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Abstract. We present PartGLEE, a part-level foundation model for lo-
cating and identifying both objects and parts in images. Through a uni-
fied framework, PartGLEE accomplishes detection, segmentation, and
grounding of instances at any granularity in the open world scenario.
Specifically, we propose a Q-Former to construct the hierarchical re-
lationship between objects and parts, parsing every object into corre-
sponding semantic parts. By incorporating a large amount of object-
level data, the hierarchical relationships can be extended, enabling Part-
GLEE to recognize a rich variety of parts. We conduct comprehensive
studies to validate the effectiveness of our method, PartGLEE achieves
the state-of-the-art performance across various part-level tasks and ob-
tain competitive results on object-level tasks. The proposed PartGLEE
significantly enhances hierarchical modeling capabilities and part-level
perception over our previous GLEE model. Further analysis indicates
that the hierarchical cognitive ability of PartGLEE is able to facilitate a
detailed comprehension in images for mLLMs. The model and code will
be released at https://provencestar.github.io/PartGLEE-Vision/.

Keywords: Foundation Model · Hierarchical Recognition · Part Seg-
mentation

1 Introduction

In recent years, foundation models have dominated the majority of tasks in the
fields of Natural Language Processing [3, 9, 54] and Computer Vision [19, 23, 53,
60, 71, 72]. CLIP family [12, 13, 21, 53, 81] have made significant advancements
in transfer learning and have demonstrated impressive zero-shot capabilities on
vision-language tasks. SAM [23] has revolutionized the development of segmen-
tation tasks and is able to provide multi-level class-agnostic masks. GLEE [71]
utilized diverse object-level data to develop general object representations, en-
abling detection, segmentation, tracking, grounding, and identification of objects
in open-world scenarios. Their remarkable achievement can be attributed to the
integration of extensive and diverse range of datasets.
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Fig. 1: An illustrative example demonstrating image annotations at diverse granulari-
ties across multiple datasets. The annotations at hierarchical levels with corresponding
relationships are depicted on the right side. Below is a visualization of our segmenta-
tion results at multiple granularities.

Different from the vast quantity of object-level data, the scale of part-level
data is relatively small, which turns out to be a major bottleneck hindering
vision models from recognizing part-level instances. Thus, most vision models
lack the hierarchical comprehension between objects and parts. However, it is
evident that the ability to recognize parts from objects is essential for various
practical applications such as image editing [22,33,38], behavior analysis [50,75],
pose estimation [10,76], robotics manipulation [2,49], etc. Moreover, we observe
that part-level information is able to help multi-modal Large Language Models
(mLLMs) in achieving a more detailed understanding of image content. Since
part-level comprehension is a critical ability for foundation models to tackle a
broader range of problems, it leads to a natural question: How could we break
through data limitations to build a part-level vision foundation model?

To enable object foundation model with part-level cognitive ability, we em-
phasize that the model should achieve two key objectives: (1) Hierarchical
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Comprehension, the model is supposed to understand the intrinsic relationship
between objects and parts, and extend this hierarchical connection to any novel
object, (2) Semantic Granularity, the model should be capable of learning a
universal feature representation, enabling it to recognize semantic instances at
any granularity. Consequently, we present a method to jointly detect and segment
both objects and parts in a top-down manner. A lightweight Querying Trans-
former (Q-Former) is proposed to construct the hierarchical relationship between
objects and parts. Specifically, it employs a set of universal parsing queries to
interact with object queries, consequently generating multiple part-level queries
that are capable of predicting corresponding semantic parts for each object. The
Q-Former acts as a decomposer, which first recognizes individual objects in the
images and subsequently parsing them into parts. Such model design is built
upon the observation that various common objects often exhibit shared char-
acteristics of parts. For example, cats, dogs, and dinosaurs all have parts such
as torso, legs, and tails. In this way, two sets of query embeddings at different
levels are generated, which are then used to predict object-level and part-level
instances respectively. Through this approach, the relationship between objects
and parts is established via the Q-Former design. Meanwhile, the hierarchical
levels of objects and parts are distinguished, which is different from previous re-
search [6,55,62,68,70] that consider parts as fine-grained objects. This paradigm
enables vision models to better understand the features on different levels during
training, thereby achieving improved performance.

Our complete solution, PartGLEE, for jointly detecting and segmenting in-
stances at both object and part levels, makes it possible for vision models to
achieve favorable outcomes on both object and part levels. Some previous re-
search have devised specialized training paradigms to utilize abundant image-
text pair data [79, 89] as well as grounding data [30, 39, 71], thereby enhancing
the cognitive and generalization capabilities of the models. On the contrary, the
quantity of part-level data is much smaller compared to object-level data. So far,
the largest dataset incorporating the concepts of both objects and parts is the
recently proposed PACO [55] dataset. The scarcity of data has limited research
on part-level recognition and restricted the generalization improvement of vision
models. Although VLPart [62] has attempted to utilize pseudo-labeling schemes
to generate part-level annotations for both object-level and image-level datasets,
the quality of the pseudo-labels is relatively poor. Our innovative algorithm that
parsing objects into their corresponding parts facilitates the transfer of general-
ization capability from objects to parts. Consequently, parts are generated from
objects, which enables vision models to maintain generalization performance
when predicting parts for novel objects without labeling extensive part-level
data. To facilitate the training process of Q-Former, we standardize the annota-
tion granularity across various part-level datasets and introduce a vast amount
of object-level datasets, an intuitive display of the overall training data is shown
in Fig. 1. Unlike VLPart, which exhibits unsatisfactory performance at object-
level datasets after joint-training, our method demonstrates favorable outcomes
at both object and part levels after joint-training. Moreover, it turns out that
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using object-level datasets is able to improve the performance of the model on
part-level tasks, indicating a beneficial interaction between objects and parts.

Extensive experiments demonstrate that our method significantly improve
the open-vocabulary part segmentation performance, concurrently ensuring a
decent performance on object detection and segmentation. We verify its effec-
tiveness on various popular datasets. To validate the generalization performance
of our model in identifying various parts of novel objects, we conduct experiments
on PartImageNet [18] and Pascal Part [6] datasets in cross-dataset and cross-
category manners respectively. Our method exhibits strong transferability and
generalization ability when adding extra object-level datasets during training.
To evaluate the decomposition capability of our model, we conduct experiments
on both ADE20K-Part and Pascal Part datasets follow OV-PARTS [70]. As a re-
sult, our approach significantly outperforms one-stage baselines of OV-PARTS,
with an increase of 8.16% and 2.07% on harmonic mean IoU (hIoU) in ADE20K-
Part-234 and Pascal-Part-116 respectively. Additionally, by incorporating a large
amount of object-level data for joint-training, our method establishes generic hi-
erarchical relationships and breaks through the limitations of scarce part-level
data, achieving state-of-the-art performance across various part-level tasks.

In conclusion, our main contributions can be summarized as follows:

1. We construct the hierarchical relationship between objects and parts via the
Q-Former, facilitating part segmentation to acquire advantages from various
object-level datasets.

2. We propose a unified pipeline for hierarchical detection and segmentation,
where we first recognize objects and then parsing them into corresponding
semantic parts. This algorithm enables us to jointly detect and segment both
object-level and part-level instances.

3. We standardize the annotation granularity across various part-level datasets
by incorporating corresponding object-level annotations, complementing the
hierarchical correspondences for current part-level datasets, promoting the
development of vision foundation models.

2 Related Work

2.1 Visual Foundation Models and General Models

Vision foundation models and generalist models are considered as a milestone
in the development of the intelligent vision system. For instance, multi-modal
visual foundation models [1, 21, 53, 67, 81] have significantly advanced efficient
transfer learning and exhibit impressive zero-shot capabilities on vision-language
tasks by using contrastive learning with large-scale image-text pairs. Generative
foundation models [11, 56, 57, 60] are trained on vast collections of images and
captions, empowering them to generate image content conditioned on textual
prompts. Self-supervised foundation models [4, 12, 13, 19] have learned general
visual representations from large-scale image datasets, enhancing their ability to
transfer to downstream tasks. However, the image-level features learned by these
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foundation models are not well-suited for direct application to dense prediction
tasks that involve precise object and part localization.

Transformer-based generalist methods [5,41,66,77,87] adopt a sequence gen-
eration pipeline to unify the output of text and spatial coordinates. However,
they mainly focus on image-level comprehension, which results in relatively weak
localization capabilities. Works such as UNINEXT, etc. [28, 73, 74], built upon
strong detectors [27, 86], demonstrating a strong localization capability across
multiple datasets. But they fail to exhibit zero-shot transfer ability and gen-
eralization capability due to their closed-set training paradigm. Some works
about open-vocabulary detection (OVD) [30, 34, 35, 42, 43, 78, 82, 83] have ex-
plored zero-shot generalization capabilities on novel categories. X-Decoder [89]
and SEEM [90] have developed a versatile decoding architecture that are able
to generate accurate pixel-level segmentation predictions. GLEE [71] addresses
various object-level tasks through a unified architecture and training paradigm.
However, current generalist models and foundation models are trained mainly
on image-level and object-level datasets, thus their ability to extract more fine-
grained information is limited, making it difficult for them to recognize corre-
sponding semantic parts of any object. Our work focuses on empowering hierar-
chical cognitive capability for vision foundation models, thereby further advanc-
ing the development of comprehensive visual systems.

2.2 Part Segmentation

The growing interest in achieving a more fine-grained understanding of objects
has sparked a surge in research focused on part level recognition. Some pioneer-
ing studies have introduced datasets with part-level annotations, concentrating
on objects of some specific categories such as human body parts [15, 29, 75],
animal body parts [64] and vehicle components [58]. More general part annota-
tions for common objects such as Pascal-Part [6], PartImageNet [18], ADE20K
[84], CityscapesPanoptic-Parts [45] and more recent PACO [55] were then pro-
posed to promote more in-depth research in the field of parts. Most of the
previous works [14, 31, 46, 85] were conducted based on a closed-set configu-
ration, thus only capable of detecting and segmenting closed-set objects and
parts. Recently, VLPart [62] present a pipeline for detecting and segmenting
both open-vocabulary objects and their corresponding part regions, while OV-
PARTS [70] utilize adapters to transfer the generalization abilities of CLIP into
open-vocabulary part segmentation task. However, due to the limited quantity of
data, the generalization capability of previous models [15,29,51,62,63,68,70,75]
still relies heavily on the training datasets. Furthermore, in prior works, both ob-
jects and parts are treated equally, they consider part as a special type of object.
On the contrary, we distinguish them by considering parts as integral compo-
nents subordinate to objects and generate parts from corresponding objects in a
top-down manner. Our work is aimed at building hierarchical relationships while
unifying the training paradigm for object and part-level data. By incorporating a
large amount of object-level data, the hierarchical relationships can be extended
to any object, enabling our method to recognize a rich variety of parts.
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Fig. 2: Framework of PartGLEE. The Q-Former takes each object query as input
and output the corresponding part queries. These queries are then fed into the object
decoder and the part decoder respectively to generate hierarchical predictions.

2.3 Hierarchical Learning of Objects and Parts

Learning objects through parts has been a long-standing research topic as part
annotations provide more detailed semantic information of objects. Morabia et
al. [48] first introduced a pipeline employing an attention mechanism for simulta-
neous detection of both objects and parts. Deepflux [69] designed an image con-
text flux representation which enables better object parts interaction for skeleton
detection. Leopart [88] demonstrated that learning object parts can provide spa-
tially diverse representation which facilitates self-supervised semantic segmen-
tation. Wang et al. [65] proposed a method to predict both parts and objects
simultaneously on Pascal-Part dataset [6]. Recent studies such as SAM [23] and
Semantic-SAM [26] have studied on class-agnostic multi-granularity interactive
segmentation task. However, they have not explored the relationship between
objects and their corresponding semantic parts. Recently, Compositor [17] de-
signed a bottom-up pipeline to predict parts and then cluster them into objects,
while AIMS [52] utilized an independent relation decoder to construct the hier-
archical association between objects and parts. Different from these works, our
approach introduces a Querying Transformer to model the hierarchical relation-
ship, allowing our model to parse any object into its corresponding parts.

3 Method

3.1 Overall Framework

Following [68,71], we propose PartGLEE, which comprises of an image encoder,
a Q-Former, two independent decoders and a text encoder, as shown in Fig. 2.

Given an input image I ∈ RH×W×3, the backbone and the pixel decoder
first extract multi-scale image features Fs ∈ R H

2s ×W
2s ×C and s = {2, 3, 4, 5} with
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backbones such as ResNet [20] or Swin Transformer [40]. Then we feed them into
the object decoder, where the object-level query embeddings qobj ∈ RN×C are
generated in a two-stage process. These object queries are utilized to perform
object-level classification, detection as well as segmentation tasks through three
independent prediction heads. Besides, the object queries qobj are fed into the
Q-Former simultaneously, where L learnable universal parsing queries are initial-
ized to interact with object queries. It takes object queries as input and generate
part-level queries qpart ∈ RN ·L×C which are then passed into the part decoder
to yield part-level predictions (detailed in Sec. 3.2). To enhance the semantic-
awareness, an early fusion module is adopted before Transformer encoder fol-
lowing [74], which takes image feature from backbone and text embedding as
input and perform bi-directional cross-attention between them. In line with pre-
vious segmentation models [7,27,32], a pixel embedding map Mp ∈ RH

4 ×W
4 ×C at

1/4 resolution is constructed by upsampling and integrating multi-scale feature
maps from the backbone and the pixel decoder. Eventually, we dot product each
object query or part query with the pixel embedding map to derive an output
mask m ∈ RH

4 ×W
4 :

m = FFN(ql)⊗Mp, l ∈ {obj, part} (1)

where FFN is comprised of 3 layers feed forward network with ReLU activation
functions and linear layers.

3.2 Parsing Objects into Parts

We propose a Q-Former to establish the hierarchical relationship between ob-
jects and parts. As Various common objects tend to manifest shared attributes
in their constituent parts, for example, both lizards and birds exhibit similar
components, such as heads and torsos. Thus, we initialize a set of query embed-
dings in the Q-Former to parse any object into semantic parts. We denote these
universal parsing query embeddings as qparse ∈ RL×C , where L represents the
number of the parsing queries. As shown in Fig. 2, the Q-Former is comprised
of M cascaded attention modules, each module includes a self-attention layer, a
cross-attention layer, and a feed forward network. The universal parsing queries
are first fed into the self-attention layer and then perform cross-attention with
the object queries. Note that every object query is interacted with all universal
parsing queries. Hence, assume N object queries(qobj ∈ RN×C) are generated
from the object decoder, and L universal parsing queries qparse ∈ RL×C are ini-
tialized in the Q-Former, we obtain N ·L part-level queries which can be denoted
as qpart ∈ RN ·L×C . We refer to this process as:

qpart = Q-Former(qparse; qobj) (2)

Our proposed Q-Former functions as a decomposer, extracting and represent-
ing parts from object queries. Hence, by training jointly on extensive object-level
datasets and limited hierarchical datasets which contain object-part correspon-
dences, our Q-Former obtains strong generalization ability to parse any novel
object into its corresponding parts.
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Fig. 3: Matching mechanisms of PartGLEE. Two separate forward passes are
performed on the same image to obtain hierarchical segmentation results.

3.3 Unified Training Paradigm for Objects and Parts

Since the Q-Former requires hierarchical data to learn how to parse objects into
parts, we enrich part-level data with corresponding object-level annotations,
details of which are provided in the supplementary materials.

Since the annotation granularity across part-level datasets is standardized,
our model can first learn the characteristics of objects and then acquire the abil-
ity to parse any object into its semantic parts. To facilitate open-vocabulary
detection and segmentation, we substitute the similarity scores between the in-
stance embeddings and the text embeddings for the original class head. Given K
object-level and part-level input categories as separate sentences, we feed them
into the text encoder and utilize the average of each individual sentence tokens
as the output text embedding Tl for each category. Then the similarity scores
Sl ∈ RN×K are calculated through a dot product operation between the hierar-
chical instance embeddings ql ∈ RN×C from detector and the text embeddings
Tl ∈ RK×D from text encoder, which can be denoted as:

Sl = ql ·Wproj ⊗ Tl, l ∈ {obj, part} (3)

where Wproj ∈ RC×D is a trainable projection weight for fine-tuning text embed-
ding space especially for part-level descriptions. Following [26, 68], we perform
Hungarian matching of objects and parts individually, where object-level pre-
dictions are only matched with object-level targets, and the same applies to the
part-level output, as shown in Fig. 3.

We then introduce a constraint loss to ensure the part-level predictions to be
the component of the objects. We denote this novel loss function as restriction
loss Lres. Due to memory limitations, we only calculate our restriction loss on
the predicted bounding boxes between different levels, while leaving the predicted
masks unconstrained. Our restriction loss can be calculated as follow:

Lres =

L∑
i

(1−
|Sobj ∩ Si

part|
Si
part

) (4)
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where Sobj represents the area of the object-level bounding box prediction, and
Si
part stands for the area of the i− th part-level bounding box prediction. Note

that each object query can generate L part queries through Q-Former. This
loss function is only applied to the matched predictions in part-level datasets,
thereby strengthening the mutual correspondence between different hierarchies.

PartGLEE is trained with a linear combination of losses for object-level tasks
and part-level tasks, which can be formulated as:

L = λ1(L
obj
cls + Lpart

cls ) + λ2(L
obj
box + Lpart

box ) + λ3(L
obj
mask + Lpart

mask) + λ4Lres (5)

where Ll
cls, L

l
box, L

l
mask are the classification, box, and mask loss at different

levels (l ∈ {obj, part}), while Lres is the restriction loss, and λ are their cor-
responding weights. We apply Focal Loss [36] as the classification loss on the
similarity scores Sl to align the text concepts with instance features. A combi-
nation of L1 loss and generalized IoU loss [59] is utilized for box predictions,
while we employ both Dice Loss [47] and Focal Loss to calculate mask loss. We
follow MaskDINO to set our hyperparameters to λ1 = 4, λ2 = 2, λ3 = 5, λ4 = 5.
Based on the above designs, PartGLEE is able to leverage both object-level data
and part-level data thus obtaining a strong generalization capability.

4 Experiments

4.1 Experimental Setup

We conduct comprehensive experiments to exhibit the effectiveness of PartGLEE
across a wide range of object-level and part-level tasks.

Data Unification. We utilize object-level datasets such as COCO [37],
LVIS [16], Object365 [61], OpenImages [25], Visual Genome [24] and RefCOCO
series [44,80], etc, while using part-level datasets PACO [55], PartImageNet [18],
Pascal Part [6], ADE20K-Part [70] and SA-1B [23] with varying annotation gran-
ularity for joint-training. For Visual Genome and SA-1B, we categorize their
corresponding part-level annotations based on semantic and mask overlap rela-
tionships to construct hierarchical data versions. For part-level data, we integrate
the original part-level annotations with corresponding object-level annotations
according to their associated object-level dataset. The details of these dataset
preprocessing steps are left in the supplementary materials.

Implementation Details. In our experiments, we utilize ResNet-50 [20] and
Swin-Large [40] as the vision encoder. Following MaskDINO [27], we adopt de-
formable transformer in the decoder, and use 300 object queries while setting the
number of parsing queries L to be 10. The M of Q-Former is set to 6. We select
the top 50 object queries based on the similarity scores and input them into the
Q-Former, ultimately yielding 500 part queries. We use both query denoising and
hybrid matching strategies to facilitate convergence and enhance performance.
We conduct experiments on part-level datasets following the methodologies of
VLPart [62] and OV-PARTS [70] in order to evaluate the generalization perfor-
mance and the ability to parse novel objects of our model. For joint-training, we
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Table 1: Cross-dataset generalization performance compared with VLPart. The eval-
uation metric is mAPmask on the validation set of PartImageNet. All models utilize
ResNet-50 as backbone and use the text embeddings of the category names as the
classifier. PartImageNet denotes the fully-supervised method reported for comparison.

Method Datasets All quadruped

(40) head body foot tail

VLPart [62]

Pascal Part 4.5 17.4 0.1 0.0 2.9
+ IN-S11 label 5.4 23.6 3.4 0.8 1.2
+ Parsed IN-S11 7.8 35.0 15.2 3.5 8.9
vs. baseline +3.3 +17.6 +15.1 +3.5 +6.0
PartImageNet 29.7 57.3 25.8 22.9 22.9

PartGLEE

Pascal Part 9.9 23.6 4.5 1.3 4.6
+ Parsed IN-S11 14.9 55.3 27.2 7.0 23.6
vs. baseline +5.0 +31.7 +22.7 +5.7 +19.0
PartImageNet 40.2 67.0 37.6 36.5 40.7

train PartGLEE based on the weights of GLEE [71], continuing training on 32
A100 GPUs. The settings for the part-level zero-shot experiments are described
separately in each section.

4.2 Zero-Shot Part Segmentation Results

1) Cross-dataset Part Segmentation on PartImageNet. We follow VL-
Part [62] to conduct experiments on cross-dataset generalization performance by
directly evaluating on PartImageNet [18] validation set. We report the metrics of
all (40) part categories and the detailed metrics of quadruped are also provided.
The baseline approach only utilize Pascal Part as the training set and directly
perform evaluation on PartImageNet in a zero-shot manner. Note that IN-S11
label represents adding image-level classification data for training in order to
improve performance. Meanwhile, Parsed IN-S11 stands for training with the
pseudo-labels generated from the parsing pipeline proposed by VLPart. How-
ever, both of these methods expose the model to categories and images from the
PartImageNet dataset. We first perform our training process exclusively on the
Pascal Part dataset to verify our zero-shot capabilities, and then we incorporate
pseudo-labels to assess the ability of our model to utilize low-quality annotations.

Given that Pascal Part does not provide semantic labels for categories like
quadruped in PartImageNet, the model needs to generalize from annotated parts
of dog, cat, etc. in Pascal Part to parts of quadruped in PartImageNet. As shown
in Tab. 1, our model significantly outperform VLPart when only training on Pas-
cal Part, even surpassing the model trained with Parsed IN-S11. After incor-
porating pseudo-labeled data into training, our model shows higher performance
gains, indicating better utilization of low-quality data. This result illustrates the
importance of hierarchical modeling, which enables our model to recognize and
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Table 2: Cross-category generalization performance compared with VLPart. The eval-
uation metric is mAPmask on the validation set of PascalPart but report AP50 specif-
ically for dog parts. All models utilize ResNet-50 as backbone and use the text em-
beddings of the category names as the classifier. Base part represents the base split
from Pascal Part. VOC object is added to the training process to improve the cog-
nitive ability of the model thus reach a better performance. Pascal Part denotes the
fully-supervised method reported for comparison.

Method Datasets All AP BaseAP NovelAP dog NovelAP
(93) (77) (16) head torso leg paw tail Increment

VLPart [62]

Base Part 15.0 17.8 1.5 6.1 7.9 2.9 13.8 3.2 -
+ VOC object 16.8 19.9 2.1 29.9 22.6 3.2 12.4 2.1 +0.6
+ IN-S20 label 17.4 20.8 1.1 12.8 17.8 2.0 5.9 0.9 -0.4
+ Parsed IN-S20 18.4 21.3 4.2 28.7 34.8 17.2 5.7 14.3 +2.7
Pascal Part 19.4 18.8 22.4 88.0 49.6 38.3 48.9 25.8 -

PartGLEE

Base Part 25.6 30.5 2.1 12.6 15.6 8.2 5.2 6.2 -
+ VOC object 26.9 31.2 5.8 46.5 35.0 27.0 14.7 15.1 +3.7
+ Parsed IN-S20 26.6 28.9 15.5 80.3 57.3 36.7 17.0 37.4 +9.7
Pascal Part 35.5 34.6 39.9 95.9 88.5 75.0 76.7 72.9 -

parse novel objects into their corresponding parts based on the generalization
capability brought by CLIP.

2) Cross-category Part Segmentation on Pascal Part. We follow the
evaluation setting proposed by VLPart to assess the cross-category generaliza-
tion performance of our model on the Pascal Part dataset. A total of 93 part
categories are divided into 77 base part categories and 16 novel part categories.
Tab. 2 presents the evaluation results for all (93), base (77), and novel (16) parts.
The model is trained only on the base categories, and is directly evaluated on
the entire datasets. Note that IN-S20 label represents adding image-level clas-
sification data and Parsed IN-S20 is on behalf of he pseudo-labels generated
by VLPart [62] on ImageNet [8]. We further introduce a metric called NovelAP
Increment on top of VLPart to assess the improvement of our model when
adding extra object datasets into the training process. It is calculated by sub-
tracting the baseline Novel AP from the Novel AP achieved after incorporating
extra datasets. The results shown in Tab. 2 demonstrate that our method sur-
passes the performance of VLPart by a large margin. By comparing the NovelAP
Increment, we observe that our method achieves a greater increment after incor-
porating extra object dataset. Since the VOC dataset includes object categories
corresponding to novel parts, the hierarchical relationships of the Q-Former can
be extended to novel part categories, resulting in a higher NovelAP Increment.

3) Generalized Zero-Shot Part Segmentation. We adopt the Oracle-
Obj setting proposed by OV-PARTS [70] to conduct experiments on ADE-Part-
234 and Pascal-Part-116 datastes. This setting assumes that the ground-truth
masks and categories of object-level instances are known during the inference
process, aiming to evaluate the capability of the model to parse any novel ob-
ject. All categories in the datasets are divided into a base set and a novel set,
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Table 3: Generalized zero-Shot part segmentation performance on ADE-Part-234 and
Pascal-Part-116 compared with baselines proposed by OV-PARTS.

Method Model Backbone Finetuning
Oracle-Obj

ADE-Part-234 Oracle-obj

Seen Unseen Harmonic Seen Unseen Harmonic
Fully Mask2Former ResNet-50 46.25 47.86 - 55.28 52.14 -Supervised

Two-Stage ZSseg+
ResNet-50 CPTCoOp 43.19 27.84 33.85 55.33 19.17 28.48
ResNet-50 CPTCoCoOp 39.67 25.15 30.78 54.43 19.04 28.21
ResNet-101c CPTCoOp 43.41 25.70 32.28 57.88 21.93 31.81

One-Stage

CATSeg ResNet-101&ViT-B/16 11.49 8.56 9.81 14.89 10.29 12.17
ResNet-101&ViT-B/16 B+D 31.40 25.77 28.31 43.97 26.11 32.76

CLIPSeg ViT-B/16 15.27 18.01 16.53 22.33 19.73 20.95
ViT-B/16 VA+L+F+D 38.96 29.65 33.67 48.68 27.37 35.04

PartGLEE ResNet-50 51.29 35.33 41.83 57.43 27.41 37.11

and the training process is performed only on the base set, while we evaluate
the performance of the model on all categories. As shown in Tab. 3, our model
achieves a superior performance on both datasets, which indicates the impor-
tance of hierarchical modeling. The establishment of hierarchical relationships
between objects and parts enables our model to extend to novel objects, thereby
effectively parsing them into corresponding semantic parts. Consequently, our
model exhibits outstanding performance across both datasets.

4.3 Joint-training results on Detection and Segmentation

To endow our model with robust generalization capability, we perform joint
training on various datasets and evaluate its performance on both object-level
and part-level tasks. We compare our model with specialist and generalist mod-
els to evaluate its performance on object-level data. Additionally, we contrast
it with VLPart to assess its performance on part-level datasets as well as the
effectiveness of joint-training process on both types of datasets. As shown in
Tab. 4, PartGLEE significantly outperforms VLPart on both object-level and
part-level tasks after joint-training, while achieving comparable performance on
object-level tasks compared with previous SOTA. Through joint-training, our
model has acquired strong generalization performance, allowing it to simultane-
ously address tasks for different hierarchies. We also observe that VLPart fails to
achieve satisfactory performance on both object-level and part-level tasks. For
example, VLPart obtains better performance on Pascal Part than its dataset-
specific oracle, while decreasing its performance on COCO and LVIS. We at-
tribute the performance drop of VLPart to the absence of hierarchical relation-
ships, which causes confusion in modeling parts and objects and impairs object-
level performance. PartGLEE effectively addresses this problem and extends the
generalization capabilities from object-level to part-level tasks.
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Table 4: Joint-Training Performance of PartGLEE. Note that Oracle represents the
dataset-specific training paradigm. We directly evaluate the generalist models on PACO
to assess their recognition capability at the part level, as indicated by the results
annotated in the grey font.

Type Method
Part-level Tasks Object-level Tasks

PartImageNet Pascal Part PACO COCO-val LVIS-minival LVIS-val

APbox APmask APbox APmask APmask APobj
mask APopart

mask APbox APmask APbox APmask APbox APmask

Specialist

Mask2Former(R50) [7] - - - - - - - 46.2 43.7 - - - -
Mask2Former(L) [7] - - - - - - - - 50.1 - - - -
MaskDINO(R50) [27] - - - - - - - 50.5 46.0 - - - -
MaskDINO(L) [27] - - - - - - - 58.3 52.1 - - - -
ViTDet-L [32] - - - - - - - 57.6 49.8 - - 51.2 46.0
ViTDet-H [32] - - - - - - - 57.6 49.8 - - 53.4 48.1
EVA-02-L [12] - - - - - - - 64.2 55.0 - - 65.2 57.3
PACO(R50) [55] - - - - - 32.6 12.5 - - - - - -
PACO(L) [55] - - - - - 43.4 17.7 - - - - - -

Generalist

Pix2Seq v2 [5] - - - - - - - 46.5 38.2 - - - -
X-Decoder(L) [89] - - - - 2.69 11.9 0.94 - 46.7 - - - -
SEEM(L) [90] - - - - 1.99 8.42 0.69 - 47.7 - - - -
HIPIE(R50) [68] - - - - - - - 53.9 45.9 - - - -
Florence-2(B) [72] - - - - - - - 41.4 - - - - -
Florence-2(L) [72] - - - - - - - 43.4 - - - - -
UNINEXT(R50) [74] - - - - - - - 51.3 44.9 - - 36.4 -
UNINEXT(L) [74] - - - - - - - 58.1 49.6 - - - -
GLEE(R50) [71] - - - - 3.44 15.3 1.29 55.0 48.4 50.5 45.9 44.2 40.2

Hierarchical

VLPart(R50) [62] 30.7 31.6 23.9 24.0 13.8 36.9 9.6 28.5 - - 26.2 - -
VLPart(R50)-Oracle [62] 29.2 29.7 18.9 19.4 13.3 28.0 10.6 38.0 - - 28.1 - -
VLPart(B) [62] 43.9 41.2 33.5 31.7 22.1 55.0 15.9 40.3 - - 39.6 - -
VLPart(B)-Oracle [62] 44.3 41.7 29.2 27.4 19.1 37.7 15.2 52.5 - - 43.1 - -
PartGLEE (R50) 40.9 40.2 35.0 35.5 21.8 50.5 15.4 54.4 47.6 48.7 43.5 42.7 38.3
PartGLEE (L) 52.7 50.9 39.6 39.1 27.8 55.7 21.3 59.5 52.0 56.5 50.6 50.2 45.0

4.4 Ablation Study

To demonstrate that our model design achieves satisfactory results on both
object-level and part-level tasks, we conduct an ablation study (depicted in
Fig. 4) on the model architecture and present results in Tab. 5. We ablate with
a backbone of ResNet-50 and perform joint-training on COCO [37], LVIS [16],
PartImageNet [18], Pascal Part [6] and PACO [55] with 90K iterations. From
this study, we draw several important conclusions: (1) The utilization of parallel
pixel decoders only results in slight improvements in mask predictions on few
datasets, indicating that the influence of feature maps at different granularities
is negligible. (2) Adopting independent decoders to obtain predictions at differ-
ent levels demonstrates superior performance across the majority of datasets,
manifesting the effectiveness of independent decoders. As adopting parallel pixel
decoders (b) results in significant GPU memory costs without considerable gains,
and all metrics for (a) are lower than (c), we select (c) as our final model design.
Additional ablation studies, extensive qualitative analysis, and experiments on
mLLM can be found in the supplementary materials.

4.5 Limitations

In this work, we still adopt CLIP as the text encoder, which is trained on text-
image pairs and thus lacks the ability to perceive fine-grained descriptions of
object or part instances. This limitation may restrict the improvement of model
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Table 5: An ablation study on different model designs, as depicted in Fig 4. Note that
Parallel Pixel Decoders refers to the utilization of two pixel decoders to generate feature
maps at different hierarchies respectively. Independent Decoders denote the usage of
two decoders, which facilitate the interaction between feature maps and queries at
different hierarchies. Our final choice is scheme (c), which is highlighted in gray.

Scheme
Model Design Part-level Tasks Object-level Tasks

Parrallel
Pixel Decoders

Independent
Decoders

PartImageNet Pascal Part PACO COCO-val LVIS-minival

APmask APmask APmask APobj
mask APopart

mask APbox APmask APbox APmask

(a) 39.0 34.1 20.1 47.4 13.5 47.8 43.5 34.8 33.4
(b) ✓ 38.3 34.5 20.8 48.8 13.8 48.5 44.3 34.9 34.2
(c) ✓ 39.0 34.7 20.9 47.9 14.2 49.3 44.2 35.6 33.8

Part
Pixel

Decoder Decoder Part Predictions

Decoder

Q-Former

Object Predictions

Shared weightsBackbone

(a) (b) (c)

···

part queries

object queries

···

Pixel
DecoderBackbone

Part
Decoder Part Predictions

Object
Decoder

Q-Former

Object Predictions

object queries

···

···

part queries

Object
Pixel

Decoder

Part
Pixel

Decoder

Q-Former

Decoder

Object Predictions

Part Predictions

Shared weightsBackbone

Decoder

object queries

···

···

part queries

Pixel
Decoder

Fig. 4: Various designs for generating predictions at different hierarchies. In scheme
(a), we only utilize a single decoder to generate predictions for both objects and parts.
In scheme (b), two parallel pixel decoders are employed to generate feature maps at
different levels, aiming to explore the effectiveness of feature maps at different gran-
ularity. In scheme (c), we use two independent decoders to generate predictions for
objects and parts respectively.

performance and prompts us to consider how to enhance the perception capa-
bilities of region-level models, which will be our future work.

5 Conclusion

In this paper, we introduce PartGLEE, a groundbreaking foundation model de-
signed towards a complete comprehension of both objects and parts in images.
Through the generic hierarchical relationships established by the Q-Former, we
are able to break through the limitation of scarce part-level data by introducing
a large amount of object-level data, thereby transferring the powerful general-
ization capabilities from objects to parts. Through extensive training on diverse
datasets, PartGLEE achieves SOTA performance across various part-level tasks
while maintaining competitive results on object-level tasks, enabling it to parse
any objects into parts and serve as a foundation model for general fine-grained
region-level perception tasks.
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