Efficient Bias Mitigation Without Privileged
Information: Appendix

A Ethical Considerations

Our work improves a DNN’s fairness through a pragmatic and effective pipeline.
We hope this may lead to TAB being included as a standard debiasing good
practice in real-world workloads. Nevertheless, we recognise there are potential
negative societal aspects to consider. First, TAB trains its model twice, dou-
bling the carbon footprint of training [2]. This, however, can be amortised in
practice by TAB’s lack of model selection. Second, the ability of TAB to identify
a large portion of bias-conflicting samples implies that bad actors may use this
information to further increase a model’s bias (e.g., by removing these training
samples). Nevertheless, we argue that this ill-intended use of our method is not
unique to our approach, but rather an inherent but unlikely negative aspect of
all BM methods.

B Summary of Previous Bias Mitigation Methods

To complement our related work discussion in Section 2, in this section we in-
clude a summary of previous work that is closely aligned with our proposed
method. In Table we show several bias mitigation methods together with
(1) their level of group supervision (whether they need group labels in the train-
ing set, in the validation set, or in both), and (2) the set of key hyperparameters
that require fine-tuning each method. We note, however, that most of these ap-
proaches have more underlying hyperparameters than those shown as they may
still require fine-tuning of hyperparameters specific to the target model (e.g.,
the underlying model’s weight decay, learning rate, batch size, etc). Neverthe-
less, as these are hyperparameters that are not unique to any BM method but
rather a necessity of the model chosen to be debiased, in Table we show
only the BM-specific hyperparameters. By contrasting methods this way, we see
how TAB is unique within fully unsupervised BM approaches by not requiring
any extra hyperparameters, avoiding a potentially costly model selection and
enabling easy adoption in modern training pipelines.

C Price of Unawareness and Mean Model Selection

In this section, we formally define the metrics discussed in Section 4 and describe
how we can compute such metrics in practice.

Price of Unawareness (PoU) Borrowing inspiration from similar con-
cepts in game theory [17,124], we capture the cost “paid” by a BM pipeline

2 M. Espinosa Zarlenga et al.

Table B.1: Bias mitigation methods together with their group annotation require-
ments. To highlight the practical considerations involved when using any of these ap-
proaches, we include the number and identity of key sensitive hyperparameters for each
approach. However, we note that these are hyperparameters required on top of the
standard ERM hyperparameters needed to train a model (e.g., “learning rate”,
“batch size”, etc.). T These papers were published around the time of our submission
and, therefore, constitute concurrent works.

Method ‘ Train Groups Val Groups # of Hyperparameters - {Hypers}
Adversarial Debiasing [36] v v 2-{A, a}
G-DRO |29] v v 4-{C, X\, nq, no}
PGI |1 v v 1 - {invariance penalty}
DFR |[15] v v 2 - {retrain epochs, # retrains}
Multiaccuracy [13] X v 2-{A, o}
CVaR DRO [19] x v 1-{a}
LfF 23] X v 1 (q)
JTT [21] X v 2 {T, Aup}
Spectral Decoupling |28] X v 2-{\ "}
EIIL [4] X v 1 or more - {underlying learner dependent}
CIM [33] X v 1-{a}
OccamNet |31] X v 2 - {Tace,0, Acs}

SELF |18| X v 2 or more - {n, g}
GEORGE |32] X X 4 or more - {fg, proj. comps, F, Smin}
MaskTune |3 X X 2 or more - {7, G
DebiAN |20 X X 1 or more - {discoverer D}

AGRO |25 X X 6 or more - {11, To, m, o, A\, ¢n}

CB Last-layer retraining’ [18 X X 1 - {retrain epochs}

uLAT [34] X X 4 - {Ts, Tstop, M, T}
TAB (ours) X X 0-9

when lacking proper group labels during model selection through its price of
unawareness. Formally, given a BM pipeline B, with hyperparameters v € I,
let O(B., Pirain) be the parameters § € © learnt by running B, on a training set
formed by N i.i.d. samples from Pi;ain. In this setup, we define the PoU of B as
follows:

maX~rer WGA(fé(Bwr Prrain)’ Ptest)

POU(87 Pirain, Prests PVal) = WGA(fA
0B

(C.1)
Ptrain)’ Ptest)

Yval-acc’

where Pirain, Prest; and Pyar are the training, testing, and validation distribu-
tions (assumed to be the same but written separately for clarity), and ~yalacc
are the hyperparameters chosen when performing model selection based on the
validation average accuracy (for notational clarity, we do not explicitly write
their dependency on B, Pirain, and Pya1). That is:

Val-ace 1= AT8 MAXE e y) oy) (L (fo(5, Poa) () =)] (C.2)
Y

In practice, we estimate the PoU through a discrete grid search over [, qs C I
while ensuring that samples in the training, testing, and validation sets are en-

tirely disjoint. If during this grid search we find that the test WGA of f; (B P)

Yval-acc’

Efficient Bias Mitigation Without Privileged Information: Appendix 3

is 0 for some hyperparameters -y, then we discard these hyperparameters as oth-
erwise the PoU may become infinite and non-informative. Hence, we estimate
this value based on hyperparameterisations with non-zero validation WGA only.

We note that, if the validation distribution Py, is the same as the testing
distribution Piest, as it is commonly the case for in-distribution domains, then for
large enough validation sets (i.e., N >> 1), the PoU is equivalent to computing
the ratio between the WGA of the model selected using walidation WGA and
the WGA of the model selected using validation mean accuracy. Nevertheless,
because access to a large validation set is rare, we defined the numerator of
equation in terms of the test distribution to provide a realistic upper bound
for a method’s achievable WGA. This enables us to compute a PoU that (1) is
stable even in extremely group-imbalanced domains where minority groups may
be missing in a small validation set, and (2) is guaranteed to be bounded below
by 1, enabling easy interpretation of the PoU as discussed in Section 4.

Mean Model Selection WGA (MMS) In contrast to the PoU, which
aims to capture the worst-case cost of lacking validation group labels during BM,
the Mean Model Selection WGA (MMS) is designed to capture the expected be-
haviour of a BM pipeline across multiple hyperparameters. In other words, we
are interested in measuring the expected WGA across all possible hyperparame-
ters. This serves as a proxy measurement of what one expects to get from a BM
approach when deploying it across a task without an extensive model selection.
The MMS is therefore formally defined as follows:

MMS(Ba Ptrain7 Ptest) = IE'y’r\aUnif(l") [WGA(fé(Bw/ Prrain)’ ’Ptest):| (03)

where, as in the case for our fomarlisation of the PoU, B, is a BM pipeline taking
hyperaparameters v € I

In practice, we follow a similar approach as done with the PoU and estimate
the MMS using a grid search over a set of potential hyperparameters I¢angs € I
More specifically, we compute this estimate using hyperparameters in I¢angs to
compute an empirical Monte Carlo estimate of the MMS:

1

MMS(87 Ptraina 7Dtest) ~ m
cands

Z WGA(fé(B,Y/,’P“.am)v Ptest) (04)

'Y/Epcands

D Targeted Augmentations for Bias Mitigation

In Section 5 we provide a detailed motivation and description of TAB, our pro-
posed unsupervised bias mitigation pipeline. Here, we complement that discus-
sion by providing pseudocode for TAB (Algorithm . This format highlights
two key things: first, as discussed in Section 5, TAB takes no extra hyperpa-
rameters on top of those of its underlying learning algorithm L. Second, TAB’s
implementation is extremely simple and can be easily added to existing train-
ing pipelines. We believe that both of these key properties make TAB a likely
candidate for adoption in practical real-world scenarios.

4 M. Espinosa Zarlenga et al.

Algorithm D.1 TAB

Input: Learning algorithm £, target neural network fo, and training set Dirain =
i i i n (i N

{(x()yl)) | xM e R™, 4y ¢ {17... ’L}}i:1

Output: Robust model fj_

fébase’ {h(i) S RT}ZNzl — ll(fg, Dirain) > Train identifier and build loss histories h®

for € {l,---,L} do

Hi <+ {h® |y =1} > Get loss histories of all samples with label
DIJ’, D, < k-means (’;‘—Ll, k=2) > Split all samples into two clusters
if |D;"| < |D; | then
D, Dy « D;, D > D, will be the minority cluster
end if
D+ 0 > Construct this class’ augmented multiset
while |Dj| < |D;jf| — |D; | do
j < UniformSample (D;) > Randomly select a sample index from D,
D} « D, U {(x9,y)} > Add the j-th training sample to D;
end while
end for
D} rain & Dirain U (Ule Dz) > Construct our augmented training multiset
féTAB — £(fg, D{rain) > Learn robust model from scratch

Return: féTAB

E Dataset Details

In this section, we provide a detailed description of the datasets we use for our
evaluation in Section 6. Specifically, we show the main characteristics of each
task in Table and describe each of the specific tasks in more detail below.

Table E.2: Key characteristics of all datasets used in this paper. All tasks in our
evaluation are classification tasks with L categorical labels. We show the total number
of groups k for each task as well as its worst-group size, defined as the ratio between
the number of samples in the smallest group and the number of samples in the entire
dataset. Both BAR and CUB have not known group labels. Nevertheless, for BAR there is
a distribution shift between the training and the test set where actions are displayed
on different backgrounds than those used in the training set.

Dataset ‘# of Samples (N) # of Features (n) # of Classes (L) # of Groups (k) Worst-Group Size (%)
Even-0dd (p = 99%) 48,000 (3, 28, 28) 2 4 0.41%
CMNIST (p = 98%) 48,000 (3, 28, 28) 10 100 0.01%
Waterbirds 4,795 (3, 224, 224) 2 4 1.17%
CelebA (subsampled) 24,416 (3, 224, 224) 2 4 0.83%
BAR 1,552 (3, 224, 224) 6 12 Unknown
CUB 4,796 (3, 224, 224) 200 Unknown Unknown

Even-Odd The Even-0dd task is a synthetic binary (L = 2) visual classi-
fication task where the strength of existing spurious correlations can be easily
controlled. Taking inspiration from the Colour-MNIST [23] dataset, we construct

Efficient Bias Mitigation Without Privileged Information: Appendix 5

our task by colouring handwritten digits from the MNIST [6] dataset with two
colours. Specifically, each sample x(*) of the original MNIST task is transformed
from a 28 x 28 grayscale image to a 3 x 28 x 28 normalised RGB image (i.e.,
x(M e [0, 1]3%28%28) by colouring the digit with either “red” or “green” hues pro-
portional to the grayscale pixel intensities. We define a binary task where the
label determines whether an image is “odd” (y = 0) or “even” (y = 1) and in-
troduce a spurious correlation of strength p € [50%, 100%)] by selecting p% of all
“odd” samples and colouring them “red” while colouring the rest of 1 — p samples
using “green”. Similarly, we introduce an equivalent correlation with strength p
between “even” and “green” samples. This yields a task with 4 groups, one for
each pair (label, colour), of which the smallest subgroup has an expected size of
N x 1 x 100-p
2 100

The training, testing, and validation sets in Even-0dd are constructed us-
ing the procedure above on the standard train, test, and validation sets in the
MNIST task. We note that to enable accurate evaluation, we use a balanced test
set that has an equal representation on all (class,colour) combinations. This
allows us to accurately estimate the WGA, as otherwise the smallest group in
the test set is too small for getting a good estimate of the model’s accuracy on
members of that group. Nevertheless, when computing test mean accuracy on
this group-balanced test dataset, we weight each sample based on the represen-
tation of their respective (class, colour) group in the training distribution. That
way, the mean average accuracy in the test set behaves as if it is from the same
distribution as the training set.

cMNIST Similar to Even-0dd, the cMINST task is a Colour MNIST-based
classification task with a predefined spurious correlation strength. Each sample
x(of the original MNIST dataset is transformed from a 28 x 28 grayscale image
to a 3 x 28 x 28 normalised RGB image (i.e., x(*) € [0, 1]>*28%28) by colouring the
digit with one of 10 colours (the colours are randomly-generated RGB colours
fixed beforehand). In this dataset, we define a multilabel task (L = 10) where
the label determines the digit’s identity (y € {0,1,---,9}. As in Even-0dd, we
introduce a spurious correlation of strength p € [50%, 100%] by selecting p% of
all samples with any given class label [€ {0,1,---,9} and colouring them the
[-th colour while colouring the rest of 1 — p samples of that class with a colour
randomly selected from the remaining L — 1 colours. This results in a task with
L? groups, one for each pair (label, colour) of which the smallest subgroup has an
expected size of N x % X 101%67” . We generate the training, testing, and validation
sets as in ‘Even-0dd”, constructing a group-balanced test set for stability in
evaluation and using a weighted accuracy to compute the mean accuracy.

Waterbirds The Waterbirds [29] task is a binary bird classification task
(L = 2) where each sample is formed by an image of a bird (selected from the
CUB dataset |35]) on top of a either a “land“ background or a “water” background
(selected from the Places dataset |38]). Birds in this task are split between “wa-
terbirds” (birds that are either seabirds or waterfowl) and “landbirds” (rest of
birds). There is a spurious correlation introduced between the type of bird (i.e.,
the downstream label y) and the background selected from the Places dataset.

6 M. Espinosa Zarlenga et al.

Specifically, images from the “ocean” and “natural lake” categories in Places are
spuriously correlated with “waterbirds” (i.e., y = 0), while backgrounds from the
“bamboo” or “broadleaf” forest categories are spuriously correlated with “land-
birds” (y = 1). This results in a total of 4 subgroups {(“waterbird”, “water back-
ground”), (“waterbird”, “land background”), (“landbird”, “water background”),
(“landbird”, “land background”)} of which (“waterbird”, “land background”) and
(“landbird”, “water background”) are minority bias-conflicting subgroups.

We use the same training/validation/testing splits from Sagawa et al. [29]
however during validation and testing, as in the MNIST-based tasks, we use a
weighted accuracy for the mean accuracy where every sample is weighted based
on the training distribution of its (label, background) subgroup in the training
set. This is because, in the standard Waterbird splits, the training set is highly
group-imbalanced while the validation and test sets are both group-balanced.
Therefore, using the validation set as is may result in accidental group infor-
mation being leaked during model selection (an unrealistic assumption as the
validation set is usually sampled from the same distribution as the training set).
All images are resized to be 3x224 RGB images (in floating point representation)
and are normalised using the mean and standard deviations of the ImageNet [5]
dataset. Finally, during training we perform random croppings and horizontal
flips.

CelebA We construct a real-world human-centric task based on the CelebA
face recognition dataset |22, a large collection of celebrities’ face images col-
lected from the internet annotated with an identity label and a set of 40 binary
attributes. We follow the approach by Sagawa et al. [29] and construct a bi-
nary task (L = 2) out of this dataset by using the “Blonde Hair” attribute as
the downstream label. We use this setup as there is a strong spurious corre-
lation between the annotated perceived gender of each image and the anno-
tated colour of their hair. In this setup, samples annotated as “not blonde” and
“male” are significantly underrepresented (worst bias-conflicting group), leading
to models exploiting perceived gender to determine the hair colour. More gen-
erally, the bias-conflicting samples correspond to (“blonde”, “male”) and (“not
blond” and “female”) samples, with the (“blonde”, “male”) group being signifi-
cantly smaller than the (“not blonde”, “female”) group. Although the original
splits of the CelebA dataset contain 162,770 training samples and 19,867 test
samples, for our experiments we use 15% of the training set to enable a tractable
and exhaustive model selection across all methods with hyperparameters as dis-
cussed above (this is particularly important for costly methods such as JTT).
This results in a training set with approximately 24,000 samples. Furthermore,
we also use 15% of the validation set for consistency and resize all samples to
3 x 224 x 224 images while applying random horizontal flips during training. All
images are turned into their floating-point representation and normalised using
ImageNet [5]’s means and standard deviations as normally done for this task.

BAR Next, we evaluate all models on the Biased Action Recognition (BAR)
task, a real-world action detection dataset. This dataset contains samples of

humans performing one of six actions (“Climbing”, “Fishing”, “Racing”, “Throw-

Efficient Bias Mitigation Without Privileged Information: Appendix 7

ing”, “Vaulting”), and we are tasked with predicting each action from the image
(L = 6). Each action in this dataset is spuriously correlated with a specific
scene: “Climbing” actions are most commonly done on “Rock Walls”, “Diving”
actions are most commonly done “Underwater”, “Fishing” actions are most com-
monly done on the “Water Surface”, “Racing” actions are most commonly done
on a ‘“Paved Track”, “Throwing” actions are most commonly done on a “Playing
Field”, and “Vaulting” actions are most commonly shown in front of “Sky” back-
grounds. This dataset does not have group annotations, making it impossible to
accurately compute the WGA during training, testing, or validation. Neverthe-
less, the test set is constructed so that actions are more commonly shown with
scenes that are not aligned with the action’s spurious background found in the
training set. Therefore, the mean accuracy and worst-class accuracy in the test
set serve as a good proxy for WGA for this task, given the distribution shift
between the train and test sets.

We use the original train and test splits. However, we randomly select 20%
of the training set as a validation set. All images are resized to be 3 x 224 RGB
images (in floating point representation) and are normalised using the mean
and standard deviations of the ImageNet [5] dataset. Finally, during training we
perform random scalings and horizontal flips.

CUB Finally, we use the CUB dataset as a real-world task without known
spurious correlations. Samples in this task correspond to RGB images of birds
and are annotated with their bird type identity (L = 200) as the downstream
label. We process all images as in [16] by normalising and randomly flipping and
cropping each image during training (normalisation is done using ImageNet’s
mean and standard deviation). This results in a dataset with approximately
6,000 images with shape 3x299x299 that is split into a train, validation, and test
subsets using the same splits as Koh et al. [16] (training set has approximately
4,800 images).

F Experimental Details

In this section, we describe our experimental setup across all tasks and baselines
for our experiments described in Section 6. We begin by describing the underlying
architecture and optimisation setup used across baselines. Then, we proceed to
describe each method’s hyperparameter selection process.

F.1 Architecture and Optimisation Setups

For all MNIST-based synthetic tasks (i.e., Even-0dd and cMNIST), we train as
the underlying model of all baselines a six-layered Convolutional Neural Network
(CNN). Specifically, we construct a CNN formed by six 2D Convolutional layers
with 3x 3 filters, “same” padding, and {16, 16, 32, 32, 64, 64} output feature maps.
A ReLU non-linear activation follows each of these layers and a single linear
layer is used to map the output of the last convolution to the number of output
classes (no activation is used after this layer as we work with logit outputs).

8 M. Espinosa Zarlenga et al.

We learn this model’s parameters via an Adam optimiser [14] with its default
configuration (learning rate n = 1073, 81 = 0.9, S = 0.999). Moreover, given
the smaller model sizes for these tasks, we use a relatively large batch size of
2,048 samples to better utilise our hardware. Notice that in these synthetic
tasks, we do not perform a hyperparameter search on the optimiser’s learning
rate as we observed good performance with the default optimiser configuration
and a significant drop in ERM validation accuracy when this learning rate was
decreased.

In contrast, for our real-world tasks we use a Resnet-18 |11] architecture
whose weights for all layers but the output linear layer are initialised to those
from a Resnet-18 model pretrained on ImageNet [5] (using Pytorch Vision’s
default loaded weights [26]). To reduce memory consumption and parallelise
model selection, we use a vanilla SGD optimiser for training these models with
a learning rate 1 (a hyperparameter selected from {1073, 107*} as described in
further detail below) and a momentum of 0.9. We aim to maximise our hardware
utilisation by using a batch size that is as large as possible to fit the model’s
weights, activations, and gradients during training in the memory of a single of
our GPUs. Moreover, to simplify our implementation of TAB within the Pytorch
ecosystem, we look for batch sizes that are divisors of the training set (as this
enables us to very easily store a model’s loss history during training). We note,
however, that this is not in any way a hard requirement for TAB but rather
something we exploited to easily adapt it to a commonly used framework such
as Pytorch. This process resulted in using the following batch sizes for our real-
world datasets: B = 137 for Waterbirds, B = 436 for CelebA, B = 194 for BAR,
and B = 128 for CUB.

For all models and tasks, we train models for a total of maximum 7" epochs
with T" = 100 for the synthetic tasks, 7' = 300 for Waterbirds, T = 150 for
CelebA, T = 200 for BAR, and T = 300 for CUB. We stop training before this
limit using early stopping based on the validation accuracy. In this setup, we
interrupt training if a model’s validation accuracy does not increase by more
than 0.001 (“stopping delta”) in the last 5 epochs (“patience”). Finally, to help
find better optima across all tasks and models, we reduce the learning rate by
x 0.1 when the training loss plateaus for 10 epochs.

F.2 Model Selection

To conduct a fair evaluation of all baselines, we perform an extensive hyper-
parameter search for all methods. Here, we discuss which hyperparameters we
search over for all methods, as well as the hyperparameters selected for each task
after averaging the results over three distinct runs. This hyperparameter selec-
tion is done by performing a grid search over all combinations of hyperparame-
ter candidates and selecting the model with the highest validation accuracy. The
only exception for this is G-DRO, for which we perform model selection based on
validation WGA given that we assume group labels are provided during training
and we use G-DRO as an upper bound for unsupervised BM. Finally, to further
reduce the computational cost of our model selection, the learning rate n and

Efficient Bias Mitigation Without Privileged Information: Appendix 9

weight decay Ay, hyperparameters used for all non-ERM and non-G-DRO meth-
ods are set to those selected for their ERM equivalent (i.e., we first train the
ERM baseline, find the best learning rate n and weight decay Ay, and fix those
when performing model selection and training of all other baselines). Below we
describe the hyperparameters we searched over for each baseline.

ERM - {n,A\¢,} When training ERM models, we select their learning rates
from n € {1073,107*} and their weight decay factors from A, € {0, 0.0001, 0.01,
1} (with 0.00001 added for the MNIST-based datasets as they are smaller and
allow for larger searches). This results in a total of 2 x 4 x 3 = 24 models trained
per task to get the mean validation accuracy of each setup across three different
random seeds. When selecting models based on validation accuracy, we got the
following configuration for all tasks: (1, As,) = (1073,0) for Even-0dd, (1, A,) =
(1073,0.0001) for cMNIST, (1, A¢,) = (1072,0) for BAR, (1, As,) = (1073,0.01) for
Waterbirds and (1, As,) = (1073,0.0001) for CelebA. For CUB, we observed that
n € {1072,10~*} performed poorly, so we added n = 1072 as a candidate to this
set. This resulted in us selecting (1, A¢,) = (1072,0.0001) for CUB.

G-DRO [12,29] - {n,A¢,} As in ERM, for G-DRO we carefully select
the learning rate and the weight decay as both of these hyperparameters have
been shown to be highly important for good worst-group performance |[29].
Therefore, we select hyperparameters by searching over candidate learning rates
n € {1073,107*} and candidate weight decays \s, € {0,0.0001,0.01,1}. More-
over, we use the stable online G-DRO algorithm by Sawaga et al. [29], with an
exponential decay factor of v = 0.01, as this approach has been shown to be more
stable in practice, particularly when minority groups are small. Our hyperparam-
eter grid search yields the following hyperparameters across the different group-
annotated tasks: (1, Ag,) = (1073,0.0001) for Even-0dd, (1, As,) = (1073,0) for
CMNIST, (1, \,) = (1073,0.1) for Waterbirds, and (1, As,) = (1073,0.01) for
CelebA.

LfF |23] - {¢} LIF uses a generalised cross-entropy loss [37] to dynami-
cally learn a biased model for weighting the loss of an “unbiased” model. This
loss depends on a hyperparameter ¢ € (0,1] that controls the level of bias am-
plification of the biased model (the loss becomes a vanilla cross-entropy loss as
q — 0). Therefore, across all tasks, we attempted values ¢ € {0.05, 0.1, 0.25, 0.5,
0.75, 0.9, 0.95} for LfF. This yields the following hyperparameters across our
different tasks: ¢ = 0.05 for Even-0dd, cMNIST, Waterbirds, CelebA, and CUB,
and ¢ = 0.1 for BAR. We note that, as opposed to the hyperparameters selected
when using best validation accuracy, the optimal configurations for L{F (i.e.,
the hyperparameters with the highest test loss) are more diverse: ¢ = 0.1 for
Even-0dd and CUB, ¢ = 0.75 for cMNIST and Waterbirds, ¢ = 0.5 for CelebA,
and g = 0.95 for BAR. These results, therefore, show how determining the right
value for ¢ can be very hard in practice.

JTT |21] - {T,Aup} As discussed in Section 2, JTT has two hyperparam-
eters: T', the number of epochs one trains the identifier model for, and Ayp, how
much we should upweight each mispredicted sample by the identifier model.
Following the same official implementation by Liu et al. [21], we perform the

10 M. Espinosa Zarlenga et al.

upweighting in JTT by constructing a new dataset in which each mispredicted
training sample is included A, times. This enables significantly better results
and much more stable training. However, it comes with the added cost of signif-
icant training times as this new dataset could be as large as A, /N in the worst
case. Following similar values used by the original authors of this work, we per-
form a grid search over T' € {1, 5,10, 25,50} and A, € {10, 25, 50,100, “ratio”},
where “ratio” indicates a dynamic computation of A,, whereas we set this value
to the ratio between the size of the set of samples correctly predicted by the
identifier model and the size of the set of samples mispredicted by the identifier
model. The only exception for this is in CUB, where we only search over T' € {10,
25,50 } and A\, € { 10, 25 } as otherwise training times got intractable. This pro-
cess yielded the following selected hyperparameters across all tasks: (T, A\yp) =
(50,10) for Even-0dd, (T, A\yp) = (50,25) for cMNIST, (T, Ayp) = (10,25) for
Waterbirds, (T, Ayp) = (10,1) for CelebA, (T, Ayp) = (50,25) for BAR, and
(T, Aup) = (25,25) for CUB.

MaskTune |3 - {7} MaskTune operates by (1) first training a model via
ERM, (2) then generating a new dataset by masking each sample x(* based
on the saliency map [7] of that sample by the ERM model, and (3) finally fine-
tuning the ERM model for a single epoch using a small learning rate on the newly
constructed dataset. The intuition of this approach is that by masking areas of
the image that a model is attending to, one may get rid of easily exploitable
spurious correlations and force the model to learn to make a prediction using
alternative features (i.e., by learning to generalise). Assuming that (1) we always
fine-tune for a single epoch (as recommended by the authors), (2) we use X-
GradCam [10] as the underlying saliency method (as used in the original paper),
and (3) we set the fine-tuning learning rate to be the end learning rate of the
original ERM model (as suggested by the authors), the only hyperparameter in
MaskTune we control is 7 € R, the threshold controlling which pixels to mask in
the saliency map of each sample. Following the values for 7 used in MaskTune’s
original paper, we try values of 7 in 7 € {u, u+0.50%, u+02, -, u+2.50% pu+
302} where y is the mean of the saliency map pixels of a specific sample and o2
is the standard deviation (i.e., the actual threshold is a function of the sample’s
saliency map). This process results in us selecting the following hyperparameters
across our tasks: 7 = p + 302 for Even-0dd, 7 = p + 2.502 for cMNIST, 7 = p for
Waterbirds, 7 = p + 2.502 for CelebA, 7 = u+ 1.502 for BAR, and 7 = y + 30
for CUB.

TAB - § As discussed in Section 5, our method TAB has no hyperparame-
ters and, therefore, no need for fine-tuning. Therefore, we deployed TAB without
changing any of the hyperparameters used for the equivalent ERM model with
the exception that when training TAB’s identifier model to collect training loss
histories, we perform early stopping based on the training accuracy rather than
the validation accuracy. We do this so that training of the identifier stops once
the model has perfectly fitted the training set, at which point additional losses
in the history come with diminishing returns.

Efficient Bias Mitigation Without Privileged Information: Appendix 11

F.3 Software and Hardware Used

Software For this work, we constructed our codebase based on the MIT-
licensed open-source repository by Espinosa Zarlenga et al. [8/9], which provided
a useful starting point for easy experiment tracking and deployment. Our imple-
mentation of TAB and all underlying DNNs is built on top of PyTorch 1.12 |26],
a commonly used deep learning library with a BSD license. For G-DRO, we
adapted the official implementation of this method by Sawaga et al. [29] by
updating the code so that it could run within our infrastructure while main-
taining all key pieces as in their MIT-licensed public repository. For LfF, we
adapted the authors’ |official implementation into our own infrastructure, keep-
ing the setup and generalised cross-entropy computation intact. For JTT, we
reimplemented their training algorithm based on their |official implementation|
Finally, for MaskTune, we ported the authors’ |official implementation into our
own infrastructure.

All figures with the exception of Figure 1 were generated using Matplotlib

3.5, a BSD-licensed Python plotting library. Figure 1 was instead generated
using draw.io, an open-sourced drawing software distributed under an Apache
2.0 license. All of the code, configs, and scripts needed to recreate our results,
will be made public through an open-source repository upon publication of this
paper.
Resources We ran all of our experiments on two compute clusters. The first
cluster consisted of a machine with four Nvidia Titan Xp GPUs and 40 Intel(R)
Xeon(R) E5-2630 v4 CPUs. The second cluster consisted of a machine with a
single Nvidia Quadro RTX 8000 GPU and eight Intel(R) Xeon(R) Gold 5218
CPUs. We estimate that all experiments, including initial explorations and all
the model selections we ran, required between 450 and 500 GPU hours.

G Details for Motivation Experiments

In this section we provide details on the constructions of the figures used in
Section 4, where we describe the importance of validation group annotations
for model selection in BM pipelines. Figures 2, 3, and 4 were all generated by
training a single Resenet-34 model for 50 epochs. This model is trained on our
Waterbirds task for all figures and on the CelebA task for Figure 4. We follow the
same approach as described in Appendix [F]to train this model in each respective
task with the difference that, for the models shown in Figures 2 and 4, we do not
perform early stopping (as we want to emphasise how biases in the validation set
can in fact lead to an unwanted early stopping). Notice that in Figure 2 we use
colours to indicate points in a curve that are higher (green) or lower (red) than
the the metric at the beginning of the marked grey zone. Finally, in Figure 4 we
split samples between bias-conflicting and bias-aligned by identifying minority
groups lacking the spurious correlation as bias-conflicting. In Waterbirds we
use (“waterbirds on land backgrounds” and “landbirds on water backgrounds”)
as our bias-conflicting groups, as they are both similarly underrepresented and
lacking the spurious correlation, while in CelebA we use “not blonde male faces”

https://github.com/kohpangwei/group_DRO
https://github.com/alinlab/LfF
https://github.com/anniesch/jtt
https://github.com/aliasgharkhani/Masktune
https://github.com/jgraph/drawio

12 M. Espinosa Zarlenga et al.

as the bias-conflicting slice shown (as they are severely underrepresented and
lacking the exploitable gender-based spurious correlation).

H Random Transformations to Augmented Samples

In this section, we explore how domain-specific knowledge can be used to im-
prove TAB’s performance even further through the use of augmentation trans-
formations. For this, when we construct TAB’s augmented set D;, we apply an
stochastic transformation function n : R” — R™ to each sample (i.e., D] =
{(n(x'D),y’@) | (x4 € D;}2_,). We explore this in our MNIST-based
tasks as we know handwritten digits should be invariant to small perturba-
tions in their angles and locations. Specifically, we let 1 be a transformation
pipeline that applies small random rotations (6 ~ Unif([—7/6,7/6])), transla-
tions (Az, Ay ~ Unif(]0,1/10])), and Gaussian blurring (using a 5x5 filter).

= Even 0Odd (p =99%) _ Even Odd (p =99.5%) _ CMNIST (p =98%) _ CMNIST (p= 99%
g1 g1 IS S
E (P S omTs -~ 575 -
£ g g g £ 0E £ 5]
2 50 50< 3 50 504 250 02 50 20 <
2 S°] o g g g 5]
= 25% o 252 Tos 202 Tos iii =
© Il o o
g g g g
= 0 = 0 Z 0 Z 0

I ERM [@@ ERM-RandAug N TAB n-TAB

Fig. H.1: Mean accuracy (left group of solid bars) and WGA (right group of dashed
bars) of TAB with and without random transformations of upsampled examples in
Even-0dd and cMNIST as we vary p for both datasets. As baselines, we show the perfor-
mance of an equivalent ERM model trained both with and without the same random
transformations for its training set.

Our results, shown in Fig. show that in highly imbalanced domains (e.g.,
p = 0.99 in cMNIST and p € {0.99,0.995} in Even-0dd), TAB’s WGA can be
significantly improved by adding domain-specific transformations to their aug-
mented samples without a clear sacrifice in mean accuracy. Specifically, TAB’s
version including the transformations (7-TAB) achieves up to a 17% absolute
improvement in WGA over the standard TAB pipeline for cMNIST when p = 0.99.
Moreover, we see that these same benefits cannot be harvested by simply ran-
domly applying the same transformations to the original training set during
training. This is shown by the similar performance between the original ERM
model and FRM-RandAug, an ERM model trained on a dataset where samples
are randomly augmented using the same transformations as for n-TAB during
training.

In contrast to the boost obtained by applying target transformations, we
notice that such transformation may result in worse WGA when the worst-group
imbalance is not extreme (e.g., p = 0.98 for cMNIST). Hence, although some of
our preliminary results here suggest that these transformations can be useful

Efficient Bias Mitigation Without Privileged Information: Appendix 13

in extremely imbalanced setups, more work is needed to understand (1) how to
correctly design these transformations when domain knowledge is available, (2)
how to determine whether such transformations can be properly applied without
damaging a model’s worst-group performance, and (3) what are some of the
repercussions on TAB’s PoU of introducing new hyperparameters coming from
such transformation pipelines. We believe these to be promising and important
directions for future work.

I Effect of Batching Clustering for TAB

In this section, we explore the effect of using mini-batched k-means for
clustering history losses in TAB’s pipeline. Exploring how mini-batching can
be used as a part of TAB can be insightful to understanding how our method
may be able to scale to datasets where k-means may become a bottleneck (i.e.,
datasets with a size in the order of millions or billions of samples). With this
goal in mind, in Figure|[.2| we show the effect of using batches for k-means in our
synthetic datasets. For these results, we use Scikit-learn’s official MiniBatched-k-
Means [27] implementation with its default settings except for the “reassignment
ratio”, which we decrease to 0.00001 to enable small clusters to be discovered (as
we operate under the assumption that one of the clusters will be significantly
smaller).

Even 0Odd (p =99%) Even-Odd (p = 99.5%) cMNIST (p = 98%) cMNIST (p = 99%)

100 .
75 . 75
50 50 5!
5 25 25 iii 10
0 0 0 0 s

I ERM 3 TAB [TAB (B =512) [TAB (B = 1024) [0 TAB (B = 2048)

~
o
~
a
S

Noa
& 8
Noow
& 8
WGA (%)

'S

5
WGA (%)

=]
WGA(/)

IS
S
ean Accuracy (%)

Mean Accuracy (%)
WGA (%)
Mean Accuracy (%)
Mean Accuracy (%)
@
>

Fig.1.2: Mean accuracy (left group of solid bars) and WGA (right group of dashed
bars) of TAB when using mini-batched k-means clustering for its dataset partition step.
We show our results in Even-0dd and cMNIST while we vary p to simulate extremely
biased setups. As baselines, we show the performance of equivalent ERM and TAB
models.

Our results show that mini-batching k-means enables TAB to still learn less
biased models than standard ERM models. This suggests that our method can
still be easily deployed in practice to learn models that are less biased than their
ERM equivalents in extremely large datasets without the need for any model se-
lection. However, we also notice that batching comes with a significant variance
that can, in some instances, lead to bad clusters being discovered. This results
in a loss on some of the benefits we were able to obtain from TAB’s original full
dataset clustering. We hypothesise that this is due to the fact that, in these ex-
tremely group-imbalanced datasets, it is likely that no spurious-conflicting sam-
ples may be found in a given batch when learning clusters using mini-batched

14

M. Espinosa Zarlenga et al.

k-means. Therefore, future work may focus on understanding how to fully re-
cover TAB’s worst-group performance when using only batches or subsets of the
training set when discovering bias-conflicting and bias-aligned subgroups.

References

10.

11.

12.

13.

14.

15.

Ahmed, F., Bengio, Y., Van Seijen, H., Courville, A.: Systematic generalisation
with group invariant predictions. In: International Conference on Learning Repre-
sentations (2020)

. Anthony, L.F.W., Kanding, B., Selvan, R.: Carbontracker: Tracking and pre-

dicting the carbon footprint of training deep learning models. arXiv preprint
arXiv:2007.03051 (2020)

Asgari, S., Khani, A., Khani, F., Gholami, A., Tran, L., Mahdavi Amiri, A.,
Hamarneh, G.: Masktune: Mitigating spurious correlations by forcing to explore.
Advances in Neural Information Processing Systems 35, 23284-23296 (2022)
Creager, E., Jacobsen, J.H., Zemel, R.: Environment inference for invariant learn-
ing. In: International Conference on Machine Learning. pp. 2189-2200. PMLR
(2021)

Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: Imagenet: A large-
scale hierarchical image database. In: 2009 IEEE conference on computer vision
and pattern recognition. pp. 248-255. Ieee (2009)

Deng, L.: The MNIST database of handwritten digit images for machine learning
research. IEEE Signal Processing Magazine 29(6), 141-142 (2012)

Erhan, D., Bengio, Y., Courville, A., Vincent, P.: Visualizing higher-layer features
of a deep network. University of Montreal 1341(3), 1 (2009)

Espinosa Zarlenga, M., Collins, K.M., Dvijotham, K., Weller, A., Shams, Z., Jam-
nik, M.: Learning to receive help: Intervention-aware concept embedding models.
Advances in Neural Information Processing Systems (2023)

Espinosa Zarlenga, M., Pietro, B., Gabriele, C., Giuseppe, M., Giannini, F., Dili-
genti, M., Zohreh, S., Frederic, P., Melacci, S., Adrian, W., et al.: Concept embed-
ding models: Beyond the accuracy-explainability trade-off. In: Advances in Neural
Information Processing Systems, vol. 35, pp. 21400-21413. Curran Associates, Inc.
(2022)

Fu, R., Hu, Q., Dong, X., Guo, Y., Gao, Y., Li, B.: Axiom-based grad-cam: Towards
accurate visualization and explanation of cnns. arXiv preprint arXiv:2008.02312
(2020)

He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In:
Proceedings of the IEEE conference on computer vision and pattern recognition.
pp. 770-778 (2016)

Hu, W., Niu, G., Sato, 1., Sugiyama, M.: Does distributionally robust supervised
learning give robust classifiers? In: International Conference on Machine Learning.
pp. 2029-2037. PMLR (2018)

Kim, M.P., Ghorbani, A., Zou, J.: Multiaccuracy: Black-box post-processing for
fairness in classification. In: Proceedings of the 2019 AAAI/ACM Conference on
AT, Ethics, and Society. pp. 247-254 (2019)

Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980 (2014)

Kirichenko, P., Izmailov, P., Wilson, A.G.: Last layer re-training is sufficient for
robustness to spurious correlations. ICLR (2023)

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

Efficient Bias Mitigation Without Privileged Information: Appendix 15

Koh, P.W., Nguyen, T., Tang, Y.S., Mussmann, S., Pierson, E., Kim, B., Liang,
P.: Concept bottleneck models. In: International Conference on Machine Learning.
pp. 5338-5348. PMLR (2020)

Koutsoupias, E., Papadimitriou, C.: Worst-case equilibria. In: Annual symposium
on theoretical aspects of computer science. pp. 404-413. Springer (1999)
LaBonte, T., Muthukumar, V., Kumar, A.: Towards last-layer retraining for group
robustness with fewer annotations. NeurIPS (2023)

Levy, D., Carmon, Y., Duchi, J.C., Sidford, A.: Large-scale methods for distribu-
tionally robust optimization. Advances in Neural Information Processing Systems
33, 8847-8860 (2020)

Li, Z., Hoogs, A., Xu, C.: Discover and mitigate unknown biases with debiasing
alternate networks. In: European Conference on Computer Vision. pp. 270-288.
Springer (2022)

Liu, E.Z., Haghgoo, B., Chen, A.S., Raghunathan, A., Koh, P.W., Sagawa, S.,
Liang, P., Finn, C.: Just train twice: Improving group robustness without training
group information. In: International Conference on Machine Learning. pp. 6781—
6792. PMLR (2021)

Liu, Z., Luo, P., Wang, X., Tang, X.: Large-scale celebfaces attributes (celeba)
dataset. Retrieved August 15(2018), 11 (2018)

Nam, J., Cha, H., Ahn, S., Lee, J., Shin, J.: Learning from failure: De-biasing
classifier from biased classifier. Advances in Neural Information Processing Systems
33, 20673-20684 (2020)

Papadimitriou, C.: Algorithms, games, and the internet. In: Proceedings of the
thirty-third annual ACM symposium on Theory of computing. pp. 749-753 (2001)
Paranjape, B., Dasigi, P., Srikumar, V., Zettlemoyer, L., Hajishirzi, H.: AGRO: Ad-
versarial Discovery of Error-prone groups for Robust Optimization. arXiv preprint
arXiv:2212.00921 (2022)

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen,
T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-
performance deep learning library. arXiv preprint arXiv:1912.01703 (2019)
Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O.,
Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A.,
Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine
learning in Python. Journal of Machine Learning Research 12, 2825-2830 (2011)
Pezeshki, M., Kaba, O., Bengio, Y., Courville, A.C., Precup, D., Lajoie, G.: Gra-
dient starvation: A learning proclivity in neural networks. Advances in Neural
Information Processing Systems 34, 1256-1272 (2021)

Sagawa, S., Koh, P.W., Hashimoto, T.B., Liang, P.: Distributionally robust neu-
ral networks for group shifts: On the importance of regularization for worst-case
generalization. arXiv preprint arXiv:1911.08731 (2019)

Sculley, D.: Web-scale k-means clustering. In: Proceedings of the 19th international
conference on World wide web. pp. 1177-1178 (2010)

Shrestha, R., Kafle, K., Kanan, C.: Occamnets: Mitigating dataset bias by favoring
simpler hypotheses. In: European Conference on Computer Vision. pp. 702-721.
Springer (2022)

Sohoni, N., Dunnmon, J., Angus, G., Gu, A., Ré, C.: No subclass left behind: Fine-
grained robustness in coarse-grained classification problems. Advances in Neural
Information Processing Systems 33, 19339-19352 (2020)

Taghanaki, S.A., Choi, K., Khasahmadi, A.H., Goyal, A.: Robust representation
learning via perceptual similarity metrics. In: International Conference on Machine
Learning. pp. 10043-10053. PMLR (2021)

16

34.

35.

36.

37.

38.

M. Espinosa Zarlenga et al.

Tsirigotis, C., Monteiro, J., Rodriguez, P., Vazquez, D., Courville, A.: Group robust
classification without any group information. NeurIPS (2023)

Wah, C., Branson, S., Welinder, P., Perona, P., Belongie, S.: The caltech-ucsd birds-
200-2011 dataset. Tech. Rep. CNS-TR-2011-001, California Institute of Technology
(2011)

Zhang, B.H., Lemoine, B., Mitchell, M.: Mitigating unwanted biases with adver-
sarial learning. In: Proceedings of the 2018 AAAI/ACM Conference on Al, Ethics,
and Society. pp. 335-340 (2018)

Zhang, Z., Sabuncu, M.: Generalized cross entropy loss for training deep neural
networks with noisy labels. Advances in neural information processing systems 31
(2018)

Zhou, B., Lapedriza, A., Khosla, A., Oliva, A., Torralba, A.: Places: A 10 million
image database for scene recognition. IEEE transactions on pattern analysis and
machine intelligence 40(6), 1452-1464 (2017)

	Efficient Bias Mitigation Without Privileged Information: Appendix

