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1 Overview

In the scope of this supplemental, we provide more details regarding our imple-
mentation of RANRAC for LFNs [11] and NeRFs [6], as well as the implementa-
tion of RobustNeRF [9] used for benchmarking. Furthermore, we present more
information on the RANRAC hyperparameters for the application to LFNs and
NeRFs. Finally, we provide a more detailed qualitative evaluation that demon-
strates the potential of our approach with respect to different types of inconsis-
tencies for different scenes.
Project Page: https://bennobuschmann.com/ranrac/

2 RANRAC for LFNs

2.1 Implementation Details

For the inference with LFNs we used 500 iterations with a learning rate of
0.001 and an exponential schedule. Regarding all other aspects, we follow the
implementation published by the authors of LFNs [11]. The integration of the
parallel inference of the different sample sets allows for a faster inference of the
randomly sampled hypotheses, as the individual hypotheses, their inference, and
their evaluation do not depend on each other. On an A100 GPU with 40 GB of
RAM, all 2048 hypotheses can be inferred in parallel resulting in a total runtime
of about a minute. We also performed tests on an Nvidia RTX 3060 GPU with
12 GB, where the inference is split into batches of 512 hypotheses.

2.2 Experimental Hyperparameters

We provide experimental results regarding the effect of different hyperparameter
choices of RANRAC by varying one parameter and keeping all others fixed to the
designated optimum to observe the isolated influence. If not specified otherwise,
the reported results are based on 50 randomly selected images per class. We used
reasonable amounts of occlusion between 20% and 30%.

https://bennobuschmann.com/ranrac/
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Effect of the number of initial samples – As discussed, the amount of
initial samples taken is a trade-off between the probability of finding enough
clean(er) sample sets, and the reconstruction quality from those samples. In
Figure 1, we provide insights on the relationship between the reconstruction
quality and the number of clean samples. As expected, quality increases with
more clean samples. Furthermore, the number of samples required for meaning-
ful reconstructions varies between datasets, which is explained by the average
amount of high-frequency details of a certain class, as well as its general com-
plexity, and the strength of LFNs on a specific class. Furthermore, we observe
that the quality greatly depends on where the samples land, as illustrated by
the 99th percentile. This supports our finding that not only a sufficiently clean
sample set but also one leading to meaningful reconstructions has to be found.

Fig. 1 shows the reconstruction performance of RANRAC for different classes
and numbers of samples while keeping the other parameters (i. e. margin, itera-
tions, amount of inconsistency) fixed. It is well visible that there is not a single
optimum across classes. For the plane class, a small sample size is enough. The
quality is decent for ∼40-120 samples, it drops quite drastically above that limit.
In contrast, the chair class needs more samples, i.e. ∼60-280 samples, and the
quality even keeps slightly improving. The car class lies in between, i.e., at ∼60
samples a decent performance is reached and the performance still slightly, but
not steadily, improves until ∼160 samples, and then slowly decreases again. The
difference is explained by attributes of the classes. The chair class contains a lot
of zoomed-in observations, closer to the object, opposed to the plane and the
car class. This results in more high-frequency details which need to be captured.
LFNs have difficulties reconstructing the chair class, even in clean environments.
Furthermore, the object covers a larger part of the image compared to the other
classes. Not all occlusion attributes can be fixed at once. Although, object oc-
clusion and image occlusion are controlled, the occlusion-to-object ratio is much
lower on average for the chair class (28%) compared to car (35%) and plane
(62%). Thereby, an additional sample is more likely to be clean and beneficial
for the former two classes.

As the reconstruction quality is already degenerate for plane, and stagnating
for car, we did not perform tests with more than 280 samples. When tuning
per class is not feasible, we propose choosing 90 samples. We used this for the
evaluation of all classes in the main paper. The choice is within the identified
optimal range of the plane and car class, and the performance penalty for the
chair class is not too significant (less than 1dB). A choice on the lower end of
feasible options for the examined amount of occlusion has additional benefits:
Taking fewer samples reduces run-time and is desirable for environments with
a higher amount of occlusions. We, however, do not claim that this choice is
optimal for all classes and environments.

Effect of the margin – The selection of a reasonable choice for the inlier
margin is bound by two factors. For tight margins, some clean samples are wrong-
fully excluded due to small high-frequency variations that are not represented by
the initial down-sampled reconstruction. If it is too loose, some occluded sam-
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ples are no longer separated. In Fig. 3, we show the consensus sets generated by
RANRAC for different margins. Note that it is expected to have some occluded
samples being explained by the model.

In Fig. 2, we compare the reconstruction quality of RANRAC for different
margins. A maximum reconstruction performance is observed at a margin of
0.25 in terms of Euclidean distance in a color space normalized to (−1, 1). It is
further observed that the plane class is more resilient to a lower margin than
the others and the SSIM even starts reducing at a margin of 0.15, most likely
due to the lower amount of high-frequency variations within this class. As the
looser margin is not required to include any of those details, the inclusion of
slight amounts of occlusion caused by it is visible earlier.

Effect of the number of iterations – As expected, the quality improve-
ment via additional random hypotheses (iterations) behaves approximately loga-
rithmic (Figure 2). Powers of two are generally desirable for the parallel inference.
We settled on 2048 iterations, as there is a significant improvement compared
to 1024 iterations, and no improvement with 4096 iterations. Any measured de-
crease with more iterations can only be caused by noise. For completeness, we
added another test row with even fewer iterations (Table 1), though, the perfor-
mance implications are negligible, 512/2048 iterations can be inferred in parallel
with 12/40GB of VRAM. As expected the downward trend continues, but slowly
enough for fewer iterations to potentially be useful for certain applications.

Iterations 512 256 128 64 32 16 8 4 1
Plane 24.93 24.79 24.35 24.08 23.87 23.29 23.25 22.62 21.45
Car 24.05 24.14 23.85 23.85 23.45 23.28 22.66 22.53 21.92

Chair 18.97 18.78 18.84 18.76 18.66 18.46 18.28 18.12 17.69
Table 1: Additional results on lower iteration counts (↑ PSNR in dB, other hyperpa-
rameters fixed as reported)

2.3 Generation of Occlusions

For the ShapeNet data [1], the occlusions need to be simulated in a randomized
but controllable way, and they have to represent the attributes of real-world
occlusions. Variation in position and color is required, while the shape is not
important, as our algorithm randomly draws the samples according to a uniform
distribution, and does not rely on semantics. However, it is the most challenging
environment to have a single connected patch of occlusion, as the information
loss about the occluded object part is less curable. As this is also the most
common type of occlusion under real-world conditions, we particularly focus
on demonstrating the robustness of our approach to this scenario. Furthermore,
using a monotone color as occlusion would oversimplify the problem and allow for
unrealistically high choices for the margin. The reason is that a single monotone
color is fairly easy to separate from the object, as long as it is not the same color
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Fig. 1: On the left, we show the reconstruction performance of LFNs on uniform-
randomly down-sampled clean images. For every class and amount of samples, ran-
domly selected instances have been inferred with 512 different draws of the samples
each. Solid lines represent the average reconstruction performance, while dashed lines
represent the average per-instance 99th percentile of the reconstruction performance,
to emphasize the influence of the position of the samples. On the right, we show the
reconstruction quality of RANRAC in the context of LFNs with varying amounts of
samples.

as the object. Therefore, we occlude with noise patches, where each color channel
is sampled separately from a normal distribution with decently large standard
deviation. This results in randomly varying color across the patch and presents
a bigger challenge, as it introduces distractions more similar to the object and
more likely to be embedded in a local optimum of the latent space. The final
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Fig. 2: Reconstruction performance of RANRAC with different numbers of iterations
(right) and different inlier margins (left).

challenge is the placement of the occlusions. In addition to being randomized, the
placement should model the common type of partial occlusion. This reduces noise
in the results due to completely occluded objects which are just unrecoverable.
Furthermore, simulating the occlusion by smaller patches which just cover the
object itself would oversimplify the problem, as the shape would still be well
reconstructable. The correct way of simulating the occlusion is therefore to place
an occlusion patch at about the edge of the object, which has the right size
to cover the desired relative part of the object. This still has to be done in
a randomized way. A good practical realisation is drawing the coordinates of
the center point of the occlusion patch independently from a distribution that



6 B. Buschmann et al.

Input/Margin 0.1 0.25 0.35 0.4

Fig. 3: Examples of the final consensus set produced by RANRAC for different margins
(outliers are highlighted in red, inliers in green). Both effects of a larger margin are well
visible: The increasing amount of occlusion that is not separated and the increasing
amount of high-frequency details that are preserved.
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Fig. 4: Illustration of the probability of certain center points of the occlusion patch
when drawn as described to achieve the desired partial occlusion of the objects.

consists of two symmetric Gaussian spikes at about the expected object borders
(Figure 4). Their mean is used to control the desired amount of object occlusion.

The size of the patch is drawn from independent normal distributions for the
size in both dimensions, the mean is used to control the desired amount of image
occlusion. Finally, the accomplished relative occlusion of the object is measured,
and if it does not fall into the specified bandwidth of object occlusion, e.g. 20%-
30%, a new patch is generated. This could be considered as rejection sampling
of the desired distribution.

3 RANRAC for NeRFs

3.1 Implementation Details

When applying RANRAC in the context of NeRF-based reconstruction, we use
the Instant-NSR implementation [3] with Adam optimizer, a learning rate of
0.01, a distortion loss lambda of 0.001, and a multi-step learning rate schedule
with gamma 0.33. The parameters vary for the RANRAC hypothesis evaluation,
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where a shallow fit is adequate, and the final inference. Within the hypothesis
evaluation, 4000 training iterations are sufficient; for the final inference, 20,000
training iterations are used. The hash grid is reduced to a maximum size of 218, to
ensure a decent performance with a wider range of GPUs (due to cache alignment
[7]). We use mixed precision training. Regarding the remaining parameters of the
geometry and texture representation, we used the default parameters used by
the authors of Instant-NSR. On acceptance, we will publish all configuration
files together with the source code to provide all of the details and facilitate
reproducing our results. The run-time is about a minute per iteration and less
than five minutes for the final inference on an Nvidia RTX 4090 GPU.

Regarding the RANRAC hyperparameters, a pixel margin of ϵpix = 0.15 in
terms of Euclidean distance in a color space normalized to (0, 1) worked well
for the determination of actual artifacts. We consider an entire observation as
an inlier based on a margin of 90%-98% of its pixels being inliers, which proved
to be a good choice to separate minor artifacts (due to the sparse sampling)
from artifacts caused by actual inconsistencies. For the dataset with less heavy
occlusion, 50 iterations were sufficient. For the dataset with heavier occlusion,
we reported results after 500 iterations in the main paper. But even after less
than 100 iterations, a significantly improved quality can already be noted. For
other inconsistencies we evaluated with 100 iterations.

3.2 Further Implementation Details regarding Baseline
(RobustNeRF) for Benchmarking

To allow a fair, isolated comparison of the robustness method, we implemented
the losses introduced by RobustNeRF [9] on top of the Instant-NSR method [3]
used for our implementation. Even though the authors of RobustNeRF claim
the generality of their method, some practical challenges and incompatibilities
hamper the transfer. We resolved any appearing conflict as natural as possible
and actively refined their method where it was necessary to achieve a decent
performance in the provided scenario and allow a decent integration into fast
NeRF variants. The details are presented in the following paragraphs.

Patch-based Sampling – A key component of the robust losses is the
patch-based sampling to evaluate the inliers in a neighbourhood. This leads to
a conflict with the occupancy grid used by Instant-NSR [3] or iNGP [7]. When
only updating a small amount of patches, compared to thousands of randomly
distributed locations, the occupancy estimate naturally becomes more biased and
less accurate. Depending on the sampled patches, it can happen that none of
them are considered as occupied according to the grid, and, therefore, no gradient
is available and no update takes place. This can lead to divergence without
recovery. We selected only converging runs of RobustNeRF when benchmarking.

Furthermore, the amount of patches used as reported by the robustNeRF
authors is not feasible for tiny-cuda-nn, we had to reduce it from 64 to 16 to
allow the model to fit into the 24GB VRAM of an Nvidia RTX 4090 GPU,
implying a slightly more stochastic gradient descent.
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Remark on Mask Computation – The authors mention in the paper
that the patch mask is computed based on the smoothed neighbourhood inlier
mask of the second step [9]. However, in the source code they published [8], the
patch mask is computed based on the per-pixel inlier mask of the first step. The
difference is naturally rather negligible. We still considered it worth noting, and
report that we applied it as provided by their implementation.

Single object reconstruction – When directly applying the method as
described in the paper to the single-object reconstruction scenario, a reconstruc-
tion of the white background is obtained, and the object is wrongfully considered
as the distraction and removed. For that reason, we had to use a higher margin
of 0.8 instead of median, to allow their method to work at all for this task.

Finally, we used mixed precision for ours and full precision for theirs, as with
their method, sometimes no sample is considered as being occupied and an inlier,
and therefore no gradient update is possible. This does not play well with mixed
precision in pytorch lightning. If at all, this difference benefits their method.

3.3 Details regarding the Occluded Watering Pot Dataset

The watering pot dataset was captured to evaluate the photo-realistic 360-degree
reconstruction of a single occluded object from lazily captured real-world images
(resembling a typical cultural heritage application). We capture clean and oc-
cluded images (Fig. 5) from the same range of perspectives using a smartphone
camera. The clean images are randomly split into train and test images. The
occluded images are partially added to the training images to achieve the de-
sired amount of distraction. Foreground masks containing object and occlusion
are automatically obtained using SegmentAnything [4] with a simple box query.
The camera parameters are obtained using COLMAP [10]. Erroneous estimates
of camera parameters or masks are conveniently dealt with by our method, mak-
ing the entire object reconstruction pipeline robust. The 4000×2252 images are
down-scaled by a factor of five before training.

In Figure 6, we provide a comparison of the reconstruction quality achieved
based on different methods. The artifacts of occluded perspectives are well visible
and removed by the robust methods. RobustNeRF’s rigorous exclusion of non-
photo-consistent samples leads to artifacts for view-dependent details while our
RANRAC approach allows a seamless reconstruction even for such details of
view-dependent appearance.

3.4 Inconsistent Camera Parameters

Structure-from-motion pipelines are a powerful tool for pose estimation. It is,
however, common that the registration fails for some images. These images will
then induce artifacts into the neural field reconstruction. With RANRAC we can
simply separate all such perspectives from the training data without removing
other valuable information like view-dependent appearance and fit the model to
a clean set of observations. Complementing the evaluation in the main paper, we
present additional qualitative results (Fig. 7) as well as difference images (Fig.
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Fig. 5: Examples of the clean (left) and occluded (right) images with foreground masks
from our Occluded Watering Pot dataset

Fig. 6: Comparison of reconstruction quality achieved by different methods: Whereas
the occlusions lead to well-visible artifacts (blue) in the reconstructions based on NeRF,
these artifacts are completely removed by our RANRAC approach. Additionally, the
slight inaccuracies of robustNeRF due to the rigorous exclusion of valid samples can be
noted (green). They are best visible for view-dependent effects at concavities. Mean-
while, RANRAC preserves these details.

8) to provide an intuitive assessment regarding how the errors behave across the
scene.

3.5 Unfocused Perspectives

Within a lazy capture of an object, typically, some of the frames will be out
of focus. We also investigate RANRAC’s capabilities to deal with such blurred
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Fig. 7: Qualitative results for scenes with noisy camera parameters: The floating arti-
facts in the NeRF reconstructions are well visible and not present in the reconstructions
of RANRAC. Additionally, RobustNeRF rigorously enforces photo-metric consistency,
leading to the exclusion of view-dependent specular details (Hi-Hats of drums, specular
reflections on the water/microphone/steel balls/flower pot, view-dependent appearance
of leaves). RANRAC, on the other hand, preserves these details.
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Fig. 8: Error visualization for scenes with noisy camera parameters: We observe the
global artifacts in the NeRF reconstruction and the local artifacts for scenes with strong
view-dependent details in the robustNeRF reconstructions indicated by a reddish high-
lighting (i.e., the larger the error the better visible it is in the difference image). In
contrast, RANRAC does not produce global artifacts and has much lower prediction
error for view-dependent details, solely caused by the scene representation itself.
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frames in the set of input images. In Figure 9, we complement the results of the
main paper with further qualitative results. Additionally, we present difference
images in Figure 10 to better illustrate where errors are larger or smaller re-
spectively. For sparse and irregular viewing angles both robust methods struggle
separating them from blur resulting in RANRAC’s only failure case (Fig. 11).
This could be addressed with additional priors.

Fig. 9: Qualitative results for scenes with unfocused images: RANRAC successfully
separates the blurred observations from clean ones while RobustNeRF again struggles
with view-dependent appearance.
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Fig. 10: Error visualization for scenes with blurred perspectives: We observe the global
artifacts in the NeRF reconstruction and the local artifacts for view-dependent details
in the RobustNeRF reconstructions indicated by a reddish highlighting (i.e., the larger
the error the better visible it is in the difference image). In contrast, RANRAC does
not produce global artifacts and has much lower prediction error for view-dependent
details, solely caused by the scene representation itself.
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Fig. 11: Both robust methods struggle separating the few perspectives of the ship
with low viewing angle from the blurred images. While RANRAC still removes blurred
perspectives and achieves a strongly improved reconstruction (Figs. 9, 10), for those
few perspectives the appearance is not correctly reconstructed.

3.6 Further Baselines

Complementing our comparison with the state-of-the-art method RobustNeRF [9],
we provide a sampled comparison with other methods for further context (Ta-
ble 2). RANRAC consistently obtains stronger object reconstructions for all an-
alyzed sources of inconsistency. We generated results with Nerfbusters [12], and
add the reported results of NeRF-W [5] and Ha-NeRF [2]. For NeRF-W [5, Supp.
Table 3] and Ha-NeRF [2, Supp. Table 2], their reported results on clean data
are worse than RANRAC’s results on inconsistent data.

PSNR ↑ Wat. Pot Occl. Lego Blur Ficus Err. Poses
RANRAC (ours) 27.11 34.79 31.41
RobustNeRF [9] 26.83 29.14 23.17
Nerfbusters [12] 23.75 28.24 24.28

Nerf-W [5] (clean) - 32.89 -
Ha-NeRF [2] (clean) - 32.23 -

Table 2: Comparison of RANRAC applied to NeRF with additional baselines.
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