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A Algorithm of MPS

As discussed in Sec. 3.1, we adopt the log-scaling version of Sinkhorn approaches
for our proposed Multiple Prompt Sinkhorn (MPS) algorithm as follow:

Algorithm 1: Multiple Prompt Sinkhorn Algorithm

Given: The feature map size M = HW, the number of prompts N,
pw=1/M v =1"/N, the score map S ;

Input :The cost matrix C =1 — S, hyper-paramter €, the max iteration tmax;
Initialization: K = exp(—C/¢), t < 1,b" = 0;

1 while t < t,42 and not converge do

2 a' =logp—log [Mexp [-1C+ Db )]];

3 b’ =logr —log [Sexp[-1CT +a' )]];

Output : Optimal transport plan T* = diag(exp(a))*Kdiag(exp(b))* ;

B Details of Loss function

As discussed in Sec. 4.3, we combine three different losses, including the focal
loss based on Cross Entropy (CE) loss, and the dice loss, which are given by:

Lo m L S Yo log(a(v)
HW & ' (19)
(1 - YE) log(1 — 6(Y,)),
1 HW
e =~ g7 2 YE(1 = oY) log(a (Y1) o)
+(1 = YE)o(Y;) log(1 — o (Y3)),
Lo g 2N YEY, 1)

HW ~,gt2 HW ~, 2’
Yoo Yi Y

where Y is the model decoder outputs, Y8 is the ground truth label, o(-) is
Sigmoid operations, 7 is a hyper-parameter to balance hard and easy samples,
which is set to 2. Throughout the entire experiments, Ace, Afocal and Agice are set
to 1, 20, and 1, respectively.

C Relation Descriptor

As discussed in Sec. 4.1, when an image is inputted into the CLIP image encoder,
we obtain the ([CLS| token) hiyg € R'P and the pixel embedding hiyg in the
last layer. To merge these CLIP’s text and pixel embeddings, we utilize the
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relationship descriptor following an approach introduced in [38] to yield the
refined text embedding hi,t as follows:

hix = Ry (cat [img © hixe, hixt]) € RENXD

where R, denotes a linear layer for matching the concatenated embedding
dimension to the original dimension D, and cat is the concatenation operator, ®
is the Hadamard product.

D Definition of Harmonic mean IoU

Following the previous works [35,37,38|, we define harmonic mean IoU (hIoU)
among the seen (S) and unseen (U) classes as:

2« mloU (S) * mIoU (U)

hloU =
U= "1160 (8) + mloU (U)

(22)

E Details of Dataset

We utilize a total of three datasets, i.e., VOC 2012 [11], PASCAL Context [20],
and COCO-Stuff164K [3]. We divide seen and unseen classes for each dataset,
following the settings of previous methods [2,10,35,37,38]. VOC 2012 consists of
10,582 / 1,449 images with 20 categories, for training / validation. The dataset
is divided into 15 seen and 5 unseen classes. PASCAL Context is an extensive
dataset of PASCAL VOC 2010 that contains 4,996 / 5,104 images for training /
test with 60 categories. The dataset is categorized into 50 seen and 10 unseen
classes. COCO-Stuff 164K is a large-scale dataset that consists of 118,287 / 5,000
images for training / validation with 171 classes. The dataset is categorized into
156 seen and 15 unseen classes.

F Implementation Detail

We further declare the implementation detail for our work. Input image resolution
is set as 480x480 for PASCAL Context, and 512x512 for the rest of the datasets.
For training, we choose the lightest training schedule. For the inductive settings,
the total training iterations were 20K for VOC 2012, 40K for PASCAL Context,
and 80K for COCO-Stuffl164K. For the transductive settings, the model was
trained on seen classes in the first half of training iterations and then applied
self-training by generating pseudo-labels in the remaining iterations, following
previous approaches [37,38]. The balance factor A for the score map in Eq. (17)
is set to 0.5.
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G Further Comparison Studies

To further validate the generalizability of our proposed method in the open-
vocabulary segmentation (OVS) setting, we compared our OTSeg and OTSeg+
with FreeSeg [25] and SAN [34]. It’s noteworthy that OTSeg is designed for
7S3, utilizing a partial dataset of 156 classes, whereas FreeSeg and SAN use the
entire COCO-Stuff 171 classes dataset tailored for OVS. Despite differing goals
and settings, our proposed OTSeg variants demonstrate comparable results in
cross-dataset settings, as shown in Table S1, validating their effectiveness.

Table S1: Cross-data comparison with open-vocabulary segmentation methods.

Category Method Source ADE20K PC59 VOC
) OTSeg 219 529 94.2

Zero-shot segmentation (ZS3) OTSeg+ COCO-156 911 534 944
Freeseg | 179 344 85.6

, ; ]
Open-vocabulary segmentation (OVS) SAN [11] COCO-171 975 538 941

H Robustness of OTSeg with Multiple Seeds

To evaluate the robustness of our proposed Multiple Prompt Sinkhorn (MPS)
algorithm, we repeatedly trained both OTSeg and OTSeg+ with multiple seeds
and compared the results on the VOC dataset. Table S2 confirms the robustness
and consistent performance of our proposed method across various seeds.

Table S2: Quantitative results with multiple seeds on VOC dataset and comparison in
cross-data settings with further approaches.

Settings  Method & Mean + STD
#1 #2 #3 4
Inductive OTSeg 84.584.984.384.0 84.4 4+ 0.4
OTSeg+ 87.1 88.0 88.0 86.5 87.4 + 0.7
Transductive OTSeg 94.294.6 94.2 94.3 94.4 + 0.2

OTSeg+ 94.3 94.594.294.3 94.3 + 0.1

I Further Component Analysis

In this section, we conduct additional component analysis by varying the condi-
tions comprising our proposed method.
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Balance Factor In OTSeg+, we generate the final prediction by ensembling the
decoder path and score map path as indicated in Eq. (17). Tab. S3 (a) represents
the analysis of the balance factor A. In inductive settings, the effect of the balance
factor is significant compared to transductive settings. We empirically determine
our default configuration of the balance factor as 0.5.

Learnable Module To validate the rationale behind our choice of the learnable
module, we conduct experiments by altering the conditions outlined in Tab. S3
(b). We observe that training both the visual prompt in the image encoder and
the text prompt in the text module results in a significant drop in performance
due to overfitting. While tuning only the learnable text prompt provide relatively
improved performance, we observe that our adoption of only tuning the image
encoder via visual prompt tuning leads to the best performance.

Table S3: Further component analysis on the VOC 2012 dataset.

Component Ours Factor A Module Inductive setting Transductive setting
mloU(U) mloU(S) hloU mloU(U) mIoU(S) hloU
0.1 79.6 92,9 857 942 94.2  94.2
0.3 80.4 92.8 86.2 94.2 94.3 942
(a) Balance factor v 0.5 81.6 93.3 87.1 94.4 94.3 94.3
0.7 80.6 93.1 864 943 94.2  94.2
0.9 78.8 92.1 849 94.1 942 941
v Decoder, Visual Prompts 81.6 93.3 87.1 944 94.3 94.3
(b) Learnable Module Decoder, Visual Prompts, Text Prompts ~ 35.9 85.6 50.7 48.6 941 64.1
Decoder, Text Prompts 42.9 89.8 58.1 45.6 91.9 61.0

J Analysis on Sinkhorn Convergence Comparison Studies

We further analyzed the convergence of

the Sinkhorn algorithm and its effect on Sinkhorn iterations

performance. We established a defined z f‘; —Score map
threshold and applied the Sinkhorn al- % —Didef/_/\—/*—
gorithm iteratively until the total er- & 8 i
rors dropped below this threshold. In = 3 -
Figure S1, we report that the Sinkhorn
Performance

algorithm converged in 6 iterations for
the score map and 14 iterations for the 0.8 /"
OT-adapted decoder part on the VOC 0.4

test dataset. Additionally, we observed 13K K ;faisi';glii:r;i’:nslsx 17K 19K
that the convergence of the Sinkhorn al-

gorithm around 15K training iterations
led to the best performance.

|
t
1
1
)
|
|
1
|
'
1
'
1
'
'
1
'
'
'
'

mloU

Fig. S1: Sinkhorn convergence.
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K Additional Visual Results

We provide additional visual results. Fig. S2 show qualitative zero-shot segmenta-
tion performance for COCO-Stuff164K dataset. We reproduce the segmentation
results using publically available weights [37,38]. Our OTSeg demonstrates su-
perior performance in precisely sectioning boundaries of both seen and unseen
objects, unlike previous SOTA method which fail to classify the category or
produce noisy results.

Input Label MaskCLIP+ ZegCLIP OTS

eg+t

Fig. S2: Qualitative zero-shot segmentation results of COCO-Stuff164K dataset. The
yellow tag indicates seen classes, while the - tag indicates unseen classes.

L Further Score Map Comparison with or without MPSA

We provide additional visual comparison of prompt-related score map with or
without MPSA in Fig. S3. While all the text prompt-related score map S* are
cohered without MPSA (white arrows), with our MPOT, each S focuses on
different semantic attributes (red arrows), which helps the model utilizes various
score maps to differentiate each class name-driven object boundary.
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Fig. S3: Further visual comparison of class name-driven prompt-related score maps.
While all the text prompt-related score maps S* are cohered without MPSA (white
arrows), with MPSA within our proposed OTSeg+, each S* is diversely activated (red
arrows) to help the model segment each object sharply. The yellow tag indicates seen

classes, while the - tag indicates unseen classes.
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