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Appendix

In the following, we provide detailed information on the implementation of
all experiments (Sec. A), along with a broader range of qualitative results from
samples enhanced by the Perturbed-Attention Guidance (PAG), which includes
human evaluations and results from downstream tasks (Sec. B). Additionally, we
highlight intriguing applications where PAG proves beneficial, such as DPS [6],
the Stable Diffusion [37] super-resolution/inpaint pipeline, and text-to-3D [34]
(Sec. C). We also present ablation studies focusing on perturbation methods
and layer selection (Sec. D). Finally, a comprehensive analysis of CFG and PAG,
including the dynamics of using CFG and PAG concurrently, is provided (Sec. E).
Discussion on limitations is also included (Sec. F).

A Implementation Details

In this section, we provide detailed descriptions of the implementation and hy-
perparameter settings for all experiments in the paper.

A.1 Experiments on ADM

Quantitative results. For the main quantitative result presented in the main
paper involving the ADM [9] ImageNet [8] 256x256 conditional and uncondi-
tional models, we utilized the official GitHub repository® of ADM along with
its publicly available pretrained weights. Our work builds upon the SAG [18]
repository?, which is derived from the ADM official repository, to ensure precise
comparison. We configured the PAG scale s = 1.0 and defined the perturbation
to the self-attention mechanism as substituting Softmax(Q; K} /v/d) € Rhwxhw
with an identity matrix I € R***" Here, Q;, and K, represent the query and
key at timestep t and h, w, and d refer to the height, width, and channel di-
mensions, respectively. The specific layers for applying perturbed self-attention
are as follows: input_blocks.14.1, input_blocks.16.1, input_blocks.17.1,
middle_block.1 for unconditional models and input_blocks.14.1 for condi-
tional models. We follow the same evaluation protocol as SAG [18], utilizing
the DDPM sampler with 250 steps and employing the same evaluation code as
provided by the official repository of ADM.

Qualitative results. For the qualitative results in the main paper, we con-
figured the PAG scale s = 3.0. This choice of a higher s value stems from our
observations in the ablation study on guidance scale. It shows that although
sample quality improves with an increasing guidance scale the FID [15] score
worsens. This may be due to the misalignment between FID and human per-
ception [20]. Consequently, we increase the guidance scale to prioritize perceived
quality improvement. We applied the same identity matrix substitution and the
same layers for perturbed self-attention as in the quantitative experiments.

3 https://github.com /openai/guided-diffusion
* https://github.com /KU-CVLAB/Self-Attention-Guidance
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Visualization of diffusion sampling path. For the visualization of the re-
verse process in the Fig. 3, we obtain A, by calculating the absolute value of
each channel, computing the channel-wise mean, and clipping outlier values to
enhance clarity. The hyperparameters are consistent with those in the qualitative
results with ADM [9].

A.2 Experiments on Stable Diffusion

Quantitative results. For all the quantitative experiments, we utilized Stable
Diffusion v1-5° implemented based on the pipeline provided by the Diffusers [32].
For the PAG guidance scale, s = 2.0 is used for unconditional generation, while
s = 2.5 is used for text-to-image synthesis. In text-to-image synthesis, CFG [17]
was set to the most commonly used value of w = 7.5, and for experiments
combining CFG and PAG, w = 2.0 and s = 1.5 were employed. For the di-
versity comparison in the main paper, s = 4.5 and w = 7.5 were used respec-
tively. In all experiments, perturbed self-attention was applied to the middle
layer mid_block.attentions.O.transformer_blocks.0.attnl of the U-Net,
and sample images were generated through DDIM [44] 50 step sampling method.

Qualitative results. Stable Diffusion v1-5 and SDXLS are used for all quali-
tative generation results. For the main qualitative results, PAG guidance scale
s = 4.5 is used. Also, for CFG experiments, CFG guidance scale w = 7.5 was
applied, and for the CFG+PAG experiment, w = 6.0 and s = 1.5 were used.
We used DDIM sampling [44] with 200 steps for the teaser (Fig. 1), 50 steps
for the main figure (Fig. 5), and 25 steps for comparison between CFG and
CFG + PAG (Fig. 7). Perturbed self-attention was applied to the middle layer
mid_block.attentions.0.transformer_blocks.0.attnl of the U-Net in all
cases.

Visualization of diffusion sampling path. For the visualization experiment

of reverse process in the main figure (Fig. 2), CFG [17] scale w = 7.5 is used, and
perturbed self-attention was applied to the middle layer mid_block.attentions.O. -
transformer_blocks.0.attnl, representing the initial 12 steps of DDIM 25
step sampling.

Combination of CFG and PAG. To apply CFG [17] and PAG together in
text-to-image synthesis, we produced é(z:, ¢) using the following equation:

€o(w1,¢) = ea(we, ¢) +w(eg(xr, ¢) — €g(ws, @) + s(eg (s, ¢) — €a(ze, ¢),  (14)

where w and s are guidance scale. These estimations involve adding the deltas of
CFG and PAG, each weighted by each guidance scale w and s. To achieve this,
we computed three estimations, eg(zy, ), €g(x¢, @), and ég(x, ¢) simultaneously,
in the denoising U-Net.

5 https://huggingface.co/runwayml /stable-diffusion-v1-5
6 https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0
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A.3 Experiments with PSLD

We use Stable Diffusion v1.5 used in PSLD [40]. The measurement operators for
inverse problems are from DPS [6], as used in PSLD [40]. PSLD [40] leverages
the loss term of DPS [6] and further implements the gluing objective to enhance
fidelity, multiplied with step size 1 and 7 respectively for updating gradients.
n = 1.0 and v = 0.1 are used in experiments of PSLD [40] without PAG as same
as PSLD [40]. Practically, we find that it is better to use unconditional score
€9(z¢) instead of guided score €y(z:) when predicting 2o to update gradients.
Furthermore, we conduct more experiments with ImageNet [8] dataset, which are
provided in Sec. B.3. All experiments with PSLD [40] use DDIM [44] sampling
and all hyperparameters with PAG are in Table 5. Perturbed self-attention is
applied to the same layer, input_block.8.1.transformer_blocks.0.attnl,
for both FFHQ [21] and ImageNet [8] dataset.

FFHQ ImageNet

Inpaint SRx8 Gauss Motion Inpaint SRx8 Gauss Motion
n 0.15 0.7 0.1 0.15 0.5 0.7 0.1 0.3
~ 0.015 0.07 0.01 0.015 0.05 0.07 0.01 0.03
s 4.0 4.0 5.0 4.0 4.0 4.0 5.0 5.0

Table 5: Hyperparameters for PSLD [40] with PAG on FFHQ [21] dataset
and ImageNet [8] dataset. Here, 1 and ~ are the step size for gradients of PSLD [40]
and s is the scale for PAG from Eq. 10 of main paper.

A.4 Experiments with ControlNet

For the ControlNet [53] experiment in Fig. A, Stable Diffusion v1.5 was uti-
lized, implemented based on the ControlNet pipeline from Diffusers. For pose
conditional generation, PAG guidance scale 2.5 is used, while for depth condi-
tional generation, 1.0 was employed. Sampling was conducted using the DDIM
50 steps method, and perturbed self-attention was applied to the middle layer
mid_block.attentions.O.transformer_blocks.0.attnl of the U-Net.

A.5 Ablation Study

For the ablation study on the guidance scale and perturbation strategy, we gener-
ated 5k images using the ADM [9] ImageNet 256 x256 unconditional model with
DDIM 25 step sampling and applied perturbed self-attention to the input.13
layer. In the guidance scale ablation, identity matrix replacement was used
consistently across other qualitative and quantitative experiments. For quali-
tative results with varying guidance scales on Stable Diffusion v1.5 (Fig. 34),
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Table 6: Comparison of computational costs in Stable Diffusion.

GPU Memory | Sampling Speed 7

No Guidance 3,147 MB 19.16 iter/s
CFG [17] 3,193 MB 12.67 iter/s
PAG 3,193 MB 12.68 iter/s

DDIM 50-step sampling was utilized with perturbed self-attention applied to
mid_block.attentions.0.transformer_blocks.0.attnl, aligning with the ap-
proach used for Stable Diffusion qualitative samples in the bottom right of the
main qualitative figure.

A.6 Computational Cost

We measured the computational costs for sampling without guidance, using
CFG, and using PAG in Stable Diffusion. We utilized one NVIDIA GeForce
RTX 3090 GPU and conducted sampling with one batch. Firstly, we measured
GPU memory usage, which appeared to be nearly identical across all three sce-
narios. Next, we measured the iteration speed in the denoising U-Net, showing
that both CFG and PAG exhibited similar sampling speeds, albeit slightly slower
when compared to not using guidance..
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B Additional Qualitative Results

B.1 ADM Results

Fig.10: Uncurated samples from ADM [9] ImageNet 256 unconditional
model w/o0 and w/ PAG. In each image set, the images in the top row are samples
without using guidance, and the images in the bottom row are samples using PAG.
PAG guidance scale s = 3.0 is used and perturbed layers are following: 113,114,i16,m1.
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Fig.11: Uncurated samples from ADM [9] ImageNet 256 unconditional
model w/o and w/ PAG. In each image set, the images in the top row are samples
without using guidance, and the images in the bottom row are samples using PAG.
PAG guidance scale s = 3.0 is used and perturbed layers are following: 113,114,i16,m1.
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Fig. 12: Uncurated samples from ADM [9] ImageNet 256 conditional model
w/o and w/ PAG. In each image set, the images in the top row are samples with-
out using guidance, and the images in the bottom row are samples using PAG. PAG
guidance scale s = 3.0 is used and perturbed layers are following: 113,114,116 ,m1.
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Fig. 13: Uncurated samples from ADM [9] ImageNet 256 conditional model
w/o and w/ PAG. In each image set, the images in the top row are samples with-
out using guidance, and the images in the bottom row are samples using PAG. PAG
guidance scale s = 3.0 is used and perturbed layers are following: 113,114,116 m1.
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B.2 Stable Diffusion Results

Fig.14: Uncurated samples from SD [37] in wnconditional generation
w/o and w/ PAG. In each image set, the images in the top row are sam-
ples without using guidance, and the images in the bottom row are samples using
PAG. PAG guidance scale s = 5.0 and perturbed layer mid_block.attentions.O.-
transformer_blocks.0.attnl are used.
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Fig.15: Uncurated samples from SD [37] in wunconditional generation
w/o and w/ PAG. In each image set, the images in the top row are sam-
ples without using guidance, and the images in the bottom row are samples using
PAG. PAG guidance scale s = 5.0 and perturbed layer mid_block.attentions.0.-
transformer_blocks.0.attnl are used.



Self-Rectifying Diffusion Sampling with Perturbed-Attention Guidance 29

Fig.16: Uncurated samples from SD [37] in wunconditional generation
w/o and w/ PAG. In each image set, the images in the top row are sam-
ples without using guidance, and the images in the bottom row are samples using
PAG. PAG guidance scale s = 5.0 and perturbed layer mid_block.attentions.O.-
transformer_blocks.0.attnl are used.
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B.3 PSLD Results

FFHQ. Since we use Stable Diffusion v1.5, we upsamle inputs to 512x512 as
PSLD [40] does. Then, the outputs are downsampled to 256 x 256 for evaluation.
Further qualitative results are provided in Fig. 17 18 19 20.

Fig.17: Box inpainting results of PSLD [40] with PAG on FFHQ [21]
dataset.
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PAG (Ours)

GT Degraded

Baseline

Fig. 18: Super-resolution (x8) results of PSLD [40] with PAG on FFHQ [21]
dataset.

PAG (Ours)

GT Degraded Baseline

Fig.19: Gaussian deblur results of PSLD [40] with PAG on FFHQ [21]
dataset.
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GT Degraded  Baseline PAG (Ours)
= \ AN | o

Fig. 20: Motion deblur results of PSLD [40] with PAG on FFHQ [21] dataset.
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ImageNet. We use 1K ImageNet [8] 256 x 256 dataset which is used in [6,23,40].
Qualitative results shows that PAG properly improves sample quality with more
various classes of images, as provided in Fig. 21 22 23 24.

GT Degraded Baseline PAG (Ours)

Fig. 21: Box inpainting results of PSLD [40] with PAG on ImageNet [8]
dataset.

Degraded Baseline PAG (Ours)

Fig. 22: Super-resolution(x8) results of PSLD [40] with PAG on Ima-
geNet [8] dataset.
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Fig. 23: Gaussian deblur results of PSLD [40] with PAG on ImageNet [8]
dataset.

GT Degraded Baseline PAG (Ours)

Fig. 24: Motion deblur results of PSLD [40] with PAG on ImageNet [8]
dataset.
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C Additional Applications

C.1 Diffusion Posterior Sampling

We conduct additional experiments on another diffusion restoration model, DPS [6],
which is based on ADM [9]. DPS [6] updates the gradient of the loss term to
perform sampling from the posterior distribution [6]. The detailed hyperparam-
eters for all the DPS [6] experiments are presented in Table 7. Here, we only
use the unconditional score €y(z;) for predicting 2o, consistent with PSLD [6]
experiments.

FFHQ ImageNet
Inpaint SRx8 Gauss Motion Inpaint SRx8 Gauss Motion
DPS n 1.0 1.0 1.0 1.0 1.0 1.0 0.4 0.6

DPS + PAG (Ours) 7 1.0 1.0 1.0 1.0 1.0 1.0 0.4 1.0
s 1.0 1.0 1.0 1.0 2.0 2.0 1.0 2.0
layer input9.1 input9.1 middle.1 output2.1

Table 7: Hyperparameters for DPS [6] w/o and w/ PAG on FFHQ [21] dataset and
ImageNet [8] dataset. ) is the step size for updating gradients of DPS [6] and s is the
scale for PAG from Eq. 10 of main paper.

All experiments with DPS [6] use DDPM [16] sampling. Quantitative results
on 1K 256 are provided in Table 8. PAG outperforms baseline on FID [15],
except for super-resolution(x8), where FID [15] is comparable. This result may
be attributed to the point that sampling images with hard degradations can be
regarded as generation rather than restoration, which emphasizes the importance
of FID [15] over LPIPS [54]. Additional qualitative results are in Fig. 25 26 27 28
for ITmageNet [8] dataset and Fig. 29 for FFHQ [21] dataset.

Table 8: Quantitative results of DPS [6] on FFHQ [21] 256x256 1K valida-
tion set [21].

Box Inpainting SR (8%) Gaussian Deblur ~ Motion Deblur
Method FID| LPIPS| FID| LPIPS| FID| LPIPS| FID| LPIPS]
DPS 33.12 0.168 34.00 0.320 44.05 0.257 39.92 0.242

DPS + PAG (Ours) 26.74 0.212 34.05 0.327 29.42 0.259 30.57 0.283
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GT Degraded  Baseline PAG (Ours)

Fig. 25: Box inpainting results of DPS [6] with PAG on ImageNet [8] dataset.

GT Degraded Baseline PAG (Ours)

Fig. 26: Super-resolution(x8) results of DPS [6] with PAG on ImageNet [8]
dataset.
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GT Degraded Baseline PAG (Ours)

Fig.27: Gaussian deblur results of DPS [6] with PAG on ImageNet [8]
dataset.

GT Degraded Baseline PAG (Ours)

—— = - - —

Fig. 28: Motion deblur results of DPS [6] with PAG on ImageNet [8] dataset.
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Fig. 29: Box inpainting results of DPS [6] with PAG on FFHQ [21] dataset.

C.2 Stable Diffusion Super-Resolution and Inpainting

Stable Diffusion [37] extends beyond the text-to-image pipeline to also sup-
port tasks requiring image input, such as super-resolution’ and inpainting®. The
model also requires text input alongside image input to leverage CFG [17], yet
there are instances where input prompts do not fit. For example, in a landscape
photo, it may be more intuitive to specify only the area to be removed (such
as a person in the background, shadows, or lens artifacts) and naturally fill it
to match the surroundings, rather than providing a text prompt describing the
entire content of the current image. Similarly, for super-resolution, it is more
natural to input the image alone without having to describe it entirely in text,
especially for real images. While synthetic images may have an associated cre-
ation prompt, real images do not, making it challenging to provide suitable text
prompts. In contrast, PAG does not require text prompts, providing a natural
way to enhance the quality of results in such pipelines. Fig. 30 and 31 present
the outcomes of applying PAG to the Stable Diffusion super-resolution and in-
painting pipelines, where the use of PAG produces sharper and more realistic
results compared to those without it, offering a much more natural approach for
these tasks. We select a subset of the DIV2K [19] dataset downscaled by a factor
of 2 using bicubic interpolation and then center cropped to adjust the images to
a resolution of 512x512.

7 https://huggingface.co/stabilityai /stable-diffusion-x4-upscaler
8 https://huggingface.co/runwayml /stable-diffusion-inpainting
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Degraded

Baseline

PAG (Ours)

Fig. 30: Comparison of Stable Diffusion [37] super-resolution results be-
tween w/o and w/ PAG. PAG applies guidance that enables the model to upscale
images to high-quality renditions with clearer edges and finer details, even when using
an empty prompt (3rd row). The guidance scales employed, from left to right, are se-
quentially 3.0, 2.0, and 1.0. The model upscaled a 256 x256 input image to 512x512.
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Degraded

Baseline

PAG (Ours)

Fig. 31: Comparison of Stable Diffusion [37] inpainting results between w/o
and w/ PAG. PAG aids the model in inpainting images, improving their realism and
diminishing artifacts, without the necessity for a prompt (3rd row). The guidance scale
of 1.5 is employed for all.
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C.3 Text-to-3D

We integrated PAG with CFG for text-to-3D generation, utilizing the Dreamfu-
sion [34] implementation provided by Threestudio [11] due to the unavailability
of official code. We employed a scale of 100 for both CFG and PAG. As seen
in Fig. 32, combining CFG with PAG yields results with enhanced details and
textures compared to using CFG alone.

CFG

CFG + PAG (Ours)

“A cozy cabin in “Highly detailed sand ~ “A DSLR photo of a “A photo of a cute
woods with a castle” delicious hamburger” hippo”
chimney and a porch”

Fig. 32: Comparison of text-to-3D results between CFG [17], and CFG with
PAG.
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C.4 Human Evaluation

ADM Unconditional SD Unconditional SD Text-to-lmage

7% .

93%

97%

m Basline m PAG (Ours) M Basline m PAG (Ours) B CFG m CFG+PAG (Ours)

Fig. 33: The results of the user study.

A user study (Fig. 33) conducts to evaluate the quality of samples in ADM un-
conditional, Stable Diffusion unconditional, and Stable Diffusion text-to-image
synthesis models. In the cases of unconditional generation, participants are pre-
sented with sets of four images sampled both with and without PAG and ask
to identify the higher quality samples. For text-to-image synthesis, participants
compare sets of four images generated using only CFG against those using both
CFG and PAG. Each task comprises 10 questions, resulting in a total of 30
questions evaluated by 60 participants. The results show that the majority of
unconditional generation questions prefer samples generated with PAG. Simi-
larly, in the text-to-image synthesis task, samples generated with both CFG and
PAG are frequently rated as higher quality.
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Fig. 35: Effect of Guidance Scale on Image Quality. Increasing the guidance
scale s results in images with more semantically coherent structures and fewer artifacts,
thereby improving their overall quality. However, an excessively large guidance scale
can lead to smoother textures and slight saturation in the images, similar to the effects
observed with CFG [17].

D Ablation Studies

D.1 Guidance scale

We conduct experiments to investigate the performance difference based on the
guidance scale. Using scales set from 0.0 to 7.0 with intervals of 1.0, we sampled
5K images with ADM [9] and measured FID [15], IS [41], Precision, and Recall
metrics [25] for these images. The results can be seen in the graph in Fig. 34.
PAG showed the best FID at a guidance scale of 1.0 and the best IS at a guidance
scale of 2.0.

Additionally, we conduct a qualitative comparison of the guidance scale for
unconditional generation using Stable Diffusion [37]. In Fig. 35, it can be ob-
served that as the guidance scale increases from 0.0, the structure of the sampled
images improves, leading to more natural images with fewer artifacts.

D.2 Perturbation on Self-Attention Maps

We explored various self-attention perturbation techniques that modify the struc-
ture part, Softmax(Q,K} /v/d) € RM*M in Eq. 12. These methods include
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replacing the attention map with an identity matrix, applying random mask-
ing, and selectively masking off-diagonal entries, as illustrated in Fig. 36. We
also tried additional perturbations, including applying Gaussian blur to the self-
attention map and adding Gaussian noise to it. The quantitative results are
detailed in Table. 9. The qualitative outcomes are depicted in Fig. 37, illustrat-
ing that substituting the self-attention map with an identity matrix enhances
image realism by minimizing artifacts and making the objects’ structure seman-
tically plausible. For additive noise, we use ¢ = 0.1 for Gaussian noise, and for

Gaussian blur, we apply a blur kernel with a kernel size of 5 and a blur sigma
of 1.0.

(a) (b) (o)

Fig. 36: Visualization of self-attention map masking strategy. For the evalua-
tion of FID [15], we sample 5K images from ADM [9] ImageNet [8] 256 x256 uncondi-
tional model for each method. Black entries indicate the masked (set to —oo) elements
of the self-attention map A¢ in Eq. 12 before the Softmax operation is applied. (a)
Replacing attention map with identity matrix. FID: 32.34, (b) Random masking (ra-
tio: 0.25). FID: 40.20, (c¢) Random masking off-diagonal entries (ratio: 0.25). FID:
39.49.

Table 9: Ablation study on perturbations. We sampled 5K images from the
ADM [9] ImageNet [8] 256x256 unconditional model. Perturbations are applied to the
same layer (input.13) and the same guidance scale (s = 1.0) is used.

Perturbation strategy  FID |

Random Mask 40.20
Random Mask (off-diag) 39.49
Additive Noise 62.83
Gaussian Blur 35.48

Identity Matrix 32.34
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Gaussian Blur Additive Noise Random Mask (OD) Random Mask

Identity Matrix

Fig. 37: Uncurated samples from ADM [9] with different perturbations on
the self-attention map. Random Mask (OD) means masking on off-diagonal entries
of the self-attention map. Note that all samples are not curated and use same layer to
perturb (input.13) and same guidance scale (s = 1.0). The results clearly show that
samples with identity matrix replacement generate plausible structures and semantics.
In contrast, other perturbations often result in over-smoothed textures (additive noise)
or introduce artifacts (other perturbations).
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D.3 Layer Selection

We conduct an ablation study to determine the optimal layers for perturbing
the self-attention map with the outcomes presented in Fig. 38. The experiments
include both ADM [9] ImageNet 256x 256 unconditional model and Stable Dif-
fusion [37]. Observations indicate that perturbations applied to deeper layers
generally yield relatively better outcomes compared to those applied to shal-
lower layers of U-Net [38]. We apply perturbations to all combinations of the
top-6 layers (input.14, input.16, input.17, middle.1, output.2), as ranked
by FID, and present the results in Fig. 39 and Table 10. Some combinations show
improved results for the ADM unconditional model but do not yield the same
improvements in the case of Stable Diffusion [37]. Additionally, although experi-
ments involving the random selection of layers for each timestep were conducted,
we discover that selecting fixed layers across timesteps yields better outcomes.

120

100

80

FID

60

40

20

PPIFTPL LRI ETeLd S

Fig. 38: Ablation study on which layer to apply perturbation with ADM [9].

Fig. 38 visualizes the FID scores obtained by perturbing each layer of the
ADM [9] ImageNet [8] 256x256 unconditional models. A guidance scale of s =
1.0 is employed. FID scores are calculated using 5K image samples. Note that
outlier values (06, 07, 08) are clipped. It can be seen that perturbations on deeper
layers, particularly near the bottleneck layer of U-Net, tend to show relatively
better performance than those on shallower layers. The ablation results through
DDIM [44] 25 step sampling are as follows, and in the case of sampling 5K images
with DDPM [16] 250 step sampling, the layer we selected on Table. 1 shows the
highest performance.

Fig. 40 shows the FID results from generating 5k samples using Stable Diffu-
sion with PAG guidance scale s = 2.5 and DDIM 25 step sampling. We applied
perturbation to different layers: “d0” represents the outermost encoder layer, “u8”
is the outermost decoder layer, and “m0” is the mid-block. The best performance
was achieved when perturbation was applied to the mid-block “m0”.
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Fig.39: Ablation study on layer combination for perturbed self-attention
application in ADM [9]. Each data point represents the FID obtained when per-
turbed self-attention (PSA) is applied to the corresponding combination of layers. The
annotations of points represent the combined layers. The green dashed line denotes
the average FID across all combinations for a given number of layers involved. This
analysis reveals that applying PSA to multiple layers can enhance sample quality to a
certain extent. However, this trend does not hold for Stable Diffusion [37], indicating
that the effectiveness of layer-wise perturbation varies across different diffusion models.

I P T LLIIIISP LR

Fig.40: Ablation study on which layer to apply perturbation with Stable
Diffusion [37].
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Table 10: Layer ablation on ADM. We evaluate the FID [15] of 5K samples from
ImageNet [8] 256 x256 unconditional model using DDIM [44] 25 step sampling.

# layers layers FID |
i1l4 28.20

i16 30.30

1 17 30.11
ml 30.90

02 30.38

03 28.70

i14 i16 27.95

i14 i17 27.82

i14 m1 27.82

14 02 26.62

i14 o3 28.40

i16 i17 27.20

i16 m1 27.31

2 16 02 26.45
i16 03 27.45

il7 ml 27.33

17 02 26.40

i17 03 27.24

ml o2 26.67

ml o3 27.46

02 03 27.75

i14 i16 i17 28.33

i14 i16 m1 28.01

14 i16 02 27.02

i14 i16 o3 28.75

i14 i17 m1 27.67

14 i17 02 26.85

i14 i17 03 28.62

i14 m1 o2 26.91

i14 m1 o3 28.31

3 i14 02 03 28.32
i16 i17 m1 26.11

16 i17 02 25.00

16 i17 03 27.04

i16 m1 o2 24.93

i16 m1 o3 27.21

i16 02 03 27.31

i17 m1 o2 24.87

i17 m1 o3 26.96

il7 02 03 27.44

ml 02 03 27.32

i14 i16 i17 m1 28.44

i14 i16 i17 02 27.47

114 116 i17 03 29.23

i14 116 m1 o2 27.48

i14 i16 m1 o3 29.26

i14 i16 02 03 28.59

i14 117 m1 o2 27.09

4 i14 117 m1 o3 29.02
i14 i17 02 03 28.84

i14 m1 02 03 28.40

16 117 m1 o2 24.95

i16 i17 m1 o3 27.11

i16 i17 02 03 27.01

i16 m1 02 03 27.06

i17 m1 02 03 27.00

i14 i16 i17 m1 o2 27.94

114 116 117 m1 03 29.53

5 i14 i16 i17 02 03 29.14
’ i14 i16 m1 02 03 28.92
i14 i17 m1 o2 03 28.75

116 i17 m1 02 03 27.24

6 i14 116 i17 m1 02 o3 29.34
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Fig. 41: Samples Using CFG with Separately Trained Models. We implement
CFG [17] by employing separately trained ADM [9] ImageNet 256 x 256 conditional and
unconditional models. Compared to samples with PAG in row 3, samples with naive
CFG in row 2 show inferior image quality. This suggests that when the conditional
prediction g, (x4, ¢) and g, (z¢) do not align, the guiding signal becomes ineffective,
resulting in low-quality samples, where ¢; and - are parameters from the conditional
and unconditional models, respectively. Here, a guidance scale of 3.0 is employed for
both naive CFG and PAG, using the same seed and latent.

E Discussion

E.1 Theoretical Insights on Using Identity Matrix as Perturbation

Several studies have sought to establish its theoretical foundation, with a promis-
ing approach being its interpretation through pattern storage and retrieval be-
havior within the Energy-Based Model (EBM) framework. Based on this, we will
explain why replacing the identity matrix works. Hopfield networks are associa-
tive memories that retrieve the pattern most similar to the input. They model an
energy landscape with basins of attraction around desired patterns. [36] gener-
alizes the energy function for continuous embeddings and demonstrates that the

proposed update rule ensures global convergence: =, 11 = X softmax (X Tz n)

As shown in [36], this implicit energy minimization equation is closely linked
to the self-attention forward pass of transformers by mapping X to K and =
to @ via projection matrices and introducing W,, for the key contents: Q"% =

softmax (9%) V. This connection provides an insightful theoretical founda-

tion for the attention mechanism. It suggests that the transformer’s attention
mechanism operates as an inner-loop optimization step minimizing the energy
function determined by queries, keys, and values.
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No Guidance Appearance Structure (Current)
N .

Attention Skip
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Fig. 42: Sampled images with various perturbations. Instead of replacing struc-
ture component Softmax (Q.K{ /v/d) with an identity matrix (Structure (Current)),
we test perturbation on appearance component, replacing all tokens in V; with its
spatial average (Appearance). We also completely skip self-attention by ignoring self-
attention which is learned in a residual manner (Attention Skip).

Thus, the forward pass of self-attention corresponds to pattern retrieval in
the Hopfield network, and the backward pass updates the projection matrices
(Wy, Wi, W) to reduce the final loss, implicitly learning to map the inputs to
useful patterns. Specifically, W, and W}, learn to model the relationships between
inputs, while W, learns the content patterns to be aggregated. Through pattern
matching, self-attention effectively captures contextual relationships within the
input.

We suggest replacing Softmax(Q, K7 /v/d) with an identity matrix to remove
these relationships, resulting in an undesirable distribution in terms of structure.
However, we keep the learned content patterns by passing value features, pre-
serving local texture to make distribution in-domain. If we ignore both context
and content patterns (value), it results in completely different images (Fig. 42
‘Attention Skip’). Thus, identity-attention is a method intended to maximize
the use of learned self-attention patterns to create an in-domain but un-
desirable distribution.

In summary, we selectively use learned intermediate representations to model
the undesirable in terms of structure but still in-domain distribution by keep-
ing the appearance information. There might be better perturbations but we
observed that identity matrix replacement is an effective method, theoretically
and empirically. We leave it for future works to find better perturbations for
different tasks and models.

E.2 Further Analysis on CFG and PAG

CFG with separately trained models. As mentioned in the Sec. 3 in the
main paper, the guidance term in CFG [17| originates from the gradient of the
implicit classifier derived from Bayes’ rule. Therefore, in principle, CFG can be
implemented by training the conditional and unconditional models separately.
However, the authors implemented it using a single neural network by assigning
a null token as the class label for the unconditional model. They mentioned, “It
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would certainly be possible to train separate models instead of jointly training
them together,” suggesting it as an option during design. But in practice, this
is not the case. We discover that as can be seen in Fig. 41, implementing CFG
with separately trained conditional and unconditional models does not work
properly (2nd row). This implies that CFG enhances image quality not merely
by trading diversity but operates by some other key factor. The secret may be
that as analyzed in Fig. 2 of main paper, predicting a sample missing salient
features (such as eyes and nose) from the original conditional prediction and
then adding the difference to reinforce those salient features. In other words,
simply subtracting the unconditional generation made by a separate model does
not suffice for its operation, highlighting the utility of our PAG. While CFG
creates a perturbed path missing salient features at the additional cost of training
an unconditional model jointly, perturbed self-attention (PSA) in our PAG can
produce predictions missing such salient features without any additional training
or external model, simply by manipulating the self-attention map of U-Net.
Especially when compared to SAG [18] and other perturbations (perturbation
ablations and Sec. D.2), PSA can be considered an efficient and effective method.

Connections to delta denoising score. According to prior works [13,22]
that use diffusion models for score distillation sampling (SDS), the term &y in
our guidance framework can be interpreted as the model’s inherent bias. Delta
denoising score [13] suggests that when conducting SDS, the gradient term con-
tains bias, and by subtracting this from another gradient obtained with similar
prompts, structures, and the same noise, one can eliminate the shared noisy com-
ponents. From this perspective, CFG [17] and PAG can be interpreted as the
removal of noisy components, which make locally aligned structures, in the diffu-
sion model’s epsilon prediction as class label dropping and attention perturbing,
respectively. This perspective underscores the importance of carefully calibrating
perturbations to avoid significant deviations from the original sample. SAG [18]
has shown a tendency to produce samples that diverge excessively from the
original sample, due to aggressive perturbation applied directly to the model’s
input, leading to out-of-distribution (OOD) samples and high hyperparameter
sensitivity. Scale-wise qualitative result illustrates that PAG exhibits lower sen-
sitivity to scale adjustments, attributed to the strategic perturbed self-attention
approach, which preserves appearance information of the original sample. For a
comprehensive comparison, see Sec. E.4.

Additional training for stability. Although our carefully designed perturbed
self-attention (PSA, e.g., self-attention map replacement with identity) method
effectively mitigates the out-of-distribution (OOD) issue without additional train-
ing, incorporating training can further improve its ability to address the OOD
problem and enhance its robustness to hyperparameter settings.

Similar to various self-supervised learning or augmentation techniques [12,
47,50] that achieve comparable results with augmented inputs/models to those
with original inputs/models, €y can be trained with PSA to produce more sta-
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ble samples that maintain appearance and lack structural information. This
improvement can be achieved by introducing a switching input to control the
on/off status of self-attention map usage and fine-tuning the model while provid-
ing this switching input. Compared to training a new unconditional model for
CFG [17], fine-tuning the model incurs lower computational costs. Furthermore,
unlike CFG, which entangles sample quality and diversity, PAG with trained éq
enhances sample quality without compromising diversity. We leave this explo-
ration as future work.

E.3 Complementarity between CFG and PAG

Recent research [2,31] has shed light on the temporal dynamics of text-to-image
diffusion models during their sampling process. The analysis, focusing on the
model’s self-attention and cross-attention maps under different noise conditions,
demonstrates a transition in the model’s operational focus from text to the pixels
being generated. Initially, at the beginning of the sampling process where the
network’s input is close to random noise, the model significantly relies on the text
prompt for direction in the sampling. However, as the process continues, there’s a
noticeable shift towards leveraging visual features for image denoising, showing
higher activation of self-attention map, with the model gradually paying less
attention to the text prompt. This shift is logical; in the early stage, the model
relies on the prompt for cues on what to denoise in the image. As the denoising
process progresses and the images take shape, the model shifts focus to refine
these emerging visual details.

Fig. 43: Visualization of A; = ¢y(z;) —é(2;) during reverse process with PAG.
text-to-image generation using PAG with a prompt “a fancy sports car”.

This phenomenon can also be observed in PAG and CFG contexts. Fig. 43
visualizes A, = eg(zy) — €9(z¢) during sampling with PAG. As mentioned ear-
lier, since the self-attention map is not highly activated in the early stages of
the diffusion sampling process, the difference A, between the predicted epsilon
with self-attention map dropped and the original predicted epsilon appears weak
initially. As the sampling process progresses and the image starts to take shape,
the activation of the self-attention map gradually strengthens, leading to an
increasing A, observable over time.

In contrast, CFG exhibits a different behavior. Fig. 44 displays the timestep-
wise predicted epsilon difference A; = €g(xt, ¢) — €g(2t, ¢) during sampling with
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Fig. 44: Visualization of A; = co(x¢,¢) — co(x+, ¢) during reverse process with
CFG. text-to-image generation using CFG with a prompt “a fancy sports car”.

CFG. As previously discussed, in the initial stages of generation, the diffusion
model predominantly relies on the prompt to create images, leading to high
activation in the cross-attention map. CFG creates a perturbed path using a
null prompt for the prompt, which can be understood as applying perturbation
to the cross-attention. (Indeed, we observe that making cross-attention map zero
yield effects somewhat similar to CFG, though these effects were suboptimal.)
Therefore, a high A; is observed in the early stages of the sampling process,
where the model focuses on the prompt, and the difference diminishes later on.

S steps 10 steps 15 steps 20 steps 25 steps

Fig. 45: Early stopping of CFG [17]. The process involves a total of 25 steps. The
prompts used are “A corgi with a flower crown” (top) and “A person walking on the
street” (bottom).

The impact of CFG being primarily in the early stages of the generation
process can be validated through another observation. Fig. 45 shows the results
when CFG is applied only in the first 5 steps, then in the first 10, 15, 20, and
throughout all 25 steps of a 25 step generation process. It can be observed that
applying CFG for the initial 60% of the total steps (15 steps) yields results
comparable to those achieved when CFG is utilized for the full 25 steps.

Compared with CFG, PAG continues to influence throughout the mid to late
stages of the timestep, offering highly detailed guidance, especially in the latter
half as can be seen in Fig. 43. This indicates that PAG continues to provide a
positive signal even in the later stages.
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Therefore, using CFG and PAG together can guide the image towards bet-
ter quality across the entire sampling process. This approach effectively utilizes
both the self-attention and cross-attention maps, resulting in effective guidance
throughout the entire timestep. Indeed, qualitative comparison between CFG
and CFG + PAG, and Stable Diffusion quantitative results demonstrate that
combining CFG and PAG yields superior outcomes compared to employing CFG
alone. We also present a human evaluation of samples utilizing CFG versus CFG
+ PAG in Fig. 33.

E.4 Comparison with SAG

In this section, we summarize the differences between SAG [18| and PAG, fo-
cusing on their formulation, stability, speed, and effectiveness. SAG emerged
as an initial method for enhancing guidance in unconditional generation within
diffusion models.

Generalizability. Both SAG and PAG aim to generalize guidance, albeit through
distinct formulations. SAG proposes an imaginary regressor pi, to predict h;
given x;, where h; represents a generalized condition including external condi-
tion or internal information of x; or both, and Z; is a perturbed sample miss-
ing h; from x;. For instance, blur guidance in SAG leverages T; = z; and
hy = x; — Z;, where I; represents a sample with the high-frequency compo-
nents of the original sample x; removed. Specifically, g is derived from x;
by Eq. 4 and subsequently blurred using a Gaussian filter G, (expressed as
Zo = %0 * G4, with * denoting a convolution operation), and then diffused back
by incorporating the noise €y(x:). The guided sampling can be formulated as
E(Zy, he) = €o(Ty, he) — 504V 3z, 10g Dim (ht|T1). However, this approach does not
allow for perturbations on the model’s internal representation, whereas SAG can
be considered a specific instance within our broader framework, as éy(-) could
represent any perturbation process, including the adversarial blurring used by
SAG.

Hyperparameter count and sensitivity to guidance scale. Since SAG
utilizes Gaussian blur, it requires the setting of multiple hyperparameters. Hy-
perparameters related to blur include the blur kernel size and the o of the blur
kernel. Additionally, determining the area for adversarial blurring necessitates
selecting the layer from which to extract the self-attention map and specifying
a threshold value. In contrast, PAG simply requires the selection of the layer to
which perturbed self-attention will be applied. Additionally, as seen in Fig. 46,
SAG is sensitive to the guidance scale. The figure shows that as the guidance
scale increases, the boundaries of the adversarial mask area become visible, and
high-frequency artifacts appear. Therefore, SAG cannot use a large guidance
scale, which is a significant drawback considering that stronger guidance of-
ten results in greater improvements in image quality. Indeed, considering CFG
employs a large scale of around 7.5, this limitation is significantly notable. In
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(a) SAG (b) PAG

Fig. 46: Comparison of samples with SAG [18] and PAG for different guid-
ance scales. Samples are generated by ADM [9] conditional ImageNet 256 x 256 model,
showcasing the impact of incrementally increasing the guidance scale from 0.0 to 63.0,
from the top to the bottom of the figure. (a): Samples generated with a high guidance
scale using SAG exhibit artifacts and over-smoothness due to excessive perturbation,
specifically blurring on the input, with the outlines of the blur mask clearly visible.
(b): Compared to SAG, samples generated with higher scale PAG display high-quality
results, characterized by well-structured shape and high detail. Within each group,
from left to right, the classes are bell toad, leafhopper, tabby cat, and silver salmon.
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contrast, PAG maintains the plausibility of object shapes and enhances details
even at relatively high guidance scales.

Inference speed. SAG requires the extraction of self-attention maps during
its first forward pass and the application of blur to the model input for adver-
sarial blurring. Our method can be implemented to handle PSA and regular
self-attention within the same batch, allowing guidance to be applied with a sin-
gle evaluation of the denoising neural network, similar to CFG [17]. Therefore, if
the GPU can perform concurrent computations swiftly, PAG could theoretically
be up to more than twice as fast as SAG. We discuss the results of comparing
the speed of PAG, implemented in this manner, with CFG and SAG in Sec. A.6.

F Limitation and Future Works

Although PAG demonstrates effectiveness across various tasks, it shares cer-
tain limitations with CFG. Notably, at high guidance scales, results can exhibit
over-saturation. This highlights the need for careful calibration of the guidance
scale to balance quality improvement with potential visual artifacts. Addition-
ally, PAG requires two forward paths for each generation step. Future research
could explore techniques to reduce this computational overhead or develop al-
ternative guidance mechanisms with lower resource requirements.



