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6 Detailed Introduction of Our Dataset

We investigate the problem of performing NeRF-based 3D reconstruction from
images with significant pose errors. To benchmark the aforementioned problem,
we collect 3D meshes from BlendedMVS [58] and generate a new inward-facing
dataset. We select 8 representative scenes and uniformly sample camera view-
points by different strategies in the hemisphere around each mesh. The statistics
and visualization of each scene are shown in Table 4 and Figure 8.

Table 4: Scene statistics of our proposed dataset. For each scene, we report the number
of total images, the rotation & translation errors of the camera pose estimates from our
SfM module, and the number of accurate poses under different tolerance thresholds.

Camera pose error (cm, deg) # < thresh
Scene # Images Mean Median 1, 1 20, 20

Baby 30 3.94, 59.93 0.28, 0.14 20 20
Bear 45 3.64, 55.24 1.11, 0.56 17 31
Bell 18 10.15, 59.91 0.39, 0.31 12 12
Clock 108 14.17, 52.14 0.80, 0.24 73 76
Deaf 30 9.58, 35.95 1.82, 0.99 1 24
Farmer 18 0.75, 19.88 0.43, 0.33 15 16
Pavilion 18 2.46, 12.07 0.35, 0.26 16 16
Sculpture 30 8.29, 30.76 6.35, 2.62 0 25

Most of the selected scenes contain 18-45 training images, with the exception
of the scene Clock, which comprises 108 training images. We calculate the initial
camera poses for the training images with our SfM module (COLMAP [40] with
SuperPoint [12] and SuperGlue [38]). The reconstruction result of each scene
contains significant incorrect poses, evident from the gap between the mean and
median pose errors. We also report the number of correct poses in each scene,
with two sets of pose error thresholds: 1 cm 1 deg, and 20 cm 20 deg.

The incorrect camera pose estimates are primarily due to incorrect keypoint
matches. To address this, we have enhanced COLMAP with SuperPoint and
SuperGlue to create our SfM module. Through our experiments, we have con-
sistently observed our SfM module outperforming the standard COLMAP. All
experiments mentioned in the main paper, conducted on our dataset, utilized
the same initial poses generated by our SfM module. An example of a typical
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Fig. 8: Illustration of the training viewpoints in our dataset. For each scene, the left
image visualizes the ground truth camera poses (green frustums). The right image
displays the SfM predicted results, which are utilized as input poses for NeRF training.
The blue frustums represent poses within 20 cm and 20 deg. The orange frustums
represent those larger than 20 cm and 20 deg, while the yellow frustums denote the
ground truth poses of the orange ones.

Sparse Dense ‐ point cloud Dense ‐mesh

Fig. 9: Illustration of COLMAP [40] results on scene Baby. Both sparse and dense
reconstruction processes are unsuccessful. Only 1/3 of the viewpoints are estimated
with reasonably accurate poses, and about half of the mesh is reconstructed.
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COLMAP result is shown in Figure 9. We also showcase the dense reconstruction
results with COLMAP MVS [41].

Evaluation metrics. Following the evaluation protocol of previous research [24,
49], we choose Chamfer distance and F-score as metrics to evaluate 3D recon-
struction quality on our dataset. As the optimization of camera poses leads to
changes in the coordinate system of the scene, it’s crucial to align the obtained
mesh with ground truth before evaluation. This is achieved by aligning the esti-
mated camera poses with the ground truth. Since our dataset includes outliers
that could disturb the alignment process, we manually filter out camera poses
with an initial error exceeding 20 cm and 20 degrees during the process. We first
align the global orientation on top of the estimated and ground truth camera
rotations. Then, we solve a convex optimization problem to find the global scal-
ing factor and translation vector. As a result, we obtain the 7-degree-of-freedom
relative transformation matrix between the estimated and ground truth camera
poses. After the alignment, we scale the reconstructed and ground truth meshes
by a factor of 10, sample K = 100, 000 points on each mesh surface, and calculate
the metrics on top of the sampled points.

To calculate the Chamfer distance, we first compute two measurements: ac-
curacy Acc(·) and completeness Com(·). They are computed by:

Acc(Srec, Sgt) =
1

K

∑
p∈Srec

min
q∈Sgt

||p− q||1,

Com(Srec, Sgt) =
1

K

∑
q∈Sgt

min
p∈Srec

||p− q||1.
(7)

Then, the Chamfer distance is calculated as the mean of the two aforementioned
measurements:

CD(Srec, Sgt) =
Acc(Srec, Sgt) + Com(Srec, Sgt)

2
. (8)

To calculate the F-score, we compute two measurements: precision Pre(·)
and recall Rec(·). They are computed by:

Pre(Srec, Sgt) =
1

K

∑
p∈Srec

max
q∈Sgt

||p− q||0,

Rec(Srec, Sgt) =
1

K

∑
q∈Sgt

max
p∈Srec

||p− q||0,
(9)

where || · ||0 indicates inlier/outlier points with a distance threshold d:

|| · ||0 =

{
1 || · ||1 < d
0 otherwise

(10)
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We set d = 0.64. The F-score is calculated as the harmonic mean of the precision
and recall:

F − score(Srec, Sgt) =

2 · Pre(Srec, Sgt) ·Rec(Srec, Sgt)

Pre(Srec, Sgt) +Rec(Srec, Sgt)
.

(11)

7 More Evaluations

Evaluation of camera pose errors. In Table 5, we report mean pose errors on our
dataset. To ensure a fair comparison, we use the confidence-weighted mean error,
denoted as SG-W. This is because not all poses have an equal impact on our
method. SG-W achieves substantial error reduction compared to competitors.
We also report the results with hard outlier rejection by considering only the
selected training viewpoints in the final epoch, denoted by SG-H. The decrease
in pose errors is more significant, and it achieves mean precision of 68% and
recall of 80% for outlier rejection. Here, the ground truth outliers are defined by
errors > 20 cm 20 deg of their initial camera poses.

Table 5: Evaluation of camera pose errors on the proposed dataset.

Mean errors BARF SCNeRF GARF L2G-NeRF Joint-TensoRF CamP PoRF SG SG-W SG-H

Translation (cm) 0.71 0.69 0.78 0.82 0.88 0.69 0.75 0.70 0.45 0.09

Rotation (deg) 39.40 40.70 47.07 45.31 46.55 40.82 43.26 39.95 25.73 4.62

Comparison with recent camera pose optimizer CamP [35]. We have tested
CamP in the scene Bell. The mean camera pose error is 1.01 cm 60.04 deg. We
find that CamP does not always guarantee the prevention of the optimization
falling into local minima, especially when there are outlier camera poses. As a
result, the pose errors are similar to those of SCNeRF.

Additional qualitative comparison on our dataset. Due to the page number
limit, we show qualitative results for only 4 scenes in Figure 1 and Figure 5 in
the main paper. The remaining results can be found in Figure 10.

Discussion and comparison with SPARF [47]. Problem setting: SPARF tack-
les the problem of few-shot reconstruction (typically 3 views) with moderate
camera poses; we focus on the common inward-facing scenario that can include
real large pose errors. Method design: While both SPARF and our method
utilize multi-view keypoint correspondences, we introduce an IoU formulation.
This allows us to enhance the implicit geometry in a more continuous optimiza-
tion space (i.e., aligning MoGs), as opposed to directly applying the conventional
re-projection error. Additionally, we do not require dense depth rendering, which
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Fig. 10: Additional qualitative comparison on our dataset.

can be computationally expensive and consume a significant amount of memory.
Quantitative comparison: We have tested SPARF on the scene Bell. Through
the experiment, we find that the outliers’ matches and poses can significantly
mislead SPARF’s optimization process. This results in a mean pose error of 1.17
cm 165.19 deg (SG-W achieves 0.85 cm and 43.09 deg).

Upper bound. To better understand the reconstruction results on our dataset,
we provide an upper bound estimation on top of our method. We utilize the
ground truth camera poses and set these poses as fixed. The results are shown
in Table 6. Our method has demonstrated significant improvements compared to
plain NeuS [49]. However, there is still room for further research to enhance per-
formance. Although our approach, which involves the soft rejection of outliers,
mitigates the influence of these outliers, it doesn’t completely eliminate them.
These outliers can still affect the reconstruction performance. We believe that
combining our method with hard outlier rejection or visual (re)localization tech-
niques could potentially address this issue. This presents a promising direction
for future research.

Neuralangelo with pose optimization. In the main paper, we utilize NeuS [49]
as the backbone for 3D reconstruction and compare various pose optimization



20 Y. Chen & S. Dong et al.

Table 6: Additional quantitative results on our dataset.

Baby Bear Bell Clock Deaf Farmer Pavilion Sculpture Mean
C

ha
m

fe
r

di
st

an
ce

↓

CasMVSNet [18] 1.04 0.78 1.93 1.24 1.04 3.25 1.16 1.12 1.45
IterMVS [48] 0.73 0.65 1.51 0.90 0.86 1.70 0.90 0.57 0.98
BARF [25]# 0.72 0.40 5.11 0.26 0.49 5.73 5.29 0.68 2.34
SCNeRF [22]# 0.71 0.64 - 0.49 0.50 5.18 2.60 0.58 1.53†

GARF [8]# - 0.47 - 2.21 0.89 5.37 - 0.59 1.91†

L2G-NeRF [6]# 0.74 1.85 6.82 0.35 0.53 6.04 3.12 2.45 2.74
Joint-TensoRF [7]# - 1.34 - 0.73 1.30 6.23 3.35 1.45 2.40†

SG-NeRF (Ours) 0.56 0.25 0.98 0.15 0.45 0.87 0.20 0.22 0.46
Upper bound 0.37 0.08 0.23 0.08 0.31 0.19 0.14 0.16 0.20

F
-s

co
re

↑

CasMVSNet [18] 0.43 0.57 0.33 0.39 0.40 0.27 0.51 0.46 0.42
IterMVS [48] 0.53 0.65 0.39 0.53 0.41 0.38 0.57 0.62 0.51
BARF [25]# 0.67 0.87 0.08 0.90 0.76 0.10 0.41 0.81 0.58
SCNeRF [22]# 0.54 0.79 - 0.78 0.77 0.12 0.37 0.69 0.58†

GARF [8]# - 0.83 - 0.11 0.46 0.12 - 0.80 0.46†

L2G-NeRF [6]# 0.68 0.65 0.02 0.86 0.79 0.10 0.22 0.16 0.44
Joint-TensoRF [7]# - 0.35 - 0.57 0.22 0.08 0.15 0.25 0.27†

SG-NeRF (Ours) 0.74 0.93 0.71 0.96 0.87 0.76 0.94 0.92 0.85
Upper bound 0.80 0.99 0.92 0.99 0.91 0.95 0.97 0.94 0.93

methods. In table 6, we present the results of combining the pose optimization
methods with Neuralangelo [24]. The methods are identified as BARF [25]#,
SCNeRF [22]#, and so on. As observed, the results are worse than those with
NeuS, since Neuralangelo is more sensitive to outliers. The results further con-
firm our effectiveness in handling outliers. They also demonstrate the non-trivial
design for joint optimization of the radiance field and camera poses, instead of
simply combining different methods.

Comparison with MVS methods. Since our focus is on neural surface reconstruc-
tion with radiance fields, we do not compare our work with classical Multi-View
Stereo (MVS) algorithms in the main paper. Here, in table 6, we report the
results from two recent MVS methods: CasMVSNet [18] and IterMVS [48]. As
MVS-based methods generally utilize the epipolar geometry prior that heavily
relies on camera poses, these methods are sensitive to pose errors.

Additional comparison with more surface reconstruction methods. Since our goal
is to mitigate the impact of outliers, we primarily compare with pose optimiza-
tion methods in the main paper. Here, we also run HF-NeuS [51], Voxsurf [54],
and NeuDA [5] on the scene Bell. The Chamfer distances (1.41, 2.64, and 1.72)
are larger than our method. We notice that these methods that aim to recon-
struct details tend to be sensitive to large pose errors.

Bundle adjustment (BA) with the pruned scene graph. We have tried to run
BA on the pruned graph, but the pose updates are minimal. Note that the
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removed edges by our pruning step were considered good and consistent during
previous COLMAP processing (including BA). Since BA does not use residuals
on dense pixel colors, the new round of BA on the sparse graph makes only a
small contribution. As a result, NeuS still produces unsatisfactory results.

Table 7: Results with different λ.
λ 0.2 0.5 1.0 1.5 2.0 3.0

Camfer ↓ 0.5058 0.4820 0.4646 0.4788 0.4885 0.4818
F-score ↑ 0.8379 0.8516 0.8524 0.8461 0.8438 0.8384

The choice of λ. The parameter λ
adjusts the impact of PSNR on the
CS update. In Table 7, we report
the quantitative results on our dataset
with various λ values. The results
show that as λ increases, the per-
formance first improves and then de-
creases. This suggests selecting an ap-
propriate λ that balances the sparse
(keypoint matches) and dense (photometric residuals) information. Thus, we set
λ = 1.

8 Real-World Scene Reconstruction

Input NeuS Ours

…

Fig. 11: Qualitative comparison of a real-
world scene reconstruction.

In this paper, we tackle a challenging,
yet practical scenario where images
are casually captured without care-
ful selection. To highlight the benefits
of our method under such conditions,
we showcase a real-world reconstruc-
tion example. We casually capture 20
images of a toy object in an inward-
facing manner. While COLMAP fails
to solve the camera poses for this
scene, our SfM module estimates the
poses reasonably. Given the initial
camera poses, we train NeuS [49] and
our method and then extract meshes
for a quantitative comparison. Fig-
ure 11 illustrates the results. We can
observe that NeuS’s mesh contains
wrong geometries and tends to be
over-smoothed. On the contrary, our reconstruction presents correct structures
and more details, demonstrating our robustness to wrong poses.
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