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Abstract. Self-supervised representation learning on point cloud se-
quences is a challenging task due to the complex spatio-temporal struc-
ture. Most recent attempts aim to train the point cloud sequences rep-
resentation model by reconstructing the point coordinates or designing
frame-level contrastive learning. However, these methods do not effec-
tively explore the information of temporal dimension and global seman-
tics, which are the very important components in point cloud sequences.
To this end, in this paper, we propose a novel masked motion predic-
tion and semantic contrast (M2PSC) based self-supervised representa-
tion learning framework for point cloud sequences. Specifically, it aims
to learn a representation model by integrating three pretext tasks into
the same masked autoencoder framework. First, motion trajectory pre-
diction, which can enhance the model’s ability to understand dynamic
information in point cloud sequences. Second, semantic contrast, which
can guide the model to better explore the global semantics of point cloud
sequences. Third, appearance reconstruction, which can help capture the
appearance information of point cloud sequences. In this way, our method
can force the model to simultaneously encode spatial and temporal struc-
ture in the point cloud sequences. Experimental results on four bench-
mark datasets demonstrate the effectiveness of our method. Source code
is available at https://github.com/yh-han/M2PSC.git.

Keywords: Self-Supervised Learning · Motion Trajectory Prediction ·
Semantic Contrast · Point Cloud Sequences

1 Introduction

The understanding of point cloud sequences seriously affects the interaction abil-
ity between intelligent agents and environments, which is the core technology in
many applications (e.g., autonomous vehicles, robots and virtual reality). In
recent years, research on point cloud sequences has received intensive atten-
tion, and many point cloud sequences representation learning methods [7–10]
⋆ Corresponding authors
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are emerged. Although these methods achieve outstanding performance, they
are inseparable from annotated labels. As annotating point cloud sequences is
time-consuming and labor-intensive, the potential of these supervised methods
is limited. To alleviate this problem, research on self-supervised point cloud se-
quences representation learning has attracted increasing attention.

By designing pretext task, self-supervised representation learning can effec-
tively learn discriminative sample features without annotated labels. It has out-
standing performance in many fields such as images [2,15,16], videos [25,31,33],
graphs [12, 14, 40] and static point clouds [13, 24, 43]. Inspired by its success
in other fields, some self-supervised representation learning methods for point
cloud sequences [27–30, 44] are proposed. Most methods design self-supervised
point cloud sequences representation learning algorithm based on the ideas of
frame temporal order prediction [35], frame-level contrastive learning [29], or
reconstruction [27] to extract sample features. However, point cloud sequences
have complex structures that contain information in both spatial and temporal
dimensions. And these methods do not make sufficient use of the information of
temporal dimension and global semantics, which may potentially affect the qual-
ity of the learned features of point cloud sequences. Therefore, in order to better
learn point cloud sequences features, it is necessary to design effective pretext
tasks based on more detailed spatial and temporal information exploration.

Motion trajectory is the special information unique to dynamic data (e.g.,
point cloud sequences, videos), which can accurately describe position or state
changes over time. In self-supervised video representation learning, motion tra-
jectory based methods have been well studied. Many methods design pretext
tasks based on motion trajectory clustering [32], motion trajectory prediction
[3,31] and motion trajectory tracking [34,36], and achieve excellent performance.
In comparison, affected by complex data structures, motion trajectory based self-
supervised point cloud sequences representation learning is understudied.

Based on the above analysis, in this paper, we propose a novel motion
trajectory prediction based masked autoencoder framework for self-supervised
point cloud sequences representation learning. Different from the current meth-
ods [27,29,35] that roughly use the temporal dimension information, our method
can more precisely utilize it by exploring motion trajectory in point cloud se-
quences. Moreover, we also introduce self-supervised constraints from the per-
spective of global semantics and appearance. Specifically, our method consists of
three self-supervised pretext tasks: motion trajectory prediction, semantic con-
trast and appearance reconstruction. We first encode the point cloud sequences
employing a masked autoencoder framework. And based on the encoded fea-
tures of the visible parts, we develop a motion trajectory decoder to predict the
motion trajectories of points in the point cloud sequences. This task can make
more precise use of the temporal dimension information and help the model
better understand the actions in the point cloud sequences. We then construct
global semantic contrast based on the visible and masked parts, which are nat-
ural contrastive samples. This task can guide the model to better learn the
global semantics of point cloud sequences. Finally, we also use the point de-
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coder to predict the coordinate of masked points, which can guide the model
to learn the local structures of point cloud sequences. It should be noted that
the motion trajectories as supervision signals are extracted using the pre-trained
point cloud correspondence model CorrNet3D [41]. We evaluate our method on
four point cloud sequences benchmark datasets, i.e., MSRAction-3D [18], NTU-
RGBD [26], SHREC’17 [5] and NvGesture [23]. And experimental results show
that our method achieves excellent performance, which demonstrate the effec-
tiveness of our method.

Although there already exist method that based on motion information learn-
ing, i.e., MaST-Pre [27], it is very different from our method. MaST-Pre uses
temporal cardinality difference to approximate motion changes in point cloud se-
quences, which only vaguely uses temporal dimension information. In contrast,
our method utilizes motion trajectory prediction as the pretext task, which can
provide more accurate temporal dimension information guidance for model learn-
ing. To summarize, the main contributions include:

– We propose a novel motion trajectory prediction and semantic contrast based
masked autoencoder framework for self-supervised point cloud sequences rep-
resentation learning.

– We develop a motion trajectory decode module, which can predict the motion
trajectory of points in the point cloud sequences.

– We construct global semantic contrast based on the visible and masked parts,
which can help the model better explore the semantics of point cloud se-
quences.

– We evaluate our method on four benchmark datasets, where M2PSC achieves
excellent performance.

2 Related Work

2.1 Supervised Learning on Point Cloud Sequences

Affected by the complex spatio-temporal structure, the learning of point cloud
sequences is a challenging task. Currently, supervised learning is still the main-
stream in point cloud sequence learning, which focuses on designing effective
model structures to capture spatial and temporal information in point cloud se-
quences. Deep Learning on Dynamic 3D Point Cloud Sequences (MeteorNet) [20]
proposes the Meteor module to aggregate the feature representation of points in
the spatio-temporal neighborhood, and gradually expand the aggregation range
through module stacking. Point Spatio-temporal Convolution (PSTNet) [9] pro-
poses to decouple the space and time in point cloud sequences and employs
spatial convolution and temporal convolution to model the local structure of
points and the dynamics of the spatial regions, respectively. Different from the
spatio-temporal decoupling operation in PSTNet, Point 4D Transformer net-
work (P4Transformer) [7] proposes to directly aggregate information in spatio-
temporal neighborhood. It first develops a point 4D convolution to encode the
spatio-temporal local structures, and then employs the transformer to capture
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the global appearance and motion information across the entire point cloud se-
quences. Also based on transformer, Point Primitive Transformer (PPTr) [39]
proposes to leverage the primitive plane as mid-level representation to capture
the long-term spatial-temporal context in point cloud sequences. Following the
idea of introducing traditional techniques, Kinematics-inspired Neural Networ
(Kinet) [45] proposes to generalize the kinematic concept of ST-surfaces to the
feature space to effectively learn spatio-temporal feature representations of point
cloud sequences. To better preserve the spatio-temporal structure, Point Spatio-
Temporal Transformer (PST-Transformer) [8] proposes to adaptively searche
related or similar points across the entire point cloud sequence by performing
self-attention on point features. Although these supervised learning methods
achieve outstanding performance, the over-reliance on manually annotated la-
bels limits their potential in point cloud sequence understanding. Therefore, in
order to alleviate the dependence on manually annotated labels, self-supervised
point cloud sequence representation learning is receiving increasing attention.

2.2 Self-supervised Learning on Point Cloud Sequences

Self-supervised point cloud sequence representation learning aims to employ pre-
text tasks to guide the learning of the model, thereby getting rid of the depen-
dence on manually annotated labels. Recurrent Order Prediction (ROP) [35] pro-
poses to learn the 4D spatio-temporal features by predicting the temporal order
of sampled and shuffled point cloud clips. Inspired by discrimination and gener-
ation tasks in self-supervised learning, Sheng et al. [29] proposes the Contrastive
Prediction and Reconstruction (CPR) based self-supervised point cloud sequence
representation learning method. It employs reconstruction and local contrast to
enhance the prediction ability of subsequent segments, and utilizes global con-
trast to improve the coding ability of multi-frame point cloud sequences. Rather
than utilizing point cloud frames as contrastive samples, Contrastive Mask Pre-
diction (PointCMP) [28] proposes to construct contrastive samples in the feature
space. It develops a mutual similarity based augmentation module to generate
hard masked samples and negative samples by masking dominant tokens and
principal channels. In order to capture fine-grained semantics, different from the
clip or frame based method, Point Contrastive Prediction with Semantic Clus-
tering (PointCPSC) [30] proposes a point level based contrastive learning frame-
work. Inspired by visual mask prediction, Masked Spatio-Temporal Structure
Prediction (MaST-Pre) [27] proposes a masked autoencoder framework for point
cloud sequences based on point reconstruction and temporal cardinality differ-
ence prediction. For better learning 4D representations, Complete-to-Partial 4D
Distillation (C2P) [44] proposes a teacher-student knowledge distillation frame-
work to guide the learning of the model.

2.3 Mask Prediction for Vision

Mask prediction has achieved great success in visual self-supervised represen-
tation learning [1, 15, 24, 33, 43], and the core idea of which is to reconstruct
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the masked signals. In the field of self-supervised image representation learning,
Masked Autoencoders (MAE) [15] takes pixel reconstruction of masked image
patches as the pretext task to guide the learning of model. As for self-supervised
video representation learning, Masked Autoencoders As Spatiotemporal Learn-
ers (MAE-ST) [11] and Masked Autoencoders for Video (VideoMAE) [33] in-
troduce the ideas of MAE into video learning. They use the pixel reconstruc-
tion of masked video tubes as the pretext task to learn the spatio-temporal
feature representations in videos. Different from pixel reconstruction in MAE-
ST and VideoMAE, Masked Feature Prediction (MaskFeat) [38] proposes to
predict the Histograms of Oriented Gradients (HOG) features of the masked
video regions. Encouraged by the success of MAE in image and video, Masked
Autoencoders for Point Cloud (Point-MAE) [24], Multi-scale Masked Autoen-
coders (Point-M2AE) [42] and Discriminative Mask Pre-training Transformer
framework (MaskPoint) [19] propose point coordinate reconstruction or point
discrimination based framework for self-supervised 3D point cloud representa-
tion learning.

2.4 Motion Trajectory for Vision

Motion trajectories can describe changes in position or state over temporal di-
mension, which is the important source of supervision signals in self-supervised
video representation learning [3, 31, 32, 34, 36]. Tokmakov et al. [32] propose
a dense trajectory clustering based unsupervised video representation learning
framework, which take clusters formed in improved dense trajectories space as
initial supervision signals for video clustering. In order to better explore tem-
poral clues, Masked Motion Encoding (MME) [31] proposes a motion trajectory
reconstruction based method for self-supervised video representation learning. It
first generates the trajectories of points in multiple frames, and then forces the
model to predict trajectories based on the learning of visible patches. Based on
tracking the movement of video objects, Chen et al [3] propose a unified frame-
work to ground physical objects and events from dynamic scenes and language.

3 Method

In this section, we present our masked motion prediction and semantic contrast
based self-supervised point cloud sequence representation learning method. As
shown in Fig. 1, given a point cloud sequence, we first extract the motion tra-
jectories of the points between multiple point cloud frames. We then employ the
masked autoencoder based framework to encode the feature representations of
point cloud sequence. At the same time, we add a motion trajectory decoder to
predict the motion trajectories of the points, and use the existing visible and
masked parts to construct contrastive samples. Finally, we utilize three pretext
tasks to guide the learning of the model, i.e., motion trajectory prediction, global
semantic contrast and appearance reconstruction.
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Fig. 1: The architecture of our method. We integrate three pretext tasks into the same
masked autoencoder framework, i.e., motion trajectory prediction, semantic contrast,
and appearance reconstruction. Note that we employ CorrNet3D to extract the motion
trajectories of the point cloud sequences. ft represents the obtaining, masking and
embedding operations of the point tubes.

3.1 Motion Trajectory for M2PSC

Before introducing the proposed method, we first provide some preliminary con-
cepts. Let P ∈ RL×N×3 represent a point cloud sequence, where L denotes the
sequence length and N represents the point number in each frame. The goal
of self-supervised point cloud sequence representation learning is to pre-train a
point cloud sequence encoder based on pretext tasks without using manually an-
notated labels. And then the pre-trained encoder is transferred to downstream
tasks to improve the performance of the model.

Motion Trajectory Extraction: Motion trajectory is a kind of data that
accurately describes position or state changes over temporal dimension, which is
often treated as supervision signals in self-supervised video representation learn-
ing methods [3, 31,32, 34, 36]. Inspired by this, we introduce motion trajectories
prediction for self-supervised point cloud sequence representation learning to al-
leviate the problem of insufficient utilization of temporal dimension information
in current methods. However, due to the huge difference between the video and
the point cloud sequence, we cannot directly use the method in the video to
extract the motion trajectory of the point cloud sequence. Therefore, we need
a motion trajectory extraction method adapted to point cloud sequences. To
this end, we consider resorting to CorrNet3D [41], which is used for non-rigid
shape correspondence of 3D human point clouds. For more information about
CorrNet3D, please refer to the supplementary materials.

Since CorrNet3D is used for shape correspondence between two point clouds,
it cannot be directly used to extract the motion trajectories of the point cloud
sequence. Therefore, we divide the motion trajectory extraction of the point
cloud sequence into two steps: extraction of the corresponding points between
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Fig. 2: Example of motion trajectory extraction of the point cloud sequence.

different point cloud frames and extraction of motion trajectories in the point
cloud sequence. As shown in Fig. 2, specifically, we first calculate the point
correspondence between the first point cloud frame and subsequent frames based
on CorrNet3D, respectively. From this, we obtain the location information of
the corresponding points in different point cloud frames. Take point i in the first
point cloud frame as an example, the location information of the relevant points
in point cloud sequence can be expressed as:

T̂i = {p1
i ,p

2
i , ...,p

L
i } (1)

where pL
i = (xL, yL, zL) represent the coordinates of the corresponding point in

point cloud frame L.
Based on the location information of the corresponding points in different

frames, we then calculate the related location movement of points between two
adjacent frames. Take frame t and t+ 1 as an example, we can define it as:

△pt
i = pt+1

i − pt
i (2)

In this way, we can obtain the motion trajectories of point i in the point
cloud sequence.

Ti = (△p1
i ,△p2

i , ...,△pL−1
i ) (3)

where (·, ·) denotes the concatenation operation, Ti ∈ RC , C represents the
dimension of the motion trajectories and C = 3× (L−1). Finally, we can obtain
the motion trajectories of the points in the point cloud sequence.

T = {T1,T2, ...,TN} (4)

where T ∈ RN×C . It should be noted that motion trajectory extraction only oc-
curs in the pre-training stage. Compared with MaST-Pre [27] that uses temporal
cardinality difference to estimate the number changes of points in the point tubes
to simulate motion information, our method can more accurately characterize
the motion state in point cloud sequences.

Motion Trajectory Prediction: After obtaining the motion trajectory of
the point cloud sequence, we integrate it into the masked autoencoder framework
to improve the model’s ability to explore the temporal information of the point
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cloud sequence. Following MaST-Pre [27], we first divide the input point cloud
sequence into basic units, i.e., point tubes. Specifically, we sample K keypoints
p̂ from point cloud sequence P using farthest point sampling (FPS), where K
represents the number of keypoints. For keypoint p̂i, the corresponding point
tube is defined as Tubep̂i

= {p|p ∈ P ,Ds(p, p̂i) < r,Dt(p, p̂i) < l
2}, where

p represents the point in the input point cloud sequence, Ds represents the
Euclidean distance, Dt is the difference in frame timestamps of two points, r
represents the spatial neighborhood radius, l denotes the number of frames in
a point tube. Next, we randomly sample n points in each spatial neighborhood.
Then, we divide a point cloud sequence into K point tubes, and each point tube
includes l × n points.

After obtaining the point tubes, we use random masking to divide the point
tubes into visible and masked parts, and follow the baseline [7, 27] to obtain
the embedded representations of the visible point tubes. Then, we utilize the
encoder fe(·) of the masked autoencoder to obtain the feature representations of
visible point tubes, i.e., Zv. It should be noted that during pre-training only the
visible point tubes with spatio-temporal positional embeddings pass through the
encoder, while in downstream tasks it is the entire point cloud sequence. (For
more detailed information, please refer to the supplementary materials).

In order to construct the task of motion trajectory prediction, we propose
a motion trajectory decoding module, which is similar to the encoder but a
lightweight vanilla Transformer. Then, we feed the feature representations of
visible point tubes as well as learnable tokens corresponding to the points into
the motion trajectory decoder to predict the motion trajectories of the points.
This can be defined as:

T pre = fdm(Zv, tp) (5)

where T pre ∈ RN×C represents the predicted motion trajectories of the points,
fdm(·) denotes motion trajectory decoder, tp ∈ RN×F represents the learnable
tokens corresponding to the points in the first point cloud frame, F represents
the feature dimension of the tokens. Note that both Zv and tp are added with
the corresponding spatio-temporal positional embeddings.

Finally, we can define the motion trajectory prediction loss as:

Lm =
1

N

N∑
i=1


C∑

j=1

(T pre
ij − Tij)

2

 (6)

By using accurate motion trajectories, our pretext task can guide the model
to more efficiently explore the temporal dimension information of point cloud
sequences, thereby improving the performance of downstream tasks.

3.2 Semantic Contrast and Appearance Reconstruction

As a high-level feature representation, semantics plays an important role in point
cloud sequence understanding. Therefore, in order to enhance the model’s abil-
ity to explore the semantics of point cloud sequences, we integrate contrastive
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learning into the masked autoencoder framework and propose the global seman-
tic contrast based on sample masking. Different from the current methods that
usually employ continuous frames or complete feature representations of point
cloud sequence to construct contrastive samples, the proposed global semantic
contrast treats existing visible and masked point tubes as contrastive samples.
It increases the difficulty of contrastive learning by constructing more differen-
tiated contrastive samples, thereby forcing the model to explore more effective
information from point cloud sequences.

Semantic Contrast: In masked autoencoder framework for self-supervised
learning of point cloud sequences, visual and masked point tubes are natural
contrastive samples. Therefore, we directly treat visible and masked point tubes
from the same point cloud sequence as positive samples, and the others as neg-
ative samples. Specifically, based on the feature representations of the visible
point tubes, we first develop a semantic prediction module to predict the global
semantics of point cloud sequences. This can be defined as:

Zgv = fsv(Zv) (7)

where fsv(·) represents semantic prediction module, which consists of a two-
layer multi-layer perceptron and global pooling operation. As for the masked
point tubes, following MaST-Pre [27], we first use the decoder to predict its
feature representation. This can be defined as:

Zm̂ = fda(Zv, tm̂) (8)

where Zm̂ denotes the feature representations of the masked point tubes, tm̂
represents the learnable tokens corresponding to the masked point tubes. Note
that Zv and tm̂ are added with the corresponding spatio-temporal positional em-
beddings. Then, we employ the developed semantic prediction module to predict
the global semantics of point cloud sequence.

Zgm̂ = fsm̂(Zm̂) (9)

where fsm̂(·) represents semantic prediction module, which has the same struc-
ture as fsv(·) but different parameters. Take a pair of positive samples Zgv

i and
Zgm̂

i as an example, we can define the contrastive loss as:

l(Zgv
i , zgm̂

i ) = −log
exp(s(Zgv

i ,Zgm̂
i )/τ)

B∑
j=1,j ̸=i

exp(s(Zgv
i ,Zgv

j )/τ) +
B∑

j=1

exp(s(Zgv
i ,Zgm̂

j )/τ)

(10)

where B is the minibatch size, s(·) denotes the cosine similarity function, τ is a
temperature parameter, we set it to 0.01. Finally, we can get the global semantic
contrast loss between Zgv and Zgm̂.

Ls =
1

2B

B∑
i=1

[l(Zgv
i , zgm̂

i ) + l(Zgm̂
i , zgv

i )] (11)



10 Y.Han et al.

By using visible and masked point tubes to construct global semantic contrast,
it can enhance the guidance of the pretext task and enhance the model’s ability
to explore the global semantics of point cloud sequences.

Appearance Reconstruction: In addition to motion trajectory prediction
and global semantic contrast, we also introduce the appearance reconstruction
task. Following MaST-Pre [27], based on the predicted feature representations
of the masked point tubes, we employ prediction heads to obtain the predicted
point coordinates P pre of masked point tubes. Next, the l2 Chamfer Distance [6]
is introduced to calculate the reconstruction loss between a prediction P pre and
the ground truth P gt. This can be defined as:

la =
1

l

l∑
i=1

 1

|P pre
i |

∑
a∈P pre

i

min

b∈P gt
i

∥a− b∥22 +
1

|P gt
i |

∑
b∈P gt

i

min

a∈P pre
i

∥b− a∥22

 (12)

where P pre ∈ Rl×n×3, P gt ∈ Rl×n×3, P gt ∈ P . Then, the final reconstruction
reconstruction loss can be defined as:

La =
1

Km̂

Km̂∑
i=1

lia (13)

where Km̂ is the number of reconstructed point tubes. Overall, the total loss of
our method is defined as:

L = Lm + Ls + La (14)

Based on the above three learning objectives, our method can guide the
model to simultaneously encode temporal and spatial cues to better understand
point cloud sequences.

4 Experiments

In this section, extensive experiments are conducted on four benchmark point
cloud sequence datasets, i.e., MSRAction-3D [18], NTU-RGBD [26], NvGes-
ture [23] and SHREC’17 [5]. Following MaST-Pre [27], we employ end-to-end
fine-tuning, semi-supervised learning and transfer learning to evaluate the per-
formance of our method on action recognition and gesture recognition down-
stream tasks, respectively. Besides, we conduct ablation studies to verify the
effectiveness of our proposed method.

4.1 Implementation Details of Pre-training

All experiments in our method are implemented using PyTorch [4], and during
pre-training, we sample 24 frames from each point cloud sequence and sample
1024 points from each frame. Following [27], we set the frame sampling stride
of MSRAction-3D and NTU-RGBD datasets to 1 and 2, respectively. As for
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the spatial downsampling rate and the temporal downsampling rate, we set it
to 32 and 2, respectively. Meanwhile, we set the temporal kernel size l of each
point tube to 3. The spatial neighborhood radius r is set to 0.3 and 0.1 on
MSRAction-3D and NTU-RGBD datasets respectively, and the number of points
in each spatial neighborhood is set to 32. Besides, the masking ratio to divide
the visible and masked point tubes is set to 0.75.

Following [27], we employ P4Transformer [7] as the encoder, and the number
of layers of vanilla Transformers corresponding to the MSRAction-3D and NTU-
RGBD datasets are set to 5 and 10, respectively. Both the motion trajectory
decoder and the decoder for obtaining the feature representations of the masked
point tubes are the 4-layer transformer. Besides, same as MaST-Pre, we utilize
PST-Transformer [8] as the encoder on MSRAction-3D dataset. During pre-
training, the number of iterations is set to 200 and linear warmup is used for the
first 10 epochs. We use the AdamW optimizer [17] and initial learning rate of
0.001 to optimize model parameters. And cosine decay strategy is also utilized.

4.2 Action Recognition

We evaluate the performance of the pre-trained model based on the action recog-
nition task on the MSRAction-3D and NTU-RGBD datasets. Specifically, we first
discard the part of the pre-trained network after the encoder and replace it with
the action recognition classifier. Then, we train the network using two different
supervised approaches, i.e., end-to-end fine-tuning and semi-supervised learning.

End-to-end Fine-tuning: We conduct experiments in an end-to-end fine-
tuning setting on the MSRAction-3D and NTU-RGBD datasets, respectively.
And in experiment, the same dataset is used for pre-training and fine-tuning.

MSRAction-3D dataset. During the fine-tuning process, we sample 24 frames
from each point cloud sequence and sample 2048 points from each frame. Fol-
lowing [27], we set the spatial search radius r to 0.7. Besides, we use the AdamW
optimizer and the initial learning rate of 0.0005 to optimize the model parame-
ters. And cosine decay strategy is also utilized. Table. 1 lists the performance of
action recognition with different methods on MSRAction-3D dataset. It should
be noted that considering the differences in the backbone network of different
methods, for a fairer comparison we mainly compare with methods based on the
same backbone network (i.e., P4Transformer [7] and PST-Transformer [8]). As
shown in Table. 1, our method achieves the best action recognition results. Com-
pared with the supervised methods P4Transformer and PST-Transformer, the
results of both MaST-Pre and our method are improved. This demonstrates the
effectiveness of the self-supervised point cloud sequence representation learning
method based on the masked autoencoder framework. Besides, although both are
based on the masked autoencoder framework, our method has obvious perfor-
mance advantages compared to MaST-Pre. In the case of using P4Transformer,
the action recognition results of our method even have a performance gain of
1.74% compared to MaST-Pre. This demonstrates that the pretext tasks we
proposed based on motion trajectory prediction and global semantic contrast
can help the model more effectively capture the spatio-temporal and semantic
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Table 1: Performance comparison of action recognition with different methods on
MSRAction-3D dataset.

Algorithm Accuracy (%)

Supervised Learning

MeteorNet [20] 88.50
PSTNet [9] 91.20
PSTNet++ [10] 92.68
Kinet [45] 93.27
PPTr [39] 92.33
P4Transformer [7] 90.94
PST-Transformer [8] 93.73

End-to-end Fine-tuning

PSTNet + PointCPSC [30] 92.68
PSTNet + CPR [29] 93.03
PSTNet + PointCMP [28] 93.27
P4Transformer + MaST-Pre [27] 91.29
PST-Transformer + MaST-Pre [27] 94.08

P4Transformer + M2PSC (ours) 93.03
PST-Transformer + M2PSC (ours) 94.84

information in point cloud sequences, thereby improving the performance of the
pre-trained model in downstream tasks.

NTU-RGBD dataset. During the fine-tuning process, the relevant settings
are the same as pre-training, except that the number of iterations is 20 and
the initial learning rate is set to 0.0005. Table. 2 lists the performance of ac-
tion recognition with different methods on NTU-RGBD dataset, which includes
seven supervised methods and four self-supervised methods. Also for a fairer
comparison, we mainly focus on methods based on the same backbone network
(i.e., P4Transformer [7]). As shown in Table. 2, under the end-to-end fine-tuning
setting, our method achieves better action recognition results compared with
MaST-Pre. This further demonstrates that the pretext task based on motion
trajectory prediction can more efficiently explore motion information in point
cloud sequences, and semantic contrast can provide effective guidance for the
model to learn global semantic information.

Semi-supervised Learning: We also conduct experiments on the NTU-
RGBD dataset to verify the performance of the pre-trained model in the semi-
supervised learning setting. It should be noted that the cross-subject training set
of NTU-RGBD dataset is used in the pre-training process, while only half of the
training set is used in semi-supervised learning setting. And other settings for
semi-supervised learning experiment are the same as end-to-end fine-tuning on
the NTU-RGBD dataset. As shown in Table. 2, even using only limited annotated
data, our method still achieves competitive performance. This demonstrates that
our method has excellent point cloud sequence understanding capabilities.

4.3 Gesture Recognition

In addition to the action recognition task, we also conduct experiments on the
NvGesture and SHREC’17 datasets to verify the performance of the pre-trained
model in the gesture recognition task based on the transfer learning setting.
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Table 2: Performance comparison of action recognition with different methods on
NTU-RGBD dataset.

Algorithm Accuracy (%)

3DV-Motion [37] 84.5
3DV-PointNet++ [37] 88.8
PSTNet [9] 90.5
PSTNet++ [10] 91.4
Kinet [45] 92.3
P4Transformer [7] 90.2
PST-Transformer [8] 91.0

PSTNet + PointCPSC [30](50% Semi-supervised) 88.0
PSTNet + PointCMP [28] (50% Semi-supervised) 88.5
PSTNet + CPR [29](End-to-end Fine-tuning) 91.0
P4Transformer + MaST-Pre [27](50% Semi-supervised) 87.8
P4Transformer + MaST-Pre [27](End-to-end Fine-tuning) 90.8

P4Transformer + M2PSC (ours)(50% Semi-supervised) 88.7
P4Transformer + M2PSC (ours)(End-to-end Fine-tuning) 91.3

Table 3: Performance comparison of gesture recognition with different methods on
NvGesture (NvG) and SHREC’17 (SHR) datasets.

Algorithm NvG SHR

FlickerNet [21] 86.3 -
PLSTM [22] 85.9 87.6
PLSTM-PSS [22] 87.3 93.1
Kinet [45] 89.1 95.2
P4Transformer (30 Epochs) [7] 84.8 87.5
P4Transformer (50 Epochs) [7] 87.7 91.2

P4Transformer + MaST-Pre (30 Epochs) [27] 87.6 90.2
P4Transformer + MaST-Pre (50 Epochs) [27] 89.3 92.4

P4Transformer + M2PSC (ours)(30 Epochs) 88.0 90.9
P4Transformer + M2PSC (ours)(50 Epochs) 89.6 92.8

Transfer Learning: By applying the pre-trained model to the task of other
datasets, transfer learning can be used to evaluate the generalization ability of
our method. Specifically, following the settings in Section. 4.1, we first pre-train
the model on the NTU-RGBD dataset based on the proposed method, then we
discard the part after the encoder and replace it with the gesture recognition
classifier. Finally, we train the network under the end-to-end fine-tuning setting
on the NvGesture and SHREC’17 datasets, respectively.

During the fine-tuning process, we use the AdamW optimizer to optimize the
model parameters, and the initial learning rate is set to 0.001 and 0.0005 for the
NvGesture and SHREC’17 datasets, respectively. And cosine decay strategy is
also utilized. Table. 3 lists the performance of gesture recognition with different
methods on NvGesture and SHREC’17 datasets, which includes five supervised
methods and one self-supervised methods. As shown in Table. 3, even in the
transfer learning setting, our method achieves significant performance improve-
ments. This demonstrates that our method has excellent generalization ability.
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4.4 Ablation Studies

Effectiveness of Different Pretext Tasks: To further demonstrate the ef-
fectiveness of different pretext tasks, we construct ablation studies of different
pretext tasks on the MSRAction-3D dataset. Table. 4 lists the results when the
number of pretext tasks is different. We can see that there are differences in
the effectiveness of different pretext tasks, and the performance based on mo-
tion trajectory prediction is significantly better than other tasks. This is because
the pretext task based on motion trajectory prediction can guide the model to
effectively explore temporal dimension information, thereby helping the model
better understand the point cloud sequence. In addition, adding different tasks
to the motion trajectory prediction task can further improve the performance
of the model. This is because the semantic contrast task can provide guidance
for global semantic learning for the model, and the appearance reconstruction
task can enhance the understanding of the local structure of the point cloud
sequence. Therefore, in order to better guide the learning of the model, we use
three pretext tasks at the same time.

Table 4: Ablation studies on different pretext tasks.

Motion
Prediction

Semantic
Contrast

Appearance
Reconstruction Acc. (%)

M1 ✓ 79.65
M2 ✓ 80.27
M3 ✓ 89.73
M4 ✓ ✓ 88.92
M5 ✓ ✓ 92.67
M6 ✓ ✓ 92.83

M7(Ours) ✓ ✓ ✓ 93.03

5 Conclusion

In this paper, we proposed a novel masked motion trajectory prediction and
global semantic contrast based self-supervised representation learning frame-
work for point cloud sequences. It integrated motion trajectory prediction and
global semantic contrast tasks into the masked autoencoder framework to im-
prove the model’s ability to explore the temporal dimension cues and global
semantic information of point cloud sequences. In addition, we also employed
the appearance reconstruction task to enhance the model’s learning ability of lo-
cal structure information of the point cloud sequences. By conducting extensive
experiments on multiple benchmark datasets, we demonstrate that our method
can better improve the model’s ability to understand the point cloud sequences
and achieve better performance in downstream tasks.
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