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Abstract. We propose Context Diffusion, a diffusion-based framework
that enables image generation models to learn from visual examples
presented in context. Recent work tackles such in-context learning for
image generation, where a query image is provided alongside context
examples and text prompts. However, the quality and context fidelity
of the generated images deteriorate when the prompt is not present,
demonstrating that these models cannot truly learn from the visual
context. To address this, we propose a novel framework that separates
the encoding of the visual context and the preservation of the desired
image layout. This results in the ability to learn from the visual context
and prompts, but also from either of them. Furthermore, we enable our
model to handle few-shot settings, to effectively address diverse in-context
learning scenarios. Our experiments and human evaluation demonstrate
that Context Diffusion excels in both in-domain and out-of-domain tasks,
resulting in an overall enhancement in image quality and context fidelity
compared to counterpart models.
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1 Introduction

Generative models are witnessing major advances, both in natural language
[7,10,30,44,50,55] and media generation [6,11,21,31,36,38,39,43]. Large language
models in particular have shown impressive in-context learning capabilities
[1,7, 45,51]. This represents the ability of a model to learn from a few samples
on the fly, without any gradient-based updates, and extend it to new tasks
and domains. However, for generative models in computer vision, learning from
context examples remains under-explored.

The closest line of work that explicitly supports a single image pair as a
context example for image generation is Prompt Diffusion [48]. It builds on the
popular ControlNet [54] model which introduced the idea of controllable diffusion
models. Specifically, Prompt Diffusion attempts to learn the visual mapping from
a source image to a target context image and applies it to a new query image,
by also leveraging a prompt for text-based guidance. However, we empirically
⋆ Work done during an internship at Meta GenAI. Correspondence at
i.najdenkoska@uva.nl.



2 I. Najdenkoska et al.

Fig. 1: Illustrating in-context aware image generation with Context Diffusion.
Top row: HED-to-image as an in-domain task; Middle row: canny-to-image as an
out-of-domain task. Our model enables learning from context with and without prompts.
The counterpart model, Prompt Diffusion [48] cannot leverage the context if the prompt
is not provided, hinting at its over-reliance on textual guidance; Bottom row: Few-shot
setting for sketch-to-image task. More context examples help in learning stronger visual
cues, even without prompts.

observed that this model struggles to leverage the context example when the
text prompt is absent. This results in low fidelity to the visual context examples,
particularly when the examples are from a different domain than what is seen
during training. For instance, if the source-target pair shows specific styles, they
cannot be leveraged during inference just from the context examples. This is seen
in the first row of Figure 1 where Prompt Diffusion is unable to learn the “snowy”
style from the context unless prompted through text. Additionally, it does not
trivially support multiple images as context examples, which limits the visual
information that can be provided to the model.

We address these challenges with our proposed Context Diffusion model
that can (i) effectively learn from visual context examples as well as follow text
prompts and (ii) support a variable number of context examples since visual
characteristics can be defined with more than a single example. Unlike Prompt
Diffusion, our model does not require paired context examples, but just one or
more “target” context images serving as examples of the desired output and a
single query image providing visual structure. The reason for using solely target
examples as visual context is that the source images are derived from the target
itself and do not provide any additional information for the task. Typically,
the query image provides guidance for the output layout through edges, depth,
segmentation maps, etc. On the other hand, the context examples provide hints
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for finer details such as styles, textures, color palettes, and object appearances
desired in the output image.

Furthermore, it is important to note the difficulty in controlling both aspects
of the output image solely through the control mechanisms [48,54]. The “control”
part of the model is very effective in capturing high-level structure and layouts.
However, fine-grained details are better captured through the conditioning mech-
anism, as seen in textual inversion [14], grounded text-to-image generation [25],
and retrieval-augmented image generation [5,9]. To that end, we inject the visual
information from the context into the network as text conditioning. Different
from prior works, we aggregate the sequence of all visual embeddings extracted
from the context images and place them alongside the text embeddings in the
cross-attention layers of the diffusion model. The ability to aggregate a variable
number of context images enables the model to handle few-shot scenarios. More-
over, these modified cross-attention layers allow a stronger reliance on the visual
context which is especially apparent without textual guidance. The layout of the
query image is preserved by passing it as a control signal to the network in a
similar manner as ControlNet [54].

At inference time, we use a query image to define the target layout and one
or more context images to provide finer visual signals, alongside an optional text
prompt. Our experiments study the generation ability of Context Diffusion for
in-domain tasks, such as using HED, segmentation, and depth maps to generate
real images and vice versa. We show the flexibility of our model to preserve
the structure and layout from the query image and transfer visual signals from
the context even when the text prompt is not provided. Moreover, to properly
study in-context learning abilities, we experiment with unseen, out-of-domain
tasks, such as handling sketches, image editing, and more. Furthermore, for such
tasks, using multiple images in a few-shot manner yields stronger fidelity of the
generated images to the context.

Contributions. (i) We propose Context Diffusion, an in-context aware image
generation framework. It enables pre-trained diffusion models to leverage visual
context examples to control the fine-grained details of the output image, alongside
a query image that defines the layout and an optional text prompt. (ii) We enable
the use of multiple context images as “few-shot” examples for image generation.
To the best of our knowledge, this is the first work to explore such a “few-shot”
setup for in-context aware image generation. (iii) We conduct extensive offline
and online (human) evaluations that show that our framework can handle several
in-domain and out-of-domain tasks and demonstrates improved performance over
the prior work.

2 Related Work

Diffusion-based Image Generation. Recent advancements in diffusion models,
first introduced in [41] have exhibited huge success in text-to-image generation
tasks [11, 20, 34, 35, 39]. Enhancements have been achieved through various
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training [11,36,39] and sampling [27,42,49] techniques. For instance, DALLE-
2 [34] proposed an architecture encompassing several stages, by encoding text
with CLIP [33] language encoder and decoding images from the encoded text
embeddings, followed by Imagen [39] which showed that up-scaling the text
encoder largely improves the text fidelity. Furthermore, the Latent Diffusion
Model (LDM) [36] investigated the diffusion process by applying it to a low-
resolution latent space and even further improved the training efficiency. However,
all these models only take a text prompt as input, which restricts the flexibility
of the generation process as it requires extensive prompt engineering to obtain
the desired image outputs.

Controllable Image Generation. Besides the text prompts, adding more control
to the image generation process helps overall customization and task-specific
image generation. Recent text-conditioned models focus on adjusting models
by task-specific fine-tuning [8, 14, 15, 38, 52], injecting conditioning maps, like
segmentation maps, sketches or key-points [2, 4, 12, 13, 26, 32, 54, 56], or exploring
editing abilities [6, 16, 18, 28, 29]. For instance, SpaText [2] is using segmentation
maps where each region of interest is annotated with text, to better control
the layout of the generated image. Models like GLIGEN [25] inject grounding
information, such as bounding boxes or edge maps, into new trainable layers via
a gated cross-attention mechanism. ControlNet [54], as a recent state-of-the art
in controllable image generation presents a general framework for adding spatial
conditioning controls. UniControl [32] extends ControlNet by unifying various
image map conditions into a single image generation framework. Other works,
such as Re-Imagen [9] and RDM [5], employ retrieval for choosing images given
a text prompt, for controlling the generation process.

Our approach differs from these models in several aspects. We support learning
from in-context visual examples as an addition to the textual prompts and query
images. This allows learning new tasks using the visual context only, which
yields a more flexible framework. Additionally, we use only a few of the image
maps considered by ControlNet and UniControl for training, namely HED,
segmentation, and depth maps, and demonstrate the generalization ability to the
other visual controls i.e. query images.

In-Context Learning in Image Generation. Although in-context learning is vastly
explored both in language-only [7,23,50,51] and visual-language models [1,22,24,
45], its application is lagging behind in image generation. Bar et al . [3] investigate
visual prompting for image generation, followed by Painter [47] which incorporates
more tasks to construct a generalist model. Regarding in-context abilities in
diffusion models, Prompt Diffusion [48] presents such a framework that extends
the control capability of ControlNet [54] for in-context image generation. They
consider a vision-language prompt encompassing a source-target image pair and
a text prompt, which is used to jointly train the model on six different tasks.
However, Prompt Diffusion only shows good performance when both the context
images and prompt are present. In case the text prompt is not present, the model
exhibits deteriorating performance, suggesting its inability to learn efficiently
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from the visual examples, as shown in Figures 1, 3, 4, 5, 6, and 7. Different from
them, we aim to develop a model able to generate images of good quality even
when only one of the conditions (visual context or text prompt) is present.

Another work tackling image generation with visual examples is Prompt-Free
Diffusion [53]. It focuses only on having an image as a context i.e. a visual
condition, while completely removing the ability to process textual prompts. This
is the major difference compared to our Context Diffusion, since we aim to support
both scenarios: having the context images and/or text prompts. Additionally,
none of these related works consider settings with multiple examples in context,
namely, few-shot scenarios. We propose a framework that can handle a variable
number of context images, helpful for enriching the visual context representation.

3 Methodology

3.1 Preliminaries

Diffusion models are a class of generative models that convert Gaussian noise
into samples from a learned data distribution via an iterative denoising process.
In the case of diffusion models for text-to-image generation, starting from noise
zt, the model produces less noisy samples zt−1, . . . , z0, conditioned on caption
representation c at every time step t.

To learn such a model fθ parameterized by θ, for each step t, the diffusion
training objective L solves the denoising problem on noisy representations zt,
defined as follows:

min
θ

L = Ez,ϵ∽N (0,1),t

[
∥ ϵ− fθ(zt, t, c) ∥22

]
, (1)

With large-scale training, the model fθ is trained to denoise zt based on text
information as the main source of control.

To enable more control over the generation process, we follow the ControlNet
setup [54], for encoding the layout of the desired output via a query image
as visual control. Note that we use query image interchangeably with visual
control. In this paper, we extend the c representation in Eq. (1), by adding image
examples as additional guidance besides the text prompt. Namely, we inject visual
embeddings obtained by a pre-trained vision encoder fimg with fixed parameters,
in a similar fashion as the text embeddings.

3.2 Context Diffusion Architecture

The model fθ is essentially a UNet architecture [37], with an encoder, a mid-
dle block, and a skip-connected decoder. These modules denoted as LDM
encoder, mid, and decoder in Figure 2, are built out of standard ResNet [17] and
Transformer blocks [46] which contain several cross-attention and self-attention
mechanisms. The core of conditional-diffusion models is encoding the conditional
information [36], based on which zt is generated at a given time step t. We
differentiate two types of such conditional information: the visual context V
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Fig. 2: Architecture of Context Diffusion. It consists of several modules: vision
and text encoders for encoding the text prompt and visual context respectively, an
LDM backbone for handling the image generation process, and an additional LDM
encoder for processing the query image as a visual control. Note that here we show
three visual context examples, however, the model is trained using a variable number
of such examples.

encompassing images and the text prompt c, to define our conditioning infor-
mation: y = (c,V), where V = [v1, . . .vk] and k denotes the number of images.
Additionally, we consider a visual control image, i.e., the query image that serves
to define the layout of the output denoted as q.

Prompt encoding. To perform the encoding of the textual prompt c we use a pre-
trained language encoder ftext with fixed parameters to obtain the embeddings.
Particularly, we obtain hc = {hc

0, . . . , h
c
Nc} = ftext(c), where Nc is the number

of text tokens, hc
i ∈ Rdc

and dc is the dimensionality of the textual token
embeddings.

Visual context encoding. We hypothesize that the visual context V should be
at the same level of conditioning as the textual one. Therefore, we follow a
similar strategy for encoding the visual context, by using a pre-trained, fixed
image encoder fimg. Given a visual context V consisting of k-images, we encode
each image vi as hvi = {hvi

0 , . . . , hvi

Nv} = fimg(vi), where Nv is the number of
tokens per image, hvi ∈ Rdv

and dv is the dimensionality of the visual token
embeddings. The final representation of the visual context is obtained by simply
summing the corresponding visual tokens of all k-images, where k ∈ {1, 2, 3},
yielding hV =

∑k
i=1 h

vi . Then, we add a linear projection layer to map the visual
embedding dimension dv to the language dimension dc.

Modified cross-attention. Given the standard cross-attention block in LDMs,
defined with queries Q, keys K, and values V , the noisy representation zt is used



Context Diffusion: In-Context Aware Image Generation 7

as a query, whereas the text encoding hc is used as a representation of the keys
and values, as follows:

zt = zt + CrossAtt(Q = zt,K = V = hc). (2)

Our framework is slightly different from this definition since we also consider
visual information in the conditioning. Therefore, after obtaining both visual and
textual embeddings we concatenate them to obtain [hc,hV], illustrated in the
bottom left corner of Figure 2. Thus the input to the cross-attention block in (2)
changes as follows:

zt = zt + CrossAtt(Q = zt,K = V = [hc,hV]). (3)

Visual control encoding. To enable the ingestion of the query image as visual
control, we follow ControlNet setup [54]. First, the image is encoded using a few
convolutional layers. Then, a copy of the LDM encoder is used to process the
encoded query image q. This trainable LDM encoder copy is connected to the
original LDM backbone using zero convolution layers, as shown in Figure 2.

3.3 Multi-task Training Procedure

We use a pre-trained image generation model to adapt it with visual context
injection. We use the original denoising objective defined in (1), with q being the
query image and the modified conditioning information y:

min
θ

L = Ez,ϵ∽N (0,1),t

[
∥ ϵ− fθ(zt, t,y,q) ∥22

]
. (4)

To train with this objective, we use a collection of tasks for joint end-to-end
training, similar to [48]. Different from them, we use a visual context sequence
consisting of a k-images and an optional text prompt, together with a query
image. Specifically, k is randomly chosen at batch construction. The goal of such
training is to leverage any visual characteristics from a variable number of context
images and to apply them along with the text prompt to the query image.

4 Experiments

4.1 Experimental Setup

Datasets. To train our model, we use a dataset that consists of 310k synthetic
images and caption pairs, similar to Prompt Diffusion [48]. Following their
training setup and code implementation, we extract three image maps: HED,
segmentation, and depth maps from the training images. During training, for
map-to-image tasks, the image maps serve as queries, and real images are used
for visual context, while for image-to-map tasks, the real images serve as queries,
and image maps are used for visual context. Note that the prompts and visual
context are usually related and describe a similar conditioning signal.
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Fig. 3: In-domain comparison to Prompt Diffusion [48]: Examples of {HED, seg-
mentation, depth}-to-image as forward tasks and image-to-{HED, segmentation, depth}
as reverse tasks, with both visual context and prompt (C+P) given as conditioning
information.

At inference time, we use the test partition of the dataset to test the ability
of the model to learn from context. To demonstrate the generalization abilities
of Context Diffusion to out-of-domain tasks, we extract other image maps, such
as normal maps, canny edges, and scribble maps. Also, we consider editing tasks
by using real images as queries. To further test the generalization abilities, we
utilize hand-drawn sketches from the Sketchy dataset [40], where the sketch is
the query image, and the real images are the visual context. This dataset does
not provide captions, therefore we construct text prompts using a template: “A
professional, detailed, high-quality image of object name”, following [54].

Implementation Details. The backbone of our model follows a vanilla ControlNet
architecture, initialized in the same way as [48]. We train the model using the
data setup explained above. In particular, only the encoder of the LDM backbone
is kept frozen and its copy which processes the query image is trained. For the
encoding of the context images and prompts, we use frozen CLIP ViT-L/14 [33]
encoders. We take the last-layer hidden states as representations of both the
context images and prompts. The model is trained with a fixed learning rate of
1e-4 for 50K iterations, using 256 × 256 images. We use a global batch size of
512 for all runs. Following prior works [25, 48, 54], we apply random replacement
of the prompts with empty strings for classifier-free guidance. We experimented
with different rates and found that 50% is the most optimal one, as also reported
by ControlNet [54]. At inference time, we apply DDIM [42] as a default sampler,
with 50 steps and a guidance weight of 3. Regarding the computational resources,
the model is trained using 8 NVIDIA A100 GPUs.

Human Evaluation Setup. To better quantify the performance, we perform a
human evaluation to compare our model to Prompt Diffusion [48]. A total of 10
in-house annotators participated in the study, annotating 240 randomly chosen
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Fig. 4: Out-of-domain comparison to Prompt Diffusion [48]: Image editing,
with visual context and prompt (C+P) as conditioning information.

Fig. 5: Out-of-domain comparison to Prompt Diffusion [48]: {sketch, normal
map, scribble, canny edge}-to-image tasks. Visual context and prompt (C+P) are given
as conditioning information.

samples from the test partition. For each test sample, we present two images - one
generated by our Context Diffusion and another by Prompt Diffusion, randomly
annotated as A and B, alongside the given visual context, query image, and
prompt. Each annotator chooses either a preferred image or denotes both as
equally preferred. We consider various in-domain and out-of-domain tasks for
evaluation, across three distinct scenarios: using both visual context and prompts
(C+P), using only visual context (C) and only prompt (P). Considering all these
scenarios is highly important since it examines to what extent the models can
learn from the conditional information in a balanced manner and whether they
suffer when one input modality is not present.

Automated Evaluation. In addition to the human evaluation, we also use offline
automated metrics to further evaluate the performance of Context Diffusion. In
particular, we report FID [19] scores for map-to-image tasks and RMSE scores
for the image-to-map tasks, by taking the average across three random seeds.
Note that we use 5000 randomly chosen test samples per setting for each task to
generate output images both with our model and Prompt Diffusion.

4.2 Results & Discussion

In this section, we compare our model against the most similar approach in the
literature, i.e. Prompt Diffusion [48]. Prompt Diffusion expects a source-target
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Table 1: Human evaluation comparison to Prompt Diffusion (PD) [48]: In-
domain and out-of-domain tasks, considering different conditioning settings: context
image and prompt (C+P), visual context-image-only (C), prompt-only (P). We report
the win rate as a percentage of winning votes for each model.

In-domain Out-of-domain

C+P C P avg C+P C P avg

PD [48] 28.5 4.5 30.4 21.1 26.9 22.8 25.9 25.2
Ours 36.3 80.2 29.6 48.6 52.3 63.7 49.8 55.2

pair of context images as an input, while in contrast our approach only requires
context i.e. target images. More analysis regarding this is provided in 4.2 Ablation
study. It is important to notice that in all comparisons we follow the source-target
format of the input to generate images with Prompt Diffusion, but we omit the
visualization of the source image from the figures to have consistent visualizations
for both methods. Additionally, both approaches operate with a query image and
textual prompt as additional inputs.

We compare the methods across two important generalization axes: (i) in-
domain for seen and out-of-domain for unseen tasks at training; (ii) visual
context and prompt (C+P), context-only (C), and prompt-only (P) variations
of conditioning at inference time. We also present the generated results of our
model on few-shot setup when several visual examples are given as input. Prompt
Diffusion does not support the few-shot setup. Finally, we present the ablations
for the key components of our proposed model.

Data Domain

In-domain Comparison. We study the performance of models on the same data
domain as the training data, but on the test data that is set aside. This encom-
passes three “forward” tasks, i.e., the query image is either HED, segmentation,
or a depth map while the expected output image is a real image, given the visual
context and prompt in an adequate form. Similarly, we evaluate three “reverse”
tasks, where the query and output roles are reversed. For the purpose of this
discussion, we focus on the conditioning setup where both visual context and
prompts (C+P) are given as input. Figure 3 presents representative examples
for each of the tasks: the first four columns depict the forward tasks, while the
last four columns depict the reverse tasks. It can be observed that our model
can generate images with better fidelity to the context images and prompts, by
managing to match the specific colors and styles from the context. On the other
hand, Prompt Diffusion outputs are more saturated and fail to leverage the visual
characteristics from the context (green radish instead of red in the second row).
We include more examples in the supplementary materials. These observations
are further supported by the human evaluation presented in Table 1 (In-domain
(C+P) column), as well as in offline metrics comparison presented in Table 2
(C+P columns), where we obtain satisfactory performance improvement (36.3%
vs. 28.5% win-rate) over Prompt Diffusion.
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Fig. 6: Conditioning comparison with Prompt Diffusion [48]: Using visual
context and prompt (C+P) and visual context-only (C) as conditioning, on in-domain
(image-to-HED) and out-of-domain (editing, scribble-to-image, sketch-to-image) tasks.

Out-of-domain generalization. The most advantageous aspect of having a model
that is an in-context learner is its capacity to generalize to new tasks by observing
the context examples given as input at inference. Again, for the purpose of the
discussion in this section, we focus on the conditioning setup where both visual
context and prompt (C+P) are given as input. To test these generalization
abilities, we consider tasks outside of the training domains: image editing with
representative examples in Figure 4; {sketch, normal map, scribbles, canny edge}-
to-image with representative examples in Figure 5. In both figures, we observe
noticeable improvements over Prompt Diffusion [48]. It is apparent that the
visual characteristics of the context images are also transferred in the output
images. Furthermore, we select editing and sketch-to-image as representative
out-of-domain tasks to perform a human evaluation study. We report the results
in Table 1 (Out-of-domain (C+P) column), where we observe great improvements
in win rate (52.3% vs. 26.9%), significantly higher than for in-domain setup,
showing the advantage of in-context aware image generation.

Conditioning variations at inference

Using only visual context. To better understand the effect of visual context
examples on the model’s performance, we analyze the outputs when the text
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Fig. 7: Zero-shot comparison to ControlNet [54] and Prompt Diffusion [48]:
Using prompt-only (P) as conditioning information.

Table 2: Offline comparison to Prompt Diffusion (PD) [48] using FID and
RMSE: In-domain tasks across three different conditioning settings: visual context
and prompt (C+P), visual context-only (C), prompt-only (P). Lower scores are better.

FID (map-to-img) ↓
HED-to-img seg-to-img depth-to-img

C+P C P C+P C P C+P C P

PD [48] 12.8 22.5 15.1 16.7 25.1 17.2 15.9 27.0 18.1
Ours 12.3 17.7 14.8 13.4 19.0 18.5 12.9 18.5 17.5

RMSE (img-to-map) ↓
img-to-HED img-to-seg img-to-depth

C+P C P C+P C P C+P C P

PD [48] 0.15 0.33 0.15 0.32 0.41 0.32 0.14 0.34 0.14
Ours 0.11 0.11 0.16 0.29 0.28 0.30 0.14 0.13 0.13

prompt is not provided (empty string), i.e., only visual context is used as
conditioning. This experiment gives strong insights into the model’s ability to
perform in-context learning. We show representative examples of this setup in
Figure 6. It can be observed that Prompt Diffusion [48] is unable to learn from the
visual examples, indicating that it relies solely on the text caption as conditional
information. We include this setting in the human evaluation and we report the
results in Table 1 ((C) columns). Overall, we observe a significant performance
gap between our model and Prompt Diffusion, both for in-domain (80.2% vs.
4.5% win-rate) and out-of-domain (63.7% vs. 22.8% win-rate) tasks. This result
is additionally supported by the offline metrics in Table 2 ((C) columns) for
in-domain tasks, further strengthening the observations that our model can truly
leverage styles, color palettes, and object appearances in the visual context.

Using only text prompts. Apart from being able to handle scenarios only with
visual context, we aim to also support scenarios using only text prompts. To enable
this setting, we simply mask out the visual context by using black images. This
essentially yields zero-shot settings, boiling down to how ControlNet [54] is used
at inference time. However, unlike ControlNet which requires a separate model
trained for each task, our Context Diffusion generalizes across a series of tasks. In
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Fig. 8: Few-shot examples: Comparison between out-of-domain tasks (editing and
sketch) using one context example with a text prompt, and one, two, and three shots of
context examples with no text prompt. Our model can leverage multiple visual examples
to handle scenarios when the text prompt is not present.

Figure 7 we show representative examples of this setting, comparing our model
to ControlNet and Prompt Diffusion. It can be seen that our model can generate
more realistic images compared to ControlNet and Prompt Diffusion. Similar to
before, we also include this setting in the user study, reported in Table 1 ((P)
columns). We observe much better performance on the out-of-domain (49.8% vs.
25.9%) tasks compared to Prompt Diffusion, and a slight decrease on in-domain
(29.6% vs. 30.4%) tasks. This supports our observations that Prompt Diffusion
relies too much on the textual prompt, as well as suffers in out-of-domain data
regimes. Further, we compare the automated metrics in Table 2 ((P) columns),
again observing better overall performance across different tasks.

Table 3: Human evaluation for
1-shot vs. 3-shot setups: Out-of-
domain tasks, considering different con-
ditioning settings: visual context and
prompt (C+P), visual context-only (C).
Note that the “prompt-only” (P) set-
ting corresponds to a zero-shot scenario
and is not applicable here. We report
the win rate as a percentage of winning
votes for each model.

Out-of-domain

C+P C avg

Ours (1-shot) 21.5 28.3 24.9
Ours (3-shot) 60.0 50.2 55.1

Few-shot visual context examples
Context Diffusion is designed to handle
multiple context examples, enabling few-
shot scenarios. Using one context example
proved to be enough for in-domain tasks,
as seen in Figure 3, even without using a
text prompt as seen in Figure 6. Therefore
in the few-shot experiments, we focus on
the out-of-domain tasks, such as editing
and sketch-to-image. In particular, we aug-
ment the visual context with additional
images, depicting similar objects, scenes,
or desired color palettes. Moreover, we look
at scenarios where the textual information
is not present since in that case, the model
has to rely on the visual context only. As
can be seen from Figure 8, multiple demonstrations of images help to strengthen
the target visual representation, especially when the prompt is not present. We
also quantify the performance by conducting a human evaluation for the few-shot
settings, presented in Table 3. We compare our model when using one context
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(a) Source-target vs target-only as context.
Having a source image paired with the target
does not influence the output image, since the
visual information is provided by the target only.

(b) Benefit of visual conditioning. Ingesting
the context examples as visual conditioning helps
in leveraging the visual cues, unlike the summa-
tion of the context to the query image.

Fig. 9: Ablations. We ablate the key components of our framework, namely (a) Using
source-target vs target-only as context, (b) Benefit of visual conditioning.

example vs. using three examples. Overall we observe improved performance
(55.1% vs . 24.0% average win rate) when using three context images which aligns
with the qualitative observations. In the current experiments, we use 1 up to 3
shots as a representative few-shot setting, however, our model can accommodate
more than 3 shots.

Ablations

Source-target vs target-only as context. We analyze the performance when training
by using source-target image pairs as context examples (same as Prompt Diffusion
[48]). Figure 9a shows that there is no benefit when the source image is paired
with the target image during the training. The visual information needed for
generating the image is entirely contained in the target i.e. context image or the
prompt, while the query image controls the layout.

Benefit of visual conditioning. Our model employs a visual conditioning pipeline
to ingest the context examples similarly to the text prompts. To better understand
the benefit of such conditioning, we compare it to the same paradigm used in
Prompt Diffusion [48]. Specifically, we use ConvNets to encode the context
examples and then we sum them to the query image. The entire representation
is then fed into the ControlNet module. As we can see in Figure 9b, training in
this manner prevents the model from actually leveraging the context.

5 Conclusion

We present an in-context-aware image generation framework capable of learning
from a variable number of visual context examples and prompts. Our approach
leverages both the visual and text inputs as conditioning information, resulting
in a framework able to learn in a balanced manner from the multimodal inputs.
Furthermore, learning from a few context examples showed to be helpful in
learning strong visual characteristics, especially if the prompt is not available.
Our experiments and human evaluation study demonstrate the applicability of
our approach across diverse tasks and settings, confirming the improved quality
and context fidelity over prior work.
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