)
k,∗+

(
∇2

xjxi
f ls
ij

)
k,∗

=

0. (
∇2

xixi
f ls
ij

)
k,∗ +

(
∇2

xjxi
f ls
ij

)
k,∗

(16)

= r⊤ijDxi (ak) + a⊤k Jxi (rij) + r⊤ijDxj (ak) + a⊤k Jxj (rij) (17)

= r⊤ij
(
Dxi

(ak) +Dxj
(ak)

)
+ a⊤k

(
Jxi

(rij) + Jxj
(rij)

)
(18)

= r⊤ij
(
Dxi (ak) +Dxj (ak)

) (
∵
(
Jxi (rij) + Jxj (rij)

)
= 0 by Assumption 1

)
(19)

= 0 ⇐ Dxi (ak) +Dxj (ak) = 0 (20)

⇐ ∂

∂xis

(
∂rt
∂xik

)
+

∂

∂xjs

(
∂rt
∂xik

)
= 0 (21)

∀s ∈ {1, . . . , q}, t ∈ {1, . . . , l}. (22)

From Assumption-1, the function rij has continuous second partial derivatives, because
of which the derivatives order is interchangeable i.e. ∂

∂xis
( ∂rt
∂xik

) = ∂
∂xik

( ∂rt
∂xis

). Thus,
the above equation becomes,

⇐ ∂

∂xik

(
∂rt
∂xis

)
+

∂

∂xik

(
∂rt
∂xjs

)
= 0

⇐ ∂

∂xik

(
∂rt
∂xis

+
∂rt
∂xjs

)
= 0

⇐ Jxi (rij) + Jxj (rij) = 0 (∵ A+B = 0 ⇒

Ats +Bts = 0 ⇒ ∂rt
∂xis

+
∂rt
∂xjs

= 0 ∀s, t
)
.

Likewise, the conditions
(
∇2

xjxj
f ls
ij

)
k,∗

=
(
∇2

xixi
f ls
ij

)
k,∗ and

(
∇2

xjxj
f ls
ij

)
k,∗

=

−
(
∇2

xixj
f ls
ij

)
k,∗

can also be proved when Jxi
(rij) = −Jxj

(rij), thus proving that

∇2
xxf

ls
ij is a Laplacian matrix. Thus the second term in the expression of Hij(σ) is also

Laplacian, thereby proving that the robust Hessian Hij(σ) is a Laplacian matrix.

Given that Hij(σ) is a Laplacian matrix, it is easy to deduce from Eq. (10) that,

Hij(σ) =

[
Wij(σ) −Wij(σ)
−Wij(σ) Wij(σ)

]
(23)

where

Wij(σ) = −lij
J⊤xi

(rij) rijr
⊤
ijJxi

(rij)

∥rij∥2
+mij

∂2

∂x2
i

(
∥rij∥2

2

)
(24)

The above expressions consider the variable x =
[
x⊤
i ,x

⊤
j

]⊤
for a single edge, but if x

is now treated as the concatenation of all node variables {xi}’s i ∈ {1, 2, ..., N}, then
we get the Kronecker product form as shown in Eq. (3).



Supplementary Material - Adaptive Annealing for Robust Averaging 5

2.2 Proof of Proposition 1

Proposition 1 (Laplacian Properties [2]).

1. A Laplacian matrix with the weight matrices {Wij}(i,j)∈E is positive semidefinite
if Wij ≽ 0 ∀ (i, j) ∈ E .

2. A Laplacian matrix always has 0 as one of its eigen values and the corresponding
eigen vector is the ones vector i.e. 1 =

[
1, 1, . . . , 1

]⊤
Proof. The proposition is a classical result of Spectral Graph Theory available in [2].

2.3 Proof of Proposition 2

The vector averaging cost is given as:

f(x) =
∑
ij∈E

ρσk
(∥rij∥) = ρσk

(∥xj − xi − zij∥) (25)

Proposition 2. The weight matrix Wij ∈ Rq×q corresponding to the cost Eq. (25) is
given by:

Wij = mijI− lij
rijr

⊤
ij

∥rij∥2
(26)

and for the Geman-McClure loss, Wij ≽ 0 iff σ ≥
√
3∥rij∥, implying σij =

√
3∥rij∥.

Proof. We have rij = xj − xi − zij , ⇒ Jxi
(rij) = −Jxj

(rij) = −I.

f ls
ij =

1

2
∥xj − xi − zij∥2 (27)

⇒ ∇xi
f ls
ij = − (xj − xi − zij) = −rij (28)

⇒ ∂2

∂x2
i

(
∥rij∥2

2

)
= Dxi

(
∇xif

ls
ij

)
= I (29)

Thus, Wij follows from Eq. (5). For proving the conditions under which Wij ≽ 0, we
shall drop the subscript ij for convenience.

Wij = mI− l
rr⊤

∥r∥2
≽ 0 (30)

⇐⇒ I−
(

l

m

)
rr⊤

∥r∥2
≽ 0 (∵ m ≥ 0) (31)

⇐⇒ det

(
I−

(
l

m

)
rr⊤

∥r∥2
− λI

)
= 0 (32)

⇐⇒ det

((
l

m

)
rr⊤

∥r∥2
− (1− λ)I

)
= 0 (33)



6 Sidhartha C, Govindu VM

If λ denote the eigenvalues of Wij

m = I −
(

l
m

)
rr⊤

∥r∥2 , (1 − λ) are the eigenvalues of(
l
m

)
rr⊤

∥r∥2 which is nothing but an outer product. Therefore,

(1− λ) =
l

m
, 0, 0, . . . , 0 (34)

⇒ λ = 1− l

m
, 1, 1, . . . , 1 (35)

⇒ Wij ≽ 0 ⇐⇒ 1− l

m
≥ 0 (36)

Specifically for Geman-McClure loss function,

1− l

m
=

1− 3
∥rij∥2

σ2

1 +
∥rij∥2

σ2

≥ 0 (37)

⇐⇒ 1− 3
∥rij∥2

σ2
≥ 0 (38)

⇐⇒ σ ≥
√
3∥rij∥ (39)

Thus, σij =
√
3∥rij∥ (40)

2.4 Proof of Proposition 3

The averaging cost with additional edge variables xij ∈ Rs be defined as:

fσ (x) =
∑
ij∈E

ρσ (∥rij (xi,xj ,xij ; zij)∥) (41)

Proposition 3. If Assumption 1 holds true, the Hessian for the cost Eq. (41) is the
following block matrix:

H =

[
L −B

−B⊤ D

]
(42)

where Lt is a Laplacian matrix, B has the structure similar to an incidence matrix of
the graph G, D is a block diagonal matrix corresponding to the edge variables {xij}’s.
The matrix Lr = L−BD−1B⊤ has Laplacian structure. The positive semidefiniteness
of H, i.e. H ≽ 0, boils down to satisfying the following two conditions:

1. All block diagonal entries in D are positive definite.
2. L−BD−1B⊤ ≽ 0.

Proof. It is easy to observe that

Lt,ij =

[
∇2

xixi
fσ,ij ∇2

xjxi
fσ,ij

∇2
xixj

fσ,ij ∇2
xjxj

fσ,ij

]
,Bij = −

[
∇2

xijxi
fσ,ij

∇2
xijxj

fσ,ij

]
,Dij = ∇2

xijxij
fσ,ij

(43)



Supplementary Material - Adaptive Annealing for Robust Averaging 7

Since the cost fn. Eq. (41) as a function of the node variables {xi}’s satisfies Assumption-
1, the block of the Hessian formed by the {xi}’s i.e. Lt,ij has a Laplacian structure, and
hence the sum of all terms L is Laplacian. Evidently, the matrix D is a block diagonal
matrix formed with Dij’s as the diagonal blocks. Given that, xi ∈ Rq ∀i, xij ∈ Rs

∀ (i, j) ∈ E , we note that Bij is of dimension qN × s, and has entries corresponding
to only xi and xj , at the ith and jth blocks (rowwise) respectively, each of size q × s.
Also, by Assumption- 1, it is easy to deduce that Bij has entries with equal magnitude
and opposite sign in the ith and jth blocks (rowwise). Thus, B has the structure of an
incidence matrix of the graph G, with dimension of qN ×Ms. Since B has the struc-
ture of an incidence matrix, and D−1 is a diagonal matrix, the matrix BD−1B⊤ has
Laplacian structure thus making Lr = L−BD−1B⊤ also a Laplacian matrix.

The latter part of the proposition regarding the equivalent conditions for the positive
semidefiniteness of the block matrix (H ≽ 0) is popularly known [7], obtained using
the Schur complement.

2.5 Proof of Theorem 2

Given that ∥tij∥= 1 ∀ (i, j) ∈ E , the translation averaging problem is given by:

min
{Ti},{dij}

∑
ij∈E

ρσ (∥Ti −Tj − dijtij∥)

s.t.
N∑
i=1

Ti = 0; dij ≥ 1 ∀ (i, j) ∈ E
(44)

Theorem 2. The weight matrix Wij corresponding to the reduced Laplacian matrix
Lr for the Translation averaging cost Eq. (44) is given as: (r̂ij =

rij
∥rij∥ , qij = 1

−lij(t⊤ij r̂ij)
2+mij

)

Wij =


−lij r̂ij r̂

⊤
ij +mijI− qij

(
l2ij(r̂

⊤
ijtij)

2r̂ij r̂
⊤
ij +m2

ijtijt
⊤
ij

−lijmij(r̂
⊤
ijtij)

(
r̂ijt

⊤
ij + tij r̂

⊤
ij

))
, if dij > 1

−lij r̂ij r̂
⊤
ij +mijI, otherwise

(45)

For the specific case of Geman-McClure loss, Wij ≽ 0 iff σ ≥
√
3∥rij∥.

Proof. If fσ,ij denotes the cost function for a single term in Eq. (44), then the Hessian
matrix is given by:

Hij =

∇2
TiTi

fσ,ij ∇2
TjTi

fσ,ij ∇2
dijTi

fσ,ij
∇2

TiTj
fσ,ij ∇2

TjTj
fσ,ij ∇2

dijTj
fσ,ij

∇2
Tidij

fσ,ij ∇2
Tjdij

fσ,ij ∇2
dijdij

fσ,ij

 (46)

=

[
Lt,ij Bij

B⊤
ij Dij

]
, where Dij = ∇2

dijdij
fσ,ij , (47)

Lt,ij =

[∇2
TiTi

fσ,ij ∇2
TjTi

fσ,ij
∇2

TiTj
fσ,ij ∇2

TjTj
fσ,ij

]
,Bij =

[∇2
dijTi

fσ,ij
∇2

dijTj
fσ,ij

]
(48)



8 Sidhartha C, Govindu VM

To avoid clutter, we shall drop the ij subscript, wherever it is unambiguous. Let us
denote the least squares version (f ls

ij ) of the edgewise TA cost fn. Eq. (44) by f . Then,
similar to the proof of Theorem-1, we have

Hij = mij

∇2
TiTi

f ∇2
TjTi

f ∇2
dijTi

f

∇2
TiTj

f ∇2
TjTj

f ∇2
dijTj

f

∇2
Tidij

f ∇2
Tjdij

f ∇2
dijdij

f


− lij

∥rij∥2

∇Ti
f ·∇Ti

f⊤ ∇Ti
f ·∇Tj

f⊤ ∇Ti
f ·∇dij

f
∇Tj

f ·∇Ti
f⊤ ∇Tj

f ·∇Tj
f⊤ ∇Tj

f ·∇dij
f

∇dij
f ·∇Ti

f⊤ ∇dij
f ·∇Tj

f⊤ (
∇dij

f
)2


= mij

[
L1 B1

B⊤
1 D1

]
− lij

[
L2 B2

B⊤
2 D2

]
(49)

, where L1,L2,B1,B2,D1,D2 are appropriately defined.
The expressions for each of the first and second order derivative terms are as fol-

lows:

∇Ti
f = rij ;∇Tj

f = −rij ;∇dij
f = −r⊤ijtij (50)

∇2
TiTi

f = ∇2
TjTj

f = I (51)

∇2
dijTi

f = −tij ;∇2
dijTj

f = tij ;∇2
dijdij

f = 1 (52)

Using Eqns 49, 50, 51, 52, we obtain the following:

B1 =

[
−tij
tij

]
, B2 =

1

∥rij∥2

[
−(r⊤ijtij)rij
(r⊤ijtij)rij

]
(53)

L1 =

[
I −I
−I I

]
,L2 =

[
r̂ij r̂

⊤
ij −r̂ij r̂

⊤
ij

−r̂ij r̂
⊤
ij r̂ij r̂

⊤
ij

]
(54)

D1 = 1,D2 =
(
r̂⊤ijtij

)2
(55)

Therefore, using Eq. (49),

Hij =

[
mL1 − lL2 mB1 − lB2

(mB1 − lB2)
⊤ mD1 − lD2

]
By the 2nd condition in Proposition 3, the reduced “Hessian" (Laplacian) matrix is

Lr = (mL1 − lL2)− (mB1 − lB2) (mD1 − lD2)
−1

(mB1 − lB2)
⊤ (56)

Since Lr is a Laplacian matrix, the corresponding weight matrices Wij can be derived
using eqns. 53, 54, 55 as follows:

Wij =
(
mI− lr̂ij r̂

⊤
ij

)
−

(
l2
(
r̂⊤ijtij

)2
r̂ij r̂

⊤
ij +m2tijt

⊤
ij − lmr̂⊤ijtij

(
tij r̂

⊤
ij + r̂ijt

⊤
ij

))(
m− l

(
r̂⊤ijtij

)2)
(57)



Supplementary Material - Adaptive Annealing for Robust Averaging 9

Since this is a constrained problem, instead of the positive semidefiniteness of the
Hessian matrix, the second-order sufficient conditions is used, which translates to the
positive semidefiniteness of Z(x∗)⊤∇2

xxfσ(x
∗)Z(x∗), where ∇2

xxfσ(x
∗) is the ac-

tual Hessian matrix and Z(x∗) is the basis of the null-space of the Jacobian of the
active constraints at the solution x∗. In this particular problem, effectively, the matrix
Z(x∗)⊤∇2

xxfσ(x
∗)Z(x∗) is obtained by removing the rows and columns in B⊤ and

B respectively and the diagonal entries in D in the Hessian matrix H, corresponding to
the active constraints (i.e. the edges for which dij = 1). Thus, for the edges with active
constraints, the Wij is given by:

Wij = −lij r̂ij r̂
⊤
ij +mijI (58)

Thus, the Wij for the edges with inactive constraints are given by Eq. (57), and for
the active constraints are given by Eq. (58).

Coming to the second part of the theorem, we would like to prove the conditions
when Wij ≽ 0 for the Geman-McClure loss. Since Wij has only the outer product
terms of tij and r̂ij , one of the eigenvectors is the crossproduct of r̂ij and tij . For ease
of notation, we drop the ij subscript. Therefore, let u = r̂× t.

Wiju = mu (59)

Therefore, one eigen value of Wij is m which is nothing but the weight function of the
robust loss function ρσ(·) and hence is always positive. The other two eigenvectors are
perpendicular to u = r̂× t, which can be expressed as a linear combination of r̂ and t.

Wijt = r̂

[
−l(r̂⊤t)− l2(r̂⊤t)3 − lm(r̂⊤t)

m− l(r̂⊤t)2

]
+ t

[
m− m2 − lm(r̂⊤t)2

m− l(r̂⊤t)2

]
= 0 (60)

Therefore, t is another eigenvector of Wij with 0 eigenvalue. Likewise, we can derive

Wij r̂ =
(m− l)m

m− l(r̂⊤t)2
(
r̂− (r̂⊤t)t

)
(61)

⇒ Wij

(
r̂− (r̂⊤t)t

)
=

(m− l)m

m− l(r̂⊤t)2
(
r̂− (r̂⊤t)t

)
using the fact that Wijt = 0

(62)

Thus the third eigenvector is r̂ − (r̂⊤t)t with (m−l)m
m−l(r̂⊤t)2

as the eigenvalue. Also, for
the positive semidefiniteness of the Hessian matrix, from condition-1 in Proposition 3,
we require that the diagonal elements Dij are positive, i.e. Dij = m − l(r̂⊤t)2 > 0.



10 Sidhartha C, Govindu VM

Therefore, for the positive semidefiniteness of Wij ,

Wij ≽ 0 ⇐⇒ (m− l)m

m− l(r̂⊤t)2
≥ 0 (63)

⇐⇒ (m− l) ≥ 0 (∵ m− l(r̂⊤t)2 > 0,m > 0) (64)

⇐⇒ 1− l

m
≥ 0 (65)

For the specific case of Geman-McClure loss, we have,

Wij ≽ 0 ⇐⇒ 1− 3
∥rij∥2

σ2
≥ 0

⇐⇒ σ ≥
√
3∥rij∥

It is also easy to see that the condition Dij = m − l(r̂⊤t)2 = 1
qij

> 0 is not fulfilled
only when dij ̸> 1, i.e., for an active constraint. This is equivalent to proving that
dij > 1 ⇒ Dij > 0 ⇒ qij > 0. For an inactive constraint, the optimal dij is dij =
(Ti − Tj)

⊤tij ⇒ r⊤ijtij = 0 ⇒ Dij = m > 0. If the constraint becomes active,
then the expression for Wij changes, in which case also, the condition for the positive
definiteness of Wij boils down to the condition σ ≥

√
3∥rij∥.

3 Comparison routine in Vector Averaging

We compare a solution (xsol) with the ground truth (xgt), by finding the rigid transfor-
mation (rotation R, translation t) that best fits xsol to xgt, i.e.,

R∗, t∗ = argminR,t∥xgt −Rxsol − t∥2 (66)

The mean and median errors of the resulting residuals are used for evaluation.

4 Additional Results

4.1 Vector Averaging

Regarding the results for Augmented ICL-NUIM [1] datasets in Table-5 in the main
paper, we firstly discuss how we obtain the input data suitable for Vector Averaging.
Each of the 4 sequences provided by [1] consist of around 2350-2870 scans. Also,
the scans are labelled temporally, thus leading to reliable FPFH feature matching. We
compute pairwise matches for scans (i, j) such that |i − j|< 10 but we remove some
pairs randomly in order to introduce some brittleness. This leads to an average of 5
pairs for every scan. The pairwise matches are fed into the 3D registration pipeline as
given in [5] to obtain the pairwise relative transformations. We replace the obtained
pairwise rotations by the groundtruth rotations so as to produce data only in terms of
the translation vectors, thus making it amenable for Vector averaging. The results show



Supplementary Material - Adaptive Annealing for Robust Averaging 11

Table 1: Vector averaging on Augmented ICL-NUIM dataset (lr:livingroom, of :office): Time
taken in seconds | Average number of annealing stages for the baselines

IRLS GNC (δ ↓) GNC (δ ↑) GNCp
lr1 0.05 | 1 0.65 | 85 0.15 | 5 0.22 | 4
lr2 0.27 | 1 3.64 | 85 0.53 | 5 3.11 | 8
of1 0.06 | 1 0.52 | 85 0.1 | 5 0.18 | 4
of2 0.18 | 1 1.68 | 85 0.34 | 5 0.95 | 7

that our method achieves superior results in terms of the accuracy in Table-5 in the main
paper. We tabulate the number of GNC stages and the time taken in Tab. 1. We observe
that our method GNCp takes significantly lesser number of GNC (annealing) stages and
is more efficient compared to GNC (δ ↓).

We also tabulate in Tab. 2 few additional parameters for the synthetic datasets with
varying outlier fractions of ∈ [0.1, 0.5], at a fixed edge probability β = 0.02. The
experimental settings are the same as in Tables-1,3,4 in the main paper. We observe
that our method GNCp takes lesser number of annealing stages compared to that of
GNC (δ ↓) (61). Our method even though doesn’t entirely eliminate the computation
of λmin(H), we see that the number of such computations is significantly reduced.
Our method conducts only 20’s of evaluations (Table- 2) across all annealing steps ef-
ficiently, compared to 100’s of evaluations of λmin(H) in each annealing step in [5]
using brute-force search. We also tabulate the number of times GNC (δ ↓) incurs a
negative eigenvalue of the Hessian λmin(H) < 0. We see that for smaller outlier frac-
tions, it is zero but it increases with increasing outlier fraction. This is reflected in the
drop in accuracy for GNC (δ ↓) as shown in Table-1 in the main paper. We also test for
larger size datasets (N = 10000) to see if our method is efficient and how it compares
to GNC (δ ↓). We observe from Tab. 2 that our method takes lesser time compared to
GNC (δ ↓) and the efficiency of our method improves with increasing outlier fraction.

Table 2: Vector Averaging, β = 0.02 with varying outlier fractions: All numbers are computed
as the mean over 100 instances, except for N = 10000 which is computed over 10 instances.

Outlier Fraction 0.1 0.2 0.3 0.4 0.5
Number of annealing steps in GNCp (N = 1000) 4 4 4.3 7.4 9.7

Total number of λmin(H) computations in GNCp (N = 1000) 22 23 23 24 26
Number of times where λmin(H) < 0 for GNC (δ ↓) (N = 1000) 0 0 0.1 1.8 18.7

Ratio of time taken GNC (δ↓)
GNCp

for N = 10000 1.09 1.29 1.45 1.72 2.71

While Vector Averaging is common in sensor network localization, time synchro-
nization and motion averaging, publicly available codes for relevant baselines are scarce,
complicating comparisons. However, we used one baseline, SE-Sync [4] to demonstrate
the efficacy of our Vector averaging method. Since SE-Sync operates on the Special Eu-
clidean Group SE(3), and our method handles only relative displacements, we set all
rotations to identity and nullified the rotation cost to ensure a fair comparison. The origi-



12 Sidhartha C, Govindu VM

nal SE-Sync is non-robust, but, we applied a robust loss function (Geman-McClure) and
used IRLS to obtain weighted least squares problems, which are then fed to SE-Sync.
As shown in Tab. 3, Tab. 4, our method outperforms SE-Sync in both accuracy and
efficiency on synthetic and real datasets used for Vector Averaging in the main paper.

Table 3: Vector averaging on synthetic datasets of varying outlier fraction (of ) with real
baselines: Mean | Median errors | time (in sec.)

0.1 0.2 0.3 0.4 0.5
SE-Sync 0.73|0.67|243 0.85|0.79|228 1.04|0.99|228 1.25|1.14|223 1.52|1.39|242

Ours 0.41|0.38|1.2 0.44|0.41|1.2 0.48|0.44|1.3 0.53|0.49|1.3 0.57|0.53|2

Table 4: Vector averaging on Augmented ICL-NUIM dataset with real baselines: Mean|median
errors|time(in sec.)

livingroom1 livingroom2 office1 office2
SE-Sync 2.15|2.11|7.7 1.55|1.53|27.8 1.84|1.88|9.5 2.16|2.24|14.4

Ours 1.93|1.59|0.23 1.25|1.31|3.62 1.8|1.79|0.22 2.12|1.93|0.95

4.2 Translation Averaging

We compare the SOTA baselines like LUD [3], BATA [8] with our method on the syn-
thetic datasets for Translation averaging that are used in the main paper. Table-5 shows
that, our method exhibits superior accuracy on synthetic datasets compared to SOTA
baselines, albeit with slightly higher computational time, which aligns with observa-
tions on real-world 1DSfM datasets.

Table 5: TA: Mean | median errors (×10−3) | time (in sec.) of SOTA baselines on synthetic
datasets for varying outlier fraction (of ).

0.1 0.2 0.3 0.4 0.5
LUD [3] 48|42|2 82|73|2 115|107|1.9 151|141|1.9 211|198|2.1
BATA [8] 39|35|4.1 64|55|4.2 94|82|4.2 142|133|4.1 217|204|3.4

Ours 22|19|4.6 40|31|5.5 73|62|6.6 108|93|8.3 157|140|8.6

The timing results for our Translation averaging method on synthetic and real datasets
are shown in Tab. 6 and Tab. 7 respectively. From Tab. 6, we observe that our method
takes significantly lesser number of stages compared to the small factor annealing
(GNC (δ ↓)). On real datasets, as seen in Tab. 7, our method takes more time com-
pared to the popular baselines. The local routine, written in MATLAB, is an interior



Supplementary Material - Adaptive Annealing for Robust Averaging 13

point method (IPM) within IRLS framework. The outer IRLS loop has a maximum of
nirls iterations, and the inner IPM loop has nipm iterations. nirls = 10, nipm = 5

and a stopping criterion for convergence (∥xk+1−xk∥
∥xk∥ > ϵ, where ϵ = 10−5) were used.

A C++ implementation, like that of LUD [3], could further reduce the time. The im-
plementation for LUD is taken from Theia-SfM [6], which is implemented based on
Alternating Direction Method of Multipliers.

Table 6: Translation averaging on synthetic graphs: Time taken (in seconds) | average number of
annealing stages for the baselines for varying outlier fractions of for N = 500, β = 0.02

of IRLS GNC (δ ↓) GNC (δ ↑) GNCp (Ours)
0.1 2.5 | 1 34 | 33 6.8 | 5 15 | 7.9
0.2 3.4 | 1 42 | 33 7.1 | 5 30 | 9.8
0.3 3.2 | 1 47 | 33 8.6 | 5 41 | 12.5
0.4 3 | 1 43 | 33 7.5 | 5 48 | 14.7

0.45 2.4 | 1 35 | 33 6.1 | 5 44 | 16.4
0.48 2.1 | 1 34 | 33 5.6 | 5 45 | 17.9
0.5 2.2 | 1 33 | 33 5.9 | 5 42 | 18.2

Table 7: Time taken for Translation averaging on real datasets, tp is the time taken to perform
principled annealing, ttot is the total time taken.

Dataset LUD [3] BATA [8] GNCp-LUD GNC (δ ↓) GNC (δ ↑)
tp ttot

Alamo (ALM) 42 54 16 72 504 87
Ellis Island (ELS) 6 10 13 65 66 11

Gendarmenkmart (GMM) 14 25 19 46 188 31
Madrid Metropolis (MDR) 7 14 7 14 73 12

Montreal Notre Dame (MND) 9 29 19 33 235 39
Notre Dame (ND) 46 56 15 70 79 14

NYC Library (NYC) 6 14 15 20 533 87
Piazza del Popolo (PDP) 8 16 6 17 117 20

Piccadilly (PIC) 211 249 87 383 1986 365
Roman Forum (ROF) 24 52 41 83 378 71

Tower of London (TOL) 9 19 22 52 121 21
Trafalgar (TFG) 543 862 302 1000 7162 1336

Union Square (USQ) 8 17 16 43 141 23
Vienna Cathedral (VNC) 54 74 36 92 508 94

Yorkminster (YKM) 11 16 9 32 125 22

5 Codes

Algorithm 1 is the pseudocode for any general averaging problem using our method
GNCp. This is similar to Algorithm-1 in the main paper, but in a much simpler form.

In the following subsections, we provide snippets of the code corresponding to only
the “Principled Annealing” step in Algorithm 1, because it is the main contribution
in this paper. These are not standalone, but capture all the main contributions of our
method.



14 Sidhartha C, Govindu VM

Algorithm 1: Robust Averaging with Adaptive GNC (GNCp)
Input: Pairwise relative observations zij ∀ (i, j) ∈ E , σ̄, ρσ(·)
Output: Estimates of the absolute states xi ∀ i ∈ V

1 Initialization:p = 100, Least squares soln. {xi,lsq}.
2 while p ≥ 50 and σ ≥ σ̄ do
3 Principled annealing: Obtain σ for the GNC stage using the Hessian/Laplacian

matrix.
4 Local Optimization: Using IRLS, minimize the robust cost with σ obtained from

the principled annealing step.
5 end

5.1 Principled Annealing Routine

The following is the code for performing the principled annealing irrespective of the
type of averaging problem.

1 %% Principled Annealing
2

3 % Initialization of Variables required
4 count = 0;
5 Iteration=0;
6 frac_outl = 0;
7 n_emer = 0;
8 eigvecinit = randn(q*N,1);
9 neg_eig_thres = -1e-4;

10 n_compute_eigval = 0;
11 stepmagn = 1; minPerStep = 0.1;
12 isreduced = false;
13

14 %%%%%%%%%%%%%%%%% START
15 t1_temp = toc(t0);
16 sig_prev_stage = sig; % Sigma in the previous GNC stage.
17

18 % per_step is the decrement in the percentile p (p has the
same definition as in the main paper).

19 if(Iteration==0)
20 per_step = 0; % in the first GNC stage, we start with p =

100 percentile
21 else
22 per_step = 0.5; % from the second stage onwards, we keep

reducing p.
23 end
24

25 % frac_outl = 100-p. (Increasing frac_outl is equivalent to
reducing p which is equivalent to reducing sigma)

26 frac_outl = frac_outl+per_step;
27

28 if(frac_outl<50 && sig>sig_min)



Supplementary Material - Adaptive Annealing for Robust Averaging 15

29 th = rij; % Residual vector
30 temp_iter = 0; neg_eig_encount = false; increase_fracoutl =

false;decr_after_incr = false; minLevelReached = false;
31 % The following while loop decreases the percentile p

aggressively as long as the minimum eigenvalue or the
Fiedler value is positive.

32 while(frac_outl<50 && sig>sig_min)
33 temp_iter = temp_iter+1;
34 ptile = sqrt(3)*prctile(th,100-frac_outl); % Computing

sigma_ij and the sigma.
35 sig = max(min(ptile,sig_prev_stage), sig_min);
36 if(Iteration==0)
37 break; %in the first iteration, the per_step=0, i.e.,

percentile p=100, hence the fiedler value will always be
positive.

38 end
39

40 % Compute the minimum eigen value (or fiedler value) of
the Hessian matrix in corresponding averaging problem. Here,
we take the example of VectorAveraging.

41 [fied_val, eigvecinit] = checkVecAvgFiedlerValuen(res, I,
’GM’, sig, row_ind, col_ind, eigvecinit);

42 n_compute_eigval = n_compute_eigval+1; % number of
computations of the eigenvalue.

43

44 % if the fied_val is positive, increase frac_outl
aggressively i.e., in steps of 5*stepmagn, thereby reducing
the percentile p, thereby reducing sigma.

45 if(fied_val>min(neg_eig_thres/sig^2,-1e-6) || isnan(
fied_val))

46 if(neg_eig_encount)
47 % if we had encountered a negative eigenvalue already

in the process of increasing frac_outl aggressively, then
there is no need to increase frac_outl.

48 break;
49 else
50 % if no negative eigenvalue is encountered, increase

frac_outl.
51 frac_outl = frac_outl+5*stepmagn;
52 % flags to signify that frac_outl is increased

aggressively.
53 increase_fracoutl = true;
54 decr_after_incr = true;
55 increase_enter_iterno = 1;
56 end
57 % if the fied_val is negative, depending on whether

agressive annealing was done, reduce frac_outl accordingly.
58 elseif(fied_val<=min(neg_eig_thres/sig^2,-1e-6) && ~

isreduced)



16 Sidhartha C, Govindu VM

59 neg_eig_encount = true; % flag to signify that a
negative eigenvalue is encountered.

60 if(~increase_fracoutl)
61 % even before increasing frac_outl aggressively, if a

negative eigenvalue arises, then reduce the frac_outl in
steps to increase sigma.

62 if(frac_outl<per_step)
63 % in order to not reduce frac_outl further.
64 isreduced = true;
65 else
66 % reduce frac_outl slowly as long as the frac_outl

is greater than that of the previous GNC stage.
67 frac_outl = frac_outl-per_step/(2^(temp_iter-1))*(

temp_iter==1)+max(per_step/(2^temp_iter),minPerStep);
68 if(per_step/(2^temp_iter)<=minPerStep)
69 isreduced = true; %
70 minLevelReached = true;
71 end
72 end
73 else
74 % if frac_outl is increased aggressively and then a

negative eigenvalue comes, then reduce the frac_outl slowly,
as long as it is greater than the frac_outl of the previous
stage.

75 frac_outl = frac_outl-5*stepmagn/(2^(
increase_enter_iterno-1))*(decr_after_incr)+max(5*stepmagn
/(2^increase_enter_iterno),minPerStep);

76 decr_after_incr = false;
77 if(5*stepmagn/(2^increase_enter_iterno)<=minPerStep)
78 ptile = sqrt(3)*prctile(th,100-frac_outl);
79 sig = max(min(ptile,sig_prev_stage), sig_min);
80 break;
81 end
82 increase_enter_iterno = increase_enter_iterno+1;
83 end
84 else
85 % if the eigenvalue is negative even if frac_outl is not

increased, it means we could be in a saddle point. Resort
to fixed annealing at this stage.

86 sig = 0.9*sig_prev_stage;
87 break;
88 end
89 end
90 else
91 break;
92 end
93 t2_temp = toc(t0);
94 time_anneal = time_anneal + (t2_temp-t1_temp); % The time

taken for principled annealing.
95 %%%%%%%%%%%%%%%%% END



Supplementary Material - Adaptive Annealing for Robust Averaging 17

Hessian Computation for Vector Averaging Cost: The following is the code snippet
for computing the Hessian matrix and its minimum eigenvalue for the Vector Averaging
cost.

1 %%%% Code for checkVecAvgFiedlerValuen.m
2 function [fied_val, eigvec1] = checkVecAvgFiedlerValuen(res, I

, lossfn, sigma, row_ind, col_ind, eigvecinit)
3 % This function evaluates the Hessian of robust vector

averaging cost and returns the minimum eigenvalue of it. It
is also referred to as the Fiedler value because the Hessian
has Laplacian structure.

4

5 % res is the set of residuals (Mxq matrix).
6 % I (2xM) is the sorted edge list of the input graph.
7 % lossfn refers to the robust loss, currently we are using

Geman-McClure loss only in this script.
8 % sigma: Parameter of the robust loss.
9 % row_ind, col_ind are indices used to populate the sparse

Hessian matrix.
10 % eigvecinit is an initialization of the eigenvector which

is generally obtained from previous eigenvalue computations.
11

12 % fied_val: Obtained minimum eigen value of the Hessian
matrix.

13 % eigvec1 : Corresponding eigenvector.
14

15 % Populate the Hessian entries.
16 N = max(I(:)); % number of nodes in the graph.
17 M = size(I,2); %no of edges
18 q = size(res,2); % dimensionality of the problem
19 rij = vecnorm(res,2,2); % Norm of the Residuals
20 res_normalized = res./rij; % Normalized residuals
21 res_normalized(rij<1e-10,:)=0; % To avoid numerical issues.
22

23 % lij and mij as defined in the paper.
24 lij = 4*rij.^2./(sigma^2*(1+rij.^2/sigma^2).^3);
25 mij = 1./(1+rij.^2/sigma^2).^2;
26

27 w_tensor = permute(res_normalized,[2,3,1]);
28 wwt = permute(lij,[2,3,1]).*bsxfun(@times, w_tensor, permute

(w_tensor,[2,1,3]));
29 id_tensor = permute(mij,[2,3,1]).*repmat(eye(q),[1,1,M]);
30 % Weight tensor (Wij’s as defined in the paper).
31 Wij = id_tensor-wwt;
32 Hij_tot = cat(3,-Wij,-Wij,Wij,Wij);
33

34 %Populate the entries of the Hessian/Laplacian
35 H = sparse(row_ind,col_ind,Hij_tot(:),q*N,q*N);
36 % normalizing Hessian, note that we are only interested in

the sign of the Fiedler value.



18 Sidhartha C, Govindu VM

37 Hg = H/sqrt(sum(H.*H,’all’));
38

39 [i,j,vals] = find(Hg);
40 n = size(Hg,1);
41 m = n;
42 % Obtaining the minimum eigenvalue and the corresponding

eigenvector by making a call to C++ script based on Spectra
library. Gershgorin circle theorem is used in this script to
shift the eigenvalues by a constant.

43 [fied_val, eigvec1] = gom_new(uint32(i),uint32(j),vals,
uint32(m),uint32(n),eigvecinit);

44 end

Hessian Computation for Translation Averaging Cost: The following is the code
snippet for computing the Hessian matrix and its minimum eigenvalue for the Transla-
tion Averaging cost.

1 %% Code for computing Hessian and the correponding
Fiedlervalue for the LUD based Translation averaging cost

2 function [fied_val, eigvec1] =
checkTransAvgFiedlerValue_LUD_SOSC(T, tij, res, I, lossfn,
sigma, row_ind, col_ind, ind_active, eigvecinit)

3 % This function evaluates the Hessian of robust translation
averaging cost based on LUD formulation and returns its
minimum eigenvalue. Since this is a constrained problem, the
active constraints namely dij=1 are taken into

consideration, and the second order sufficient KKT
conditions (SOSC) are evaluated which in effect translates
to removing rows and columns corresponding to the active
constraints in the complete Hessian.

4

5 % T: absolute translations given by a Nxq matrix.
6 % tij: Mxq observed relative translations.
7 % res: residuals is a Mxq matrix.
8 % I (2xM) is the sorted edge list of the input graph.
9 % lossfn refers to the robust loss, currently we are using

Geman-McClure loss only in this script.
10 % sigma: Parameter of the robust loss.
11 % row_ind, col_ind are indices used to populate the sparse

Hessian matrix.
12 % ind_active: boolean array (Mx1) of the active constraints.

(1-> active, 0-> inactive).
13 % eigvecinit is an initialization of the eigenvector which is

generally obtained from previous eigenvalue computations.
14

15 % fied_val: Obtained minimum eigen value of the matrix
arising in second order sufficient conditions.

16 % eigvec1 : Corresponding eigenvector.
17



Supplementary Material - Adaptive Annealing for Robust Averaging 19

18

19 % Populate the Hessian entries.
20 N = max(I(:)); % number of nodes in the graph.
21 M = size(I,2); %no of edges
22 q = size(res,2); % dimensionality of the problem
23

24 % Form the matrices L1, L2, B1B1’, B2B2’, B1B2’, B2B1’, D1,
D2 (all are laplacian matrices), same notation as in the
proof of Theorem-2 in the supplementary material

25 r = res;
26 rij = vecnorm(res,2,2);
27 rh = r./rij;
28 rh(rij<1e-7,:) = 0;
29 rh_tensor = permute(rh,[2,3,1]);
30 t_tensor = permute(tij,[2,3,1]);
31

32 rhrhT = bsxfun(@times, rh_tensor, permute(rh_tensor
,[2,1,3]));

33 id_tensor = repmat(eye(3),[1,1,M]);
34 uTr_vec = sum(tij.*rh,2);
35 uTr = permute(sum(tij.*rh,2),[2,3,1]);
36

37 L1ij = rhrhT;
38 L2ij = id_tensor;
39 B11ij = (uTr.^2).*rhrhT;
40 B22ij = bsxfun(@times, t_tensor, permute(t_tensor,[2,1,3]))

;
41 B12ij = uTr.*bsxfun(@times, rh_tensor , permute(t_tensor

,[2,1,3]));
42 B21ij = permute(B12ij, [2,1,3]);
43

44

45 lij = 4*rij.^2./(sigma^2*(1+rij.^2/sigma^2).^3); % Geman-
McClure

46 % lij = 2*rij.^2./(sigma^2*(1+rij.^2/sigma^2).^2); % Cauchy
47 mij = 1./(1+rij.^2/sigma^2).^2; % Geman-McClure.
48 % mij = 1./(1+rij.^2/sigma^2); % Cauchy
49 qij_tensor = permute(1./(-lij.*uTr_vec.^2+mij),[2,3,1]); %

qij = 1/(-lij*D1+mij*D2)
50 lij_tensor = permute(lij,[2,3,1]); mij_tensor = permute(mij,

[2,3,1]);
51

52 % Make the terms in Bxxij corresponding to the active
constraints 0.

53 ind_active_tensor = permute(~ind_active,[2,3,1]);
54 Wij = -lij_tensor.*L1ij+mij_tensor.*L2ij - ind_active_tensor

.*(qij_tensor).*(lij_tensor.^2.*B11ij+mij_tensor.^2.*B22ij-
lij_tensor.*mij_tensor.*(B12ij+B21ij));

55 Hij_tot = cat(3,-Wij,-Wij,Wij,Wij);
56



20 Sidhartha C, Govindu VM

57 %Populate the entries of the Hessian/Laplacian
58 H = sparse(row_ind,col_ind,Hij_tot(:),q*N,q*N);
59

60 %% Efficient way to calculate fied_val
61 Hg = H/sqrt(sum(H.*H,’all’));
62 [i,j,vals] = find(Hg);
63 n = size(Hg,1);
64 m = n;
65 % Obtaining the minimum eigenvalue and the corresponding

eigenvector by making a call to C++ script based on Spectra
library. Gershgorin circle theorem is used in this script to
shift the eigenvalues by a constant.

66 [fied_val, eigvec1] = gom_new(uint32(i),uint32(j),vals,
uint32(m),uint32(n),eigvecinit);

67 end

5.2 Computation of Minimum Eigenvalue of Laplacian

The following is a snippet from the code for computing efficiently the minimum eigen-
value of a Laplacian/Hessian matrix. We use this code to compute the largest magnitude
eigenvalue of H− cI as stated in Lines 280-297 in the main paper. It is written in C++
by modifying the Spectra 1 C++ library for large scale eigenvalue problems.

1 /* C++ code for mineigenvalue computation */
2 Index compute(Index maxit = 1000, Scalar tol = 1e-10, int

sort_rule = LARGEST_MAGN)
3 {
4 // The m_ncv step Lanczos factorization, m_ncv is the

dimension of the Kryolov subspace used in the Lanczos method
= 10, m_nmatop is the number of matrix operations called.

5 m_fac.factorize_from(1, m_ncv, m_nmatop);
6 // Retrieve and sort Ritz values and Ritz vectors.
7 retrieve_ritzpair();
8

9 Index i, nconv = 0, nev_adj;
10 Array thresh, resid, resid_prev;
11 // The length of the variables vector is m_n = 3*N in our case

.
12 Vector eigvec_estim(m_n), eigvec_estim1(m_n),

eigvec_estim_temp(m_n), vec_ones(m_n), vec_reduced(m_n/3),
vec_reduced_temp(m_n/3);

13 eigvec_estim.setZero();
14 vec_ones.setOnes();
15 vec_ones.normalize(); // Normalized Vector of all ones.
16 std::vector<double> res_norm;
17 res_norm.push_back(-1.0);
18

1 https://spectralib.org/



Supplementary Material - Adaptive Annealing for Robust Averaging 21

19 double epsilon = 1e-3; // for numLanczosvectors=10
20

21 int nconv_approx=0;
22 // For loop for performing implicitly restarted Lanczos

iterations.
23 for (i = 0; i < maxit; i++)
24 {
25 // nconv is number of converged eigenvalues, m_nev=1 is

requested number of eigenvalues.
26 nconv = num_converged(tol);
27 if (nconv >= m_nev)
28 break;
29

30 nev_adj = nev_adjusted(nconv);
31 restart(nev_adj); // Implicitly restarted Lanczos

factorization
32

33 /* Even if the vectors don’t converge, obtain the largest
eigen vector and check if it is close to 1’s or not*/

34 eigvec_estim_temp = eigvec_estim;
35 eigvec_estim1 = m_fac.matrix_V()*m_ritz_vec.col(0);
36 // Pick the sign according to the proximity to ones vector

in terms of the norm.
37 eigvec_estim.noalias() = (eigvec_estim1-vec_ones).norm() < (

eigvec_estim1+vec_ones).norm() ? eigvec_estim1 : -
eigvec_estim1;

38 // Compute the norm of the difference vector r = norm(
eigvec_estim1-normalizedallones);

39 res_norm.push_back((eigvec_estim-vec_ones).norm());
40

41 // The if condition is to check if the converged eigenvector
is orthogonal to all ones (normalized) vector

42 // If it’s orthogonal, then the norm of the difference
vector is sqrt(2); also the converged eigenvalue is not 0.

43 if(res_norm.back()<=sqrt(2)+epsilon && res_norm.back()>=sqrt
(2)-epsilon)

44 {
45 // then the minimum eigenvalue converging would be

negative.
46 setNegEigenValFlag = true;
47 nconv = 1;
48 break;
49 }
50 // Else, it means that the obtained eigenvector could be

close to having 0 eigenvalue.
51 // The dimension of the variables considered for translation

averaging and vector averaging is 3*N, where N is the
number of node variables and 3 is the dimension of each node
variable. Each of the N x N submatrices formed from a

single dimension of the node variables is Laplacian. Thus,



22 Sidhartha C, Govindu VM

there are 3 eigenvectors having 0 eigenvalue and the vector
of all ones is only a linear combination of those 3 vectors.

52 // The eigen vector which has 0 eigen value has equal norm
for every consecutive set of 3 elements.

53 else
54 {
55 vec_reduced = ((eigvec_estim.array().square()).reshaped

(3,(int) eigvec_estim.rows()/3)).colwise().sum().cwiseSqrt()
.transpose().eval();

56 vec_reduced_temp.setConstant(vec_reduced(0));
57 if(res_norm.back()<=epsilon || vec_reduced.isApprox(

vec_reduced_temp,0.01*sqrt(3.0/m_n)))
58 {
59 setNegEigenValFlag = false; //indicating that the min.

eigen value is non-negative.
60 nconv = 1;
61 break;
62 }
63 }
64 }
65 // Sorting results
66 sort_ritzpair(sort_rule);
67 m_niter += i + 1;
68 m_info = (nconv >= m_nev) ? SUCCESSFUL : NOT_CONVERGING;
69 return std::min(m_nev, nconv);
70 }
71 /* END of C++ code for mineigenvalue computation */

References

1. Choi, S., Zhou, Q.Y., Koltun, V.: Robust reconstruction of indoor scenes. In: Proceedings of
the IEEE conference on computer vision and pattern recognition. pp. 5556–5565 (2015)

2. Chung, F.R.: Spectral graph theory, vol. 92. American Mathematical Soc. (1997)
3. Ozyesil, O., Singer, A.: Robust camera location estimation by convex programming. In: Pro-

ceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 2674–
2683 (2015)

4. Rosen, D.M., Carlone, L., Bandeira, A.S., Leonard, J.J.: Se-sync: A certifiably correct al-
gorithm for synchronization over the special euclidean group. The International Journal of
Robotics Research 38(2-3), 95–125 (2019)

5. Sidhartha, C., Manam, L., Govindu, V.M.: Adaptive annealing for robust geometric estima-
tion. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recogni-
tion (CVPR). pp. 21929–21939 (June 2023)

6. Sweeney, C.: Theia multiview geometry library: Tutorial & reference. http://theia-
sfm.org

7. Zhang, F.: The Schur complement and its applications, vol. 4. Springer Science & Business
Media (2006)

8. Zhuang, B., Cheong, L.F., Lee, G.H.: Baseline desensitizing in translation averaging. In: Pro-
ceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 4539–
4547 (2018)

http://theia-sfm.org
http://theia-sfm.org

	Supplementary Material - Adaptive Annealing for Robust Averaging

