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A Discussion of Viewpoint Numbers

Our technique gives users the flexibility to use different numbers of cameras to
achieve different levels of geometry quality. As shown in Fig. 1, we qualitatively
demonstrate the geometric reconstruction results under single-view and four-
view inputs, where under four-view input, we achieve more accurate geometric
reconstruction of the cheek-puffing expression compared with the single-view
setting. Additionally, in Tab. 1, we conducted a quantitative evaluation of re-
construction accuracy on the Multiface and NeRSemble datasets. We found that
utilizing four-view inputs further reduces geometric errors compared to single-
view inputs, indicating that four views provide a more accurate reconstruction
of facial shape. We choose a four-view setup following [4] and believe that our
method is also applicable to other sparse-view setups. Please also note that when
compared with existing SOTA techniques in Fig. 2, our method demonstrates
visually superior results in the single-view scenario, indicating that our method
also works well with single-view input.

B Evaluation of the Neural Regressor

In our multi-phone captured data, we cannot precisely synchronize the recording
initiation time across devices, so each device records a frame at a slightly different
moment. As frames from distinct devices are not captured simultaneously, they
record varying shapes in motion, necessitating different motion parameters. The
temporal misalignment can be up to 1/60 second since the frame rate is 30 FPS.
Methods like dynamic time warping could be applied here to match the frames
from different views. However, even if it can always find the temporally closest
ones as matches, errors are still there as they are naturally recorded at different
times (shown by Fig. 3). The incorporation of the neural regressor allows us to
implicitly achieve synchronization across cameras under different views, ensur-
ing temporal accuracy in tracking both expression coefficients and head pose.
Without the regressor, temporal nearest frames across devices are erroneously
assumed to depict an identical shape, resulting in diminished reconstruction ac-
curacy. To assess the impact of the neural regressor, we simply “synchronize”
videos from different views by finding the temporally nearest frame, and use this
as a baseline to compare with our method. As depicted in Fig. 4, our method
achieves more accurate geometric details, particularly around the ears. Further-
more, we quantitatively evaluate the regressor on a subject with ground truth
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Fig. 1: Comparison of geometric reconstruction of the puff expression under single-
view and four-view inputs.

Fig. 2: Comparisons of geometry reconstruction between our method and other base-
lines under single-view input.

Fig. 3: Visualizations of the timeline corresponding to the unsynchronized multi-view
inputs.

Fig. 4: Evaluating the effectiveness of the neural regressor.
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Error(mm) Multiface NeRSemble
Mean Std Mean Std

Single view 3.02 0.16 3.58 0.37
Four views 2.31 0.05 2.73 0.26

Table 1: Quantitative comparison of point-to-plane errors between four-view and
single-view inputs.

Fig. 5: The quantitative reconstruction enhancement obtained by the neural regressor.
The second and fourth columns are the reconstruction results, and the third and fifth
columns are the point-to-plane error heatmaps compared to the ground truth scan.

scanned by light stage and observe that including the regressor yields enhanced
accuracy, especially in foreheads, as shown in Fig. 5.

C Evaluation of Joint Optimizing Blendshapes and
Expression Coefficients

Both blendshapes and expression coefficients affect facial expressions. To ad-
dress the underdetermined nature of joint optimization, previous works [2,3,10]
often adopt a two-stage approach, which stabilizes optimization but does not
achieve optimal convergence. In the first stage, a generic expression model is
used to fit the expression coefficients [8]. Subsequently, in the second stage, the
expression coefficients are fixed and not optimized, focusing solely on optimizing
the expression bases. We propose constraints on the semantic preservation of
blendshapes, enabling joint optimization. To assess the necessity of jointly opti-
mizing expression coefficients and blendshapes, we compare the results obtained
by optimizing blendshapes alone with those achieved through joint optimiza-
tion. When optimizing blendshapes alone, we derive estimates of the expression
coefficients and head poses by fitting the original blendshapes of the ICT face
model. Subsequently, we fix the expression coefficients and exclusively optimize
the blendshapes. We illustrate the resulting neutral face and a “cheek puffing”
blendshape in Fig. 6. In the baseline, artifacts manifest at the corners of the
mouth due to inaccurate tracking of the cheek puffing expression during the
coefficient estimation stage. Additionally, geometric details of the hair are inac-
curately embedded into blendshapes.
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Fig. 6: Updated blendshapes for neutral and cheek-puffing expressions. The first and
third columns show the results of joint optimization, while the second and fourth
columns demonstrate the results using a two-stage optimization approach.

D Baseline Implementation Details

State-of-the-art facial avatar methods such as Neural Head Avatar [3], PointA-
vatar [9] and FLARE [1] inherently operate with monocular videos as input. To
facilitate a fair comparison with our approach, we enhanced these frameworks
to accommodate sparse multi-view videos as input.

Specifically, in the data processing phase of these methods, we utilize multi-
view videos with calibrated camera parameters as input. During the tracking and
optimization stages, we ensure consistency of facial parameters such as shape,
poses, and expressions across different viewpoints and optimize these parameters
by calculating losses based on images rendered from multiple viewpoints. After
the modification, these methods demonstrated enhanced performance when uti-
lizing multi-view inputs compared to their previous performance with monocular
inputs, thus serving as an improved baseline for comparison against our method.

E Tetrahedral Connections Establishment

The ICT model features detailed cavities for the mouth, nose, and eyes, with
significant facial expressions potentially leading to mesh interpenetration issues.
To fully utilize the Laplacian constraint in surface deformation, we establish a
connection between the internal cavities and the surface vertices. Specifically, we
use tetgen [5] to preprocess the ICT’s blendshapes, constructing a small closed
volume space between the surface and corresponding internal sockets, where
mesh interpenetration is likely to occur.

As illustrated in Fig. 7, we first manually specify the region in the head where
we wish to fill tetrahedral connections. Tetgen fills this watertight enclosed area
with tetrahedrons, whose edges form the connections we intend to establish be-
tween the internal cavity and surface vertices. Note that even for filling the same
enclosed mesh, tetgen’s filling results cannot be guaranteed to be topologically
consistent each time. Since different blendshapes must share the same topology
in our per-vertex deformation technique, we first fill the neutral face and then
use the ARAP (As-Rigid-As-Possible) [6] algorithm to deform the tetrahedral
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Fig. 7: The tetrahedral connections between the cavities and surface.

Fig. 8: Effectiveness of differential coordinates. The first column shows the gradient
obtained at the tip of the nose without using differential coordinates (the gradients are
indicated in red). The second column displays the propagated gradients with differential
coordinates. The third column presents the gradients for the internal vertices.

vertices to match other blendshapes, creating a set of blendshapes with aug-
mented and consistent topology. Moreover, we avoid filling the entire head to
reduce computational complexity.

F Effective of Differential Coordinates

The utilization of differential coordinates propagates vertex gradients to neigh-
boring vertices according to mesh connectivity, thus ensuring the smoothness of
per-vertex deformation. As illustrated in Fig. 8, when the tip of the nose receives
a gradient, our method propagates the gradient to the surrounding vertices, in-
cluding the internally filled vertices. The smoothed gradients facilitate smooth
geometry updates while preventing self-intersections.

G More Comparisons of Reconstruction Results

In Fig. 9, we show more reconstruction results to qualitatively compare our
method and baselines. As illustrated in the main text, all methods accept inputs
of four views.
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Fig. 9: More qualitative comparisons between our method and baselines. All methods
accept inputs of four views.

H More Comparisons of Extracted Blendshapes

Here, we present a comparison between the blendshapes extracted by our method
and deformation transfer [7] from the neutral. As shown in Fig. 10, our updated
blendshape (fourth column) matches the reference image (third column) more
closely than deformation transfer (fifth column), which only deforms details in
neutral (second column) to the blendshape, lacking expression-specific details
such as the wrinkles at the corners of the eyes and mouth (highlighted by red
boxes).

I Additional Discussion on Limitations

The level of details is constrained by the topology and resolution of the ICT
model. Increasing the mesh resolution could help cope this problem, but it comes
with increasing training time. As shown in Fig. 11, subdividing the mesh results
in better forehead wrinkles and nasolabial folds (second column to third column).
Failure cases may occur when the movement is rapid enough to cause motion
blur, as illustrated in Fig. 12. Global illumination effects are challenging for our
neural radiance methods, such as moving shadows caused by varying head poses.
As shown in Fig. 13, the nasal wing in the shadow (second column) is blurrier
than the other side (third column).
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Fig. 10: Comparisons of extracted blendshapes with deformation transfer.

Fig. 11: Comparisons of reconstruction results with different mesh resolutions.

Fig. 12: Fast motion leads to quality degradation as blur occurs in the input.

Fig. 13: Reconstruction results under strong shadows.
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J More Details on Capture Protocols

The input videos contain around 800 frames with a resolution 504×896. Subjects
are allowed to perform arbitrary expressions, with no need to follow a predefined
expression sequence.
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