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Abstract. Recent developments in 3D shape representation opened new
possibilities for generating detailed 3D shapes. Despite these advances,
there are few studies dealing with the generation of 4D dynamic shapes
that have the form of 3D objects deforming over time. To bridge this gap,
we focus on generating 4D dynamic shapes with an emphasis on both
generation quality and efficiency in this paper. HyperDiffusion, a previ-
ous work on 4D generation, proposed a method of directly generating the
weight parameters of 4D occupancy fields but suffered from low temporal
consistency and slow rendering speed due to motion representation that
is not separated from the shape representation of 4D occupancy fields.
Therefore, we propose a new neural deformation representation and com-
bine it with conditional neural signed distance fields to design a 4D rep-
resentation architecture in which the motion latent space is disentangled
from the shape latent space. The proposed deformation representation,
which works by predicting skinning weights and rigid transformations
for multiple parts, also has advantages over the deformation modules of
existing 4D representations in understanding the structure of shapes. In
addition, we design a training process of a diffusion model that utilizes
the shape and motion features that are extracted by our 4D representa-
tion as data points. The results of unconditional generation, conditional
generation, and motion retargeting experiments demonstrate that our
method not only shows better performance than previous works in 4D
dynamic shape generation but also has various potential applications.
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1 Introduction

In the fields of 3D computer vision and graphics, research on 3D shape rep-
resentation has developed continuously along with significant interest. In par-
ticular, recently proposed innovative 3D representations such as neural occu-
pancy fields [29], neural signed distance fields (SDFs) [32], neural radiance fields
(NeRFs) [30], and Gaussian splitting [19] enabled the expression and manipula-
tion of highly detailed 3D shapes. As the development of 3D representations has
progressed, research for the generation of 3D shapes has also accelerated and
various 3D generation methods [6, 8, 20] have been proposed.
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However, the environments of the real world are not composed of static 3D
objects but rather of 3D objects that deform along the time dimension, essen-
tially forming 4D objects. Despite the importance of handling 4D objects in
various application areas such as virtual reality (VR), augmented reality (AR),
and game development, studies for generating 4D objects have not been suffi-
ciently explored compared to those on 3D. Therefore, we focus on the task of
4D dynamic shape generation in this paper. Previously, HyperDiffusion [8] at-
tempted to learn a diffusion model that directly generates optimized weights
of 4D occupancy fields. To explain in more detail, HyperDiffusion requires the
process of fitting one occupancy field for each 4D shape data sample. After the
fitting process for all data samples is completed, the diffusion model is learned
using the weight parameters of the occupancy fields as a dataset, and denoising
is performed in the weight space during sampling to directly generate optimized
weight parameters. HyperDiffusion achieved improved quality and finer details
for 4D generation compared to a voxel-based diffusion baseline. However, when
4D shapes are generated in the form of 4D occupancy fields where the represen-
tation for motion is not separate from the shape representation, marching cubes
mesh extraction [25] is required for every frame to convert occupancy fields to
mesh sequences. This not only causes an extremely slow rendering speed but
also makes it difficult to maintain temporal consistency because the vertices and
faces of the triangle mesh of each frame are newly defined.

To address these issues, we propose a new neural deformation representa-
tion that effectively expresses deformations separated from shapes, while also
being specialized for the 4D shape generation task. Our key idea is to make
the deformation representation understand the whole structure of the shapes by
predicting skinning weights [17] corresponding to multiple parts of the shapes
to perform transformations. Unlike previous 4D representation models focused
on reconstruction tasks, which modeled the trajectory [15, 31] or direct move-
ment [40] of each 3D point separately for the representation of deformation,
our deformation representation can use the information of the entire structure
obtained from mesh sequences for 4D shape generation by expressing per-part
transformations continuously across the time. In addition, we can encode 4D
shapes to latent vectors by concatenating shape features and motion features
following the extraction of them. We use these latent vectors as data points to
train a diffusion model. Then, we can complete the entire 4D shapes from the gen-
erated latent vector samples by using them as modulation vectors [3,7,28] for the
representations at test time. Through unconditional generation experiments, we
demonstrate that our method efficiently generates 4D shapes with significantly
higher diversity, and temporal consistency compared to existing methods. Exper-
iments on motion retargeting utilizing the disentangled shape latent space and
motion latent space, or conditional generation experiments taking point clouds
as a condition, demonstrate the scalability of our proposed representation and
diffusion modeling.

The contributions of this work can be summarized as follows:
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– We propose a novel neural deformation representation that represents the
deformation of 3D objects continuously across time. Our proposed represen-
tation works by predicting skinning weights and rigid transformations for
each part, giving it an advantage over existing methods in understanding
the structure of shapes.

– We design a diffusion model that utilizes latent vectors encoded from 4D
dynamic shapes using the proposed representation. Our method ensures fast
rendering speed and temporal consistency by separating the shape latent
space and motion latent space to eliminate the need for the mesh to be
redefined in every frame.

– We perform experiments on various tasks, not just unconditional 4D genera-
tion, but also conditional generation and motion retargeting, to demonstrate
potential applications of our work.

2 Related Work

2.1 4D Representations

Various 3D representations [19, 29, 30, 32] for expressing static 3D objects have
achieved significant success, showing promising results in both quantitative and
visual quality aspects. However, these methods do not consider the represen-
tation of deformations, making them unsuitable for representing dynamic 4D
objects. To address this issue, various 4D representation methods have been
proposed. First, a branch of work introduced morphable 3D parametric models
designed to represent detailed 4D objects in domain-specific areas. Examples
include A Skinned Multi-Person Linear Model (SMPL) [24] for representing 3D
humans and MANO [37] for representing 3D hands. While these models have
achieved remarkable success as domain-specific representations, they suffer from
limited expressiveness due to their reliance on template meshes, and they can
only represent a limited category of objects. Therefore, as a 4D representation
method, morphable 3D parametric models [22,24,37] and their variants [16,27] do
not align well with our method which aims for 4D generation of general objects.
Model-free 4D representation methods [21,31,40], that do not rely on manually
created template meshes have also been proposed. They can represent general 4D
objects by modeling the deformations of 3D objects between frames. Occupancy
Flow (OFlow) [31] adopts Neural ODE [4] for the architecture of the velocity
field which outputs the velocity of each point in 3D coordinates at a given time.
LPDC [40] uses a Multi-layer Perceptron (MLP) to represent correspondences
in parallel. However, these methods do not have sufficient interaction between
the mesh representations and the motion representations. Therefore, when they
are used for 4D shape generation, they can generate motions that are far from
the shapes. In addition, since they model the trajectory or movement of each
separate point, the correlation between the movements of points belonging to the
same part may be insufficient. Therefore, we propose a 4D representation spe-
cialized for 4D generation tasks by predicting skinning weights of vertex points
for the parts of the object and generating corresponding transformations.
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2.2 Generative Models for 3D and 4D Shapes

Unlike early 3D generation studies [1, 38, 41, 42] that focused on point cloud
generation, recent studies aim to generate continuous implicit neural fields using
generative adversarial networks (GANs) [11] or diffusion models [12], as research
on 3D representations continues. Following this trend, numerous studies on 3D
generation [6, 8, 10, 14, 20] have been conducted. Despite the significant interest
in 3D shape generation, research on generating 4D objects, which consists of a
sequence of 3D objects has not been actively explored. Recently, HyperDiffusion
[8] attempted to learn a diffusion model that generates optimized weights of 4D
occupancy fields directly. However, HyperDiffusion suffers from slow rendering
speed and poor temporal consistency by using 4D occupancy fields where the
representations of shape and motion are not separated. Therefore, we present a
deformation representation separated from the shape representation and show
the potential for various applications such as motion retargeting.

3 Method

In this section, we introduce our method for 4D dynamic shape generation.
First, we describe a neural representation for 4D shapes, which constructs a
latent space for 4D shapes, allowing each deforming object to be represented in
the form of a latent vector. Next, we introduce the training process of a diffusion
model that utilizes the extracted latent vectors.

3.1 Neural Representation for 4D Shapes

To address the issues arising from redefining meshes for every frame in the pre-
vious work, we propose a model that generates per-vertex animation. Per-vertex
animation defines mesh sequences by maintaining the information of the vertices
defined in the first frame and the faces connecting these vertices while repre-
senting subsequent frames through the offset of vertex positions. Therefore, we
introduce a new neural representation architecture consisting of two parts: an
SDF representation to encode mesh surfaces and a deformation representation
to encode the deformations of the mesh vertices. The overall architecture of the
proposed representation is described in Fig. 1.
Neural SDF representation. In this work, we use neural signed distance fields
(SDFs) as the 3D representation to continuously parameterize mesh surfaces.
However, not only directly generating SDFs using generative models such as
diffusion models is challenging, but it also requires the SDF fitting process for
all training data, which is incredibly time-consuming. Therefore, we adopt a
strategy of training a conditional SDF representation and extracting a shape
feature for each mesh to utilize it as a modulation vector. Following the previous
works [33], we extract shape features of meshes through a shape encoder fp
with a variant of PointNet [34] architecture and then concatenate these with
3D query points to input them into an SDF model fSDF which outputs signed
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Fig. 1: An overview of our proposed 4D dynamic shape representation. The neural SDF
representation is trained to minimize the distance between the predicted SDF values
and the ground truth values, while the neural deformation representation is trained to
minimize the distance between the predicted vertex sequence positions and the ground
truth positions.

distance values. Our shape encoder includes an additional auto-encoder, which is
aimed at encoding the tri-plane shape feature as a simpler 1-dimensional vector.
Then, by utilizing the shape feature of each mesh as a modulation for the SDF
representation, we can represent the meshes as 1-dimensional vectors. The SDF
representation can be trained to minimize the l1 distance loss between predicted
signed distance values d̂ and ground truth signed distance values d ∈ RP for a
total of P query points x ∈ RP×3. The loss, LSDF , is calculated as below:

LSDF =
1

|B|
∑

(V0,(x,d))∈B

∥∥∥d̂− d
∥∥∥
1

s.t. d̂ = fSDF (concat(x, fp(V0,x)),

(1)

where V0 ∈ RN×3 is a total of N vertex positions of the initial mesh, V =
{V0, ...,VT−1} is the entire sequence of vertex positions for a 4D shape of length
T , and B denotes a batch for each training step.
Neural deformation representation. Similar to the case of SDFs described
above, we propose a neural deformation representation conditioned on a series
of vertex positions to represent deformations as motion features. Our proposed
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neural deformation representation begins with the idea of making a neural rep-
resentation emulate the process of generating skeletal animations, which is a
method often used by human animators to create animations. In the generation
process of skeletal animation using linear blend skinning (LBS) [17], each frame’s
vertex positions are calculated using rigid transformations corresponding to each
bone. By applying LBS, each vertex moves according to the bones’ rigid trans-
formations and then is scaled based on the skinning weights corresponding to
each bone.

Following this idea, we design an architecture that works in a different way
from existing 4D representations [21, 31, 40]. We make our neural deformation
representation predict skinning weights and rigid transformations from vertex
sequences and map from the deformations to modulation vectors. Our neural
deformation representation g is composed of three modules, 1) a skinning pre-
dictor, 2) a motion encoder, and 3) a transformation decoder.

The skinning predictor gskin has an architecture similar to the shape encoder
of previously introduced SDF representation, but it includes an additional dense
classifier that performs point segmentation. It predicts the weights w ∈ [0, 1]k of
each vertex point for k parts from the initial mesh vertices of animation, where
k is the total number of the parts. After the prediction of the skinning weights,
the center of the part i, Ci, can be calculated as below:

Ci =
WiV

0∑N
n=1 Wi,n

s.t. W = gskin(V
0), (2)

where N is the total number of the vertices, W ∈ [0, 1]k×N is the weight matrix
for all vertices, Wi ∈ [0, 1]1×N is i-th row of matrix W, and Wi,n denotes the
n-th vertex’s weight for part i. The motion encoder gm takes the entire sequence
of vertex points as input and extracts motion features. It consists of a variant
of PointNet encoder and a gated recurrent unit (GRU) [5] module. The encoder
extracts tri-plane features for each t-th frame and then samples the point features
at the center positions C ∈ Rk×3 of k parts where Ci is i-th row of matrix C.
After that, the GRU processes the sequentially calculated features of k parts to
generate a motion feature that contains information about the entire motion.
The transformation decoder gtrans has a simple Multi-Layer Perceptron (MLP)
architecture and takes the concatenated value of the time t and motion features
as input to decode the transformation matrix at each time t. In other words, the
transformation decoder serves as a neural representation for deformations that
use motion features as modulation vectors.

Through the above process, we can get the center positions of k parts, skin-
ning weights of vertex points, and rigid transformations. Therefore, we can trans-
form each vertex point continuously across time using LBS as in the equation
below:

V̂t
n =

k∑
i=1

Wi,n(T
t
i(V

0
n −Ci))

s.t. Tt = gtrans(concat(t, gm(V,C))),

(3)
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Fig. 2: An overview of the training and generation process of the proposed diffusion
model. We extract shape features and motion features from 4D shapes using the pro-
posed neural representation, and then utilize concatenated latent vectors derived from
them for the training of the diffusion model. During the generation process, the trained
diffusion model generates latent vectors from Gaussian noise through the denoising pro-
cess. These latent vectors are then split to obtain shape features and motion features,
which are used as modulation vectors for decoding of the first frame’s mesh and de-
formed vertices at each time.

where V̂t denotes the predicted vertices at time t, Tt = {Tt
1, ...,T

t
k} is the set

of rigid transformations inferred by the transformation decoder for all k parts
at time t, and Vt

n means the n-th vertex of Vt. Our deformation representation
is trained to minimize correspondence loss. The correspondence information is
obtained from the ground truth sequence of vertex positions. The correspondence
loss, Lcorr, is calculated as follows:

Lcorr =
1

|B|
∑

(V,t)∈B

∥∥∥V̂t −Vt
∥∥∥
l

(4)

where B denotes a batch for each training step, and l is the order of the norm.

3.2 Diffusion Model for 4D Generation

After the training of our proposed neural representation for 4D shapes is com-
plete, we can encode all 4D shapes of the training dataset into shape features s
and motion features m using the shape encoder fp of the SDF representation and
the motion encoder gm of the deformation representation. We use 1-dimensional
vectors z, concatenated from s and m, for training a diffusion model.

For the generation of novel 4D shapes, we utilize the diffusion model Ω to
approximate the ground truth latent vector distribution p(z) and sample the
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latent vector z̃. Specifically, for a continuous diffusion timestep s ∈ [0, 1], z0 ∼
p(z) and z1 = ϵ ∼ N (0, I) denote the sampled latent vector and Gaussian noise,
respectively. Following the previous works [6, 35], the diffusion model Ω learns
to predict input data z0 from the noise perturbed data zs =

√
ᾱsz0 +

√
1− ᾱsϵ

using the score matching loss function:

Ldiff = ∥Ω(zs, s)− z0∥2 , (5)

where ᾱs ∈ [0, 1] is a noise scheduling function which monotonically decreases
with timestep s. We use the DALLE-2 [35] architecture for Ω to deal with the 1-
dimensional diffusion process. After the training of Ω, we can sample a new latent
vector z̃ using iterative denoising processes such as DDPM [13] or DDIM [39].

Then, we split the generated latent vector z̃ into a shape feature s̃ and a
motion feature m̃. We can use the generated shape feature s̃ with the SDF
model fSDF for marching cubes mesh extraction to generate mesh vertices Ṽ0

for the first frame and faces F̃ of a new 4D shape. In addition, we can complete
the 4D shape (Ṽ, F̃) by inferring the vertex positions for each time t using the
motion feature m̃ as follows:

Ṽt
n =

k∑
i=1

W̃i,n(T̃
t
i(Ṽ

0
n − C̃i))

s.t. T̃t = gtrans(concat(t, m̃)),

(6)

where W̃ and C̃ denotes the skinning weights and center positions calculated
using Ṽ0, respectively. We describe the training and generation process of the
diffusion model in Fig. 2.

4 Experiments

In this section, we report the results of the various experiments conducted to
demonstrate the effectiveness of our method. First, we evaluate the generation
quality of our method by comparing both quantitative and qualitative results of
the unconditional 4D shape generation with a baseline. We also demonstrate our
method’s advantages by comparing temporal consistency and rendering speed.
Next, we investigate the scalability of our method through experiments on con-
ditional generation and motion retargeting. Finally, although we focus on the 4D
generation task, we conduct a 4D point cloud completion experiment to demon-
strate the representation power of the proposed deformation representation.

4.1 Experimental Setting

Datasets. We use the DeformingThings4D [23] dataset for 4D shape generation
and motion retargeting experiments. DeformingThings4D contains 1,772 syn-
thetic animation sequences of animals. We evenly sample 16 frames across each
entire animation sequence. Then, we sample 4,096 vertex positions for each frame
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Table 1: 4D shape generation quantitative results. The mesh extraction time is mea-
sured as the average execution time of the marching cubes algorithm using a single
A100 GPU. We used 200 samples for time measurement.

Method MMD↓ COV (%)↑ 1-NNA (%)↓ Time (s)↓

HyperDiffusion 19.6 41.8 64.1 40.4
Ours (Unconditional) 16.4 52.8 61.9 8.1
Ours (Conditional) 15.6 53.2 62.5 8.2

of the animation seuqences and use them to train our representation. Following
previous work [8], we divide the dataset into 80% for the training set, 5% for
the validation set, and 15% for the test set. For the conditional 4D shape gener-
ation, we sample 2,048 points from a mesh surface of each sequence’s first frame
and use this as the condition during the proposed model’s training and testing
phases. For the 4D point cloud completion experiment, we use the D-FAUST [2]
dataset which contains real 4D human scans. Each sequence is subsampled into
point cloud trajectories of 17 frames across time and each frame consists of 300
points.
Baselines. To evaluate the generation quality of our method, we compare the
unconditional generation results from our method with those of HyperDiffu-
sion [8], a recently proposed unconditional 4D shape generation method. Hyper-
Diffusion generates the weights of 4D neural occupancy fields directly through a
diffusion model. We reproduced the unconditional generation results of Hyper-
Diffusion using the official codebase provided by the authors. For the 4D point
cloud completion experiment, we compare our method with the model-free dy-
namic 4D representation methods [9, 15,21,29,31,40].
Implementation details. For the training of both the SDF representation and
deformation representation, we use the Adam optimizer with a batch size of
4 and an initial learning rate of 1 × 10−4, which is reduced by 50% for every
125 epochs. When learning our deformation representation, we set k, a hyperpa-
rameter indicating the number of parts, to 40. For the training of the diffusion
model, we use the Adam optimizer with a batch size of 16 and a learning rate of
1×10−5. We train both representations for 2,000 epochs and the diffusion model
for 4,000 epochs. More details can be found in the supplementary material.
Evaluation metrics. Following previous works [6,8,26,42,43], we use three eval-
uation metrics, 1) Minimum Matching Distance (MMD), 2) Coverage (COV),
and 3) 1-Nearest-Neighbor Accuracy (1-NNA), for 4D shape generation experi-
ments. We measure the quality of the generated samples using MMD and their
diversity with COV. Additionally, 1-NNA (1-Nearest Neighbor Accuracy) is used
to measure the similarity between the distributions of real samples and gener-
ated samples. For a detailed description of these metrics, please refer to the work
of Yang et al . [42]. For all metrics, the distance between each pair of samples
was calculated using the Chamfer Distance (CD) of 2,048 points sampled from
the mesh surfaces. The same number of generated samples as real samples were
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Fig. 3: Unconditional 4D shape generation qualitative results. We visualize a total of
6 frames with a time interval of 3 frames from the generated 4D dynamic shapes.

used for evaluation and each sample is standardized with its mean and stan-
dard deviation. The assessment of the quality of generated samples is largely
subjective and it is difficult to evaluate the quality using quantitative metrics
alone. Therefore, we additionally provide qualitative results for the experiments.
For the 4D point cloud completion experiment, we use Intersection over Union
(IoU), CD, and correspondence l2-distance error (Corr) as evaluation metrics.

4.2 Unconditional 4D Dynamic Shape Generation

We unconditionally generate animal animation sequences consisting of 16 frames
using the proposed model trained on the DeformingThings4D dataset. As shown
in Table 1, our method achieves enhanced performance compared to the baseline
in quantitative metrics. In particular, the significant improvement in coverage
compared to the baseline demonstrates that our method generates much more
diverse shapes and motions. In addition, we visualize the generated samples in
Fig. 3 to compare the visual quality, which cannot be fully captured by quan-
titative metrics. The samples generated by our method not only have superior
visual quality in each frame but also show significantly improved temporal con-
sistency. Unlike HyperDiffusion, which requires mesh extraction at every time
step, leading to vertices and faces being redefined in each frame, our method gen-
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Fig. 4: Temporal consistency comparison. In the case of HyperDiffusion, the generated
sample suffers from a lack of temporal consistency, as parts of horns appear and disap-
pear due to vertices and faces being redefined in every frame. However, the 4D shape
generated by our method maintains excellent temporal consistency, even as the mesh
is transformed by motion.

erates per-vertex animation defined by the mesh in the first frame and offsets
of vertices. As seen in Fig. 4, our method can generate samples that maintain
temporal consistency even in highly detailed areas such as horns. Additionally,
compared to HyperDiffusion, the proposed method ensures a much faster sam-
pling time. Our method only needs to extract a mesh once for the first frame,
and then deform the vertices from the mesh to generate meshes for the following
frames. In Table 1, we also present the experimental results for rendering time.

4.3 Conditional 4D Dynamic Shape Generation

To prove the scalability of our method, we conduct the first experiments on con-
ditional 4D shape generation that have not been explored in previous work. We
follow the mechanism proposed by the latent diffusion model [36], utilizing an
encoder for conditions and cross-attention layers for conditioning. We attempt
to specify the shape of the generated samples by providing point clouds as the
condition. At the training and test stage, the point clouds are extracted from
the first frame of each animation sequence. In this setting, our model has to
construct complete shapes from the provided point clouds and generate motions
that match the shapes well. We report the quantitative results of conditional 4D
shape generation experiments in Table 1 with other experiments. Through quan-
titative results, we can confirm that our model can generate 4D shapes of similar
quality with provided point clouds to those generated by unconditional gener-
ation. The visualization results of conditional generation experiments in Fig. 5
show that completed shapes and generated motions match the input conditions
well. Additionally, we believe that our method could be applied to various con-
ditional generation tasks if datasets that include text labeling describing shapes
or motions, or datasets of 4D shapes paired with images or videos, are collected.
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Fig. 5: Conditional 4d generation qualitative results. We visualize a total of 6 frames
with a time interval of 3 frames from the generated 4D dynamic shapes. In addition, we
visualize the point clouds provided for the conditional generation of shape sequences.

4.4 Motion Retargeting

Motion retargeting is a task that aims to transfer motions from one subject to
another subject. Our model constructs a latent space where motion features and
shape features are disentangled, allowing for easy motion retargeting. Motion-
retargeted shape sequences are achieved by generating the mesh of the first frame
using the source shape features and then transforming this mesh using the tar-
get motion features. All the 4D shapes and features used in this experiment are
generated in the same settings as the unconditional 4D dynamic shape genera-
tion experiment. We show the motion retargeting results in Fig. 6. Even when
there are significant differences in the source shapes from the original shape at
the shape of each part (e.g., leg length, tail shape), we can confirm that the tar-
get motions are transferred well. Unlike the deformation modules of existing 4D
representations, which rarely utilize information about shapes, our neural defor-
mation representation predicts the skinning weights and center positions of all
parts for the generated shapes. Therefore, our method enables deformations that
are appropriate for each shape, even when utilizing shape features and motion
features extracted from different samples.

4.5 4D Point Cloud Completion

Although this paper focuses on the generation task rather than the reconstruc-
tion task, we conduct a 4D point cloud completion experiment to compare the
representation power of our proposed deformation representation with the de-
formation modules of existing 4D representations. In Table 2 , we compare the
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Fig. 6: Motion retargeting results. We visualize motion-retargeted dynamic shapes by
transferring target motions to two different source shapes each.

results of 4D point cloud completion against existing 4D representation meth-
ods when replacing the deformation module of the state-of-the-art 4D represen-
tation method, CaDeX [21], with our deformation representation. The results
demonstrate that although our proposed deformation representation targets 4D
generation, the representation power of our method surpasses or is comparable
to the deformation modules of existing 4D representations.

5 Limitations and Future Work

In our method, we use LBS to deform the vertices with generated rigid transfor-
mations. While LBS facilitates efficient deformation of 3D models, it introduces
specific issues, such as the candy wrapper effect, which unrealistically distorts
the mesh, and its inability to capture non-rigid deformations perfectly. These
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Table 2: 4D point cloud completion results on D-FAUST dataset. The best and second-
best scores are written in bold and underlined, respectively.

Method IoU (%)↑ CD↓ Corr↓

W/o. Corr. Supervision

PSGN-4D - 0.127 3.041
ONet-4D 66.6 0.140 -
O-Flow 69.6 0.095 0.149
LCR 68.2 0.100 -

LCR-F 69.9 0.094 -
CaDeX 75.4 0.074 0.126

With Corr. Supervision

PSGN-4D - 0.119 0.131
O-Flow 72.3 0.084 0.117
LPDC 76.2 0.071 0.098

CaDeX (NICE) 75.6 0.070 0.104
CaDeX (NVP) 78.1 0.063 0.095
CaDeX (Ours) 78.1 0.064 0.093

limitations highlight the need for exploring more advanced skinning techniques,
such as dual quaternion skinning [18] for our method, which can offer more ac-
curate and realistic deformations, representing a promising direction for future
work.

Although the DeformingThings4D dataset has the advantage of covering a
very wide range of shapes, the number of shapes in the dataset is 59, which
may be insufficient to learn a well-structured latent space. Therefore, if a large
4D object dataset containing more shapes and motions is presented, it will be
possible to learn a model with a latent space that well represents diverse 4D
dynamic shapes.

6 Conclusion

In this paper, we propose a neural representation for 4D dynamic shapes and
introduce a new approach to 4D shape generation utilizing a diffusion model
with the proposed neural representation. Our approach guarantees quick ren-
dering times and stable temporal consistency by dividing the shape latent space
from the motion latent space, which removes the necessity to redefine the mesh
in each frame. In addition, the proposed deformation representation is special-
ized for 4D generation as it has a better understanding of the movement of the
entire structure than existing 4D representations as it expresses per-part trans-
formations continuously over time. The unconditional 4D generation experiment
demonstrates that our method is superior to existing methods in both qualitative
and quantitative evaluations. Additionally, conditional generation and motion
retargeting experiments demonstrate the potential of our method for various
applications.
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