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In the supplementary material, we begin with notations for foreground and
background in Sec. 6, followed by a detailed introduction to persistent homology
in Sec. 7. Then, we describe the correspondence between persistent dots and the
likelihood map in Sec. 8. Next, we discuss the differentiability of the noise-aware
topological consistency loss in Sec. 9. In Sec. 10, we provide detailed descriptions
of the datasets, followed by implementation details in Sec. 11. We also provide
the reference of our baselines in Sec. 12. In Sec. 13, we describe the evaluation
metrics in detail. More qualitative results are given in Sec. 14. Finally, additional
ablation studies and results are provided in Sec. 15.

6 Notes on Foreground and Background

Here, we provide some notations about foreground and background in our paper.
Our algorithm uses black as the foreground and white as the background as can
be seen in Fig. 2- Fig. 3 of the main paper and Fig. 6 of the Supplementary. For
better visualization, however, we display the segmentation results and ground
truth with white as the foreground in Fig. 1 and Fig. 5 of the main paper and
Fig. 7 of the Supplementary.

7 Background: Persistent Homology

In algebraic topology [36], homology classes account for topological structures
in all dimensions. 0-, 1-, and 2-dimensional structures describe connected com-
ponents, loops/holes, and cavities/voids, respectively. For binary images, the
number of d-dimensional topological structures is called the d-dimensional Betti
number, βd.3 Despite the well-understood topological space for a binary image,
the theory does not directly extend to real-world scenarios with continuous, noisy
data. For example, in image analysis, we need a principled tool to reason about

3 Technically, βd counts the dimension of the d-dimensional homology group. The
number of distinct homology classes/topological structures is exponential to βd.
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the topology from a continuous likelihood map. To bridge this gap, the theory
of persistent homology was invented in the early 2000s [9].

Persistent homology has emerged as a powerful tool for analyzing the topol-
ogy of various kinds of real-world data, including images. In the image segmen-
tation task, we apply persistent homology to the likelihood map of a deep neural
network to reason about its topology. Given an image in the 2D domain I ⊆ R2,
we use a network to generate a likelihood map f . The segmentation map is
obtained by thresholding f at a certain threshold c (usually 0.5). We define a
sublevel set : Sc := {(m,n) ∈ I | f(m,n) ≤ c}. With all different threshold values
sorted in an increasing order (c1 < c2 < · · · < cn), we obtain a filtration, i.e., a
series of growing sublevel sets: ∅ ⊆ Sc1 ⊆ Sc2 ⊆ ... ⊆ Scn = I. As the thresh-
old c increases, topology of the sublevel set changes. New topological structures
appear while old ones disappear.

Persistent homology tracks the evolution of all topological structures, such
as connected components and loops. All the topological structures and their
birth/death times are captured in a so-called persistence diagram, providing a
multi-scale topological representation (See Fig. 2).

A persistence diagram (PD) consists of multiple dots in a 2-dimensional
plane. These dots are called persistent dots. Given a continuous-valued likeli-
hood map function f , we have its persistence diagram Dgm(f). Each persistent
dot p ∈ Dgm(f) represents a topological structure. Its two coordinates denote
the birth and death filtration values for the corresponding topological structure,
i.e., p = (b, d), where b = birth(p) and d = death(p). We can calculate the per-
sistence diagrams for outputs of both the student and the teacher models, in
order to compare the two likelihood maps from a topological perspective.

8 Mapping Persistent Dots to the Likelihood

In Fig. 6, we show how persistent dots in the persistence diagram can ultimately
be mapped to pixels/voxels in the likelihood map. Consequently, the loss func-
tions defined in Eq. (4)- Eq. (8) of the main paper are differentiable: the penalty
applied to the persistent dots is ultimately a penalty on the pixels/voxels of
the likelihood. Hence backpropagation can take place: our proposed losses are
differentiable.

In Fig. 6, we give an example of a likelihood f in Fig. 6(a), and focus on
the orange persistent dot in Fig. 6(b); let us call it p. It’s coordinate in the
persistence diagram Dgm(f) is nothing but its birth b and death d given by
(b, d) = (0.42, 0.46).

There are precisely two pixels in the likelihood that capture the lifetime of
this persistent dot p. We call them critical pixels. We denote the location of
these critical pixels in f using black arrows in Fig. 6(a). These two critical pixels
have the values 0.42 and 0.46 respectively. We now map the likelihood to the
persistence diagram below.

In the filtration Fig. 6(c), when the threshold is 0.42, the critical pixel of the
same value gets included into the binary map. It is a connected component on its
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Fig. 6: (a) A predicted likelihood map f , and (b) the corresponding persistence dia-
gram Dgm(f). Consider the orange persistent dot having birth b and death d times
as (b, d) = (0.42, 0.46). We show the corresponding filtration in (c) for these specific
birth/death times. At birth b = 0.42, the connected component corresponding to the
orange is born. At death d = 0.46, this connected component dies as it gets absorbed
into the older red connected component. Note that we only show 0-dim persistent dots
pertaining to connected components in Dgm(f).

own and is denoted by orange in Fig. 6(c) when c = 0.42. This marks the birth
of the connected component corresponding to the persistent dot p. At threshold
c = 0.45, we see this orange connected component grows larger as more pixels
get introduced into the binary map. Finally, at c = 0.46, the second critical
pixel is introduced which joins the orange connected component to the older
red connected component. This marks the death of the connected component
corresponding to p as it gets absorbed into the older red connected component.
Hence, the persistent dot p ∈ Dgm(f)’s birth and death values each correspond
to a single pixel location in the likelihood f .

Now, this persistent dot gets matched to the diagonal according to the bi-
jection γ∗ introduced in Sec. 3.3. Consequently, the loss described in Eq. (7)
pushes p towards the diagonal. This means p is a noisy structure and we would
like to suppress/remove it. On pushing it to the diagonal, we force the birth
and death times to be the same: the moment this structure is born, it should
be automatically included in the older connected component. Hence it ceases to
exist as a standalone connected component across any and all filtration values
and is thus effectively removed as noise.
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9 Differentiability of the Topology-Aware Losses.

Both LU
topo-cons and LU

topo-rem are differentiable, as Eq. (5) and Eq. (7) are both
written as polynomials of the likelihood map fs at certain critical pixels. Here
it is crucial to assume the critical pixels, xb

p and xd
p, remain constant locally.

This is because the likelihood map is a piecewise linear function determined by
the function values at a discrete set of pixel locations. Assuming without loss of
generality that all pixels have distinct values, we can show that within a small
neighborhood of the likelihood fs, the order of all pixels in fs remains the same.
Therefore, the algorithmic computation of persistent homology will associate the
same set of critical pixels with each persistent dot x in the diagram. In other
words, we can assume xb

p and xd
p remain constant.

10 Details of the Datasets

1. Colorectal Adenocarcinoma Gland (CRAG) [13] is a collection of 213
H&E stained colorectal adenocarcinoma image tiles captured at 20× mag-
nification, with full instance-level annotation. Most of the images are of the
size 1512× 1516. It is officially divided into a training set with 173 samples
and a test set with 40 samples. In our experiments, we separate the training
set into 153 images for training and 20 images for validation. For 10% and
20% labeled data splitting, we randomly select 16 and 31 images with labels
respectively, for training.

2. Gland Segmentation in Colon Histology Images Challenge (GlaS)
is introduced in [42] and comprises of 165 images derived from 16 H&E
stained histological sections of stage T3 or T4 colorectal adenocarcinoma.
The dataset is officially separated into a training set with 85 samples and
a test set with 80 samples. In our experiments, we divide the training set
into 68 images for training and 17 images for validation. For 10% and 20%
labeled data splitting, we randomly select 7 and 14 images with labels for
training.

3. Multi-Organ Nuclei Segmentation (MoNuSeg) [28] contains 44 H&E
stained images of size 1000× 1000 from seven organs. It consists of two sets,
30 images containing 21, 623 nuclei for training and 14 images for testing. In
our experiments, we choose 20% training data (6 images) as the validation
set, and for 10% and 20% labeled data splitting, we randomly select 3 and
5 images with labels respectively for training.

11 Implementation Details

We train our model in two stages. The first stage is pre-training, using only LS

and LU
pixel to train the network for several iterations. For CRAG and GlaS, we

pre-train the model for 12000 iterations; for MoNuSeg, we pre-train the model for
2000 iterations. The second stage is fine-tuning using our topological consistency
loss. We fine-tune the model for 500 epochs using Eq. (1) as the overall training
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objective. While training, we use UNet++ [65] as our backbone for both student
and teacher networks, and we adopt the Adam optimizer solver to train the
model. The proposed algorithm is implemented on the PyTorch platform. The
training hyper-parameters are set as follows: for CRAG and GlaS, the batch size
is 16, and the learning rate is 5e − 4. For MoNuSeg, the batch size is 8, and
the learning rate is 1e− 4. We first apply random cropping on both labeled and
unlabeled data. The cropping size is 256×256 for CRAG and GlaS and 416×416
for MoNuSeg. After random cropping, we apply random rotation and flipping
for weak augmentations, and for strong augmentations, we apply color change
and morphological shift. The EMA decay rate α and λU

2 are set to 0.999 and
0.002 respectively. Introduced in [31], the weight factor of pixel-wise consistency
loss is calculated by the Gaussian ramp-up function λU

1 = k ∗ e−5∗(1− τ
T )2 , where

k = 0.1 and T is the total number of iterations. λL
1 and λL

2 in LS are all set
to 0.5. The persistence threshold ϕ for decomposing the persistence diagrams is
0.7. All the experiments are conducted on an NVIDIA RTX A6000 GPU with
48 GB RAM.

12 Baseline Reference

In our experiments, some baselines are based on the implementations of publicly
available repositories. Here, we provide our baselines’ source for reference and
appreciate their efforts on the public code.

MT [46], EM [48], UA-MT [60], and URPC [33] are based on the implemen-
tations from: https://github.com/HiLab-git/SSL4MIS.

XNet [64] is based on the implementations from: https://github.com/guspan-
tanadi/XNetfromYanfeng-Zhou.

CCT [37] is based on the implementations from:
https://github.com/yassouali/CCT.
HCE [25] is implemented by ourselves due to the lack of code.

13 Evaluation Metrics

We select three widely used pixel-wise evaluation metrics, Object-level Dice
coefficient (Dice_Obj) [55], Intersection over Union (IoU) and Pixel-
wise accuracy. Object-level Dice coefficient mainly measures the similarity
between two segmented objects, and this is especially useful in pathology imag-
ing, where accurately segmenting individual anatomical structures is crucial. IoU
provides a measure of how well the predicted segmentation or detected object
aligns with the ground truth. Pixel-wise accuracy evaluates how many pixels in
the segmentation maps are correctly classified. The larger these three metrics
are, the better the segmentation performance is.

Topology-relevant metrics mainly measure the structural accuracy. We also
select three topological evaluation metrics, Betti Error [18], Betti Matching
Error [44], and Variation of Information (VOI) [34]. For the Betti error,

https://github.com/HiLab-git/SSL4MIS
https://github.com/guspan-tanadi/XNetfromYanfeng-Zhou
https://github.com/guspan-tanadi/XNetfromYanfeng-Zhou
https://github.com/yassouali/CCT
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we split the prediction and ground truth into patches in a sliding-window fash-
ion and calculate the average absolute discrepancy between their 0-dimensional
Betti number. The size of the window is 256 × 256. Betti matching error con-
siders the spatial location of the features within their respective images and can
be regarded as a variant of Betti error. VOI mainly measures the distance be-
tween two clusterings. The smaller these metrics are, the better the segmentation
performance is.

14 Additional Qualitative Results

Here, we provide more qualitative results in Fig. 7 further to verify the effective-
ness and superiority of our proposed method.

(a) Image (b) GT (c) MT (d) EM (e) UAMT (f) HCE (g) URPC (h) Ours

Fig. 7: Additional qualitative results. The red boxes indicate the regions that are
prone to topological errors such as incorrect merging or separating adjacent glands;
the blue boxes indicate false positive gland predictions or missing glands. Rows 1-2:
CRAG. Rows 3-4: GlaS. Rows 5-6: MoNuSeg. Zoom in for better views.

15 Additional Ablation Study

In this section, we conduct additional ablation studies to further demonstrate
the effectiveness of our TopoSemiSeg.
Ablation study on both LS

topo and LU
topo. To further validate the effec-

tiveness of our method, we conduct additional experiments on 100% and 20%
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labeled data with supervised and unsupervised topological constraints. LS
topo and

LU
topo resp. denote the topology-based loss for labeled and unlabeled data (λS

topo

and λU
topo are resp. weights). The results are shown in Tab. 6. In the top half

of Tab. 6, most of the topology-wise performance has improved, with a slight
loss in pixel-level performance. Also, with sufficient labeled data, only adding
the LS

topo performs better. In the bottom half of Tab. 6, applying LS
topo and

LU
topo simultaneously gives mixed results on the metrics, without any significant

change in overall performance. It can also be seen that the method we proposed
makes good use of unlabeled data.

Table 6: Ablation study on LS
topo and LU

topo.

Labeled Ratio (%) λS
topo λU

topo Dice_Obj ↑ BE ↓ BME ↓ VOI ↓
100% 0 0 0.928 0.149 5.650 0.547
100% 0.002 0 0.913 0.141 5.150 0.532
100% 0 0.002 0.912 0.146 5.178 0.539
100% 0.002 0.002 0.922 0.153 5.239 0.543
20% 0.001 0.001 0.893 0.218 12.850 0.727
20% 0.002 0.002 0.895 0.189 8.725 0.723
20% 0.005 0.005 0.876 0.246 10.825 0.787
20% 0 0.002 0.898 0.226 8.575 0.709

Ablation Study on EMA decay α. The EMA decay α plays an important
role in the teacher-student framework where it provides a smoothing effect over
the parameters of the model. A higher decay (closer to 1) gives more weight
to the historical parameters, leading to a more stable representation of the stu-
dent model’s knowledge over time. However, too high EMA decay may result in
the teacher model lagging too far behind the student model due to the rapidly
changing or non-stationary environments, failing to capture the latest patterns
of the data. So to verify the effectiveness of our selected α, we conduct an abla-
tion study on EMA decay. The results are shown in Tab. 7. From the results we
can see when α = 0.999, our model performs the best.

Table 7: Ablation study on EMA decay α.

α Dice_Obj ↑ BE ↓ BME ↓ VOI ↓
0.99 0.887 0.249 11.525 0.734
0.999 0.898 0.226 8.575 0.709
0.9999 0.873 0.252 11.850 0.752

Ablation study on data augmentation. Our method relies on the assump-
tion that, for the model to be robust, its predictions should not change signif-
icantly for small perturbations of the input data in terms of topology. Hence,
data augmentation and its hyper-parameter selections are crucial for our method.
In Tab. 8, we report the results of the ablation study on data augmentations, and
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in the last row we also report using strong augmentations on labeled data. The
italicized numbers are our selected hyper-parameters. We conduct experiments
on hyper-parameters of strong augmentations, specifically, brightness and con-
trast. We provide results on several combinations of hyper-parameter values. The
results indicate that our method is robust to the choice of data augmentations’
hyper-parameters.

Table 8: Ablation study on data augmentations.

Brightness Contrast Dice_Obj ↑ BE ↓ BME ↓ VOI ↓
0.3 0.1 0.898 0.226 8.575 0.709
0.3 0.5 0.897 0.233 8.000 0.720
0.1 0.1 0.887 0.255 11.550 0.736
0.5 0.1 0.900 0.227 8.237 0.715

strong aug. on labeled data 0.883 0.238 8.025 0.717

Ablation study on labeled sampling bias & Retain noise and remove
signal. Here, we conduct the experiments to alleviate the potential sampling
bias and report the results in Tab. 9.. On GlaS dataset, 20% labeled samples
do perform better than 10%. In addition, we provide the results that we retain
the noise part and remove the signal part in the last 2 rows of Tab. 9. As
expected, the performance drops significantly. Removing the signal dots causes
the prediction to intentionally overlook the true structures while retaining the
noisy dots causes it to include erroneous structures. This result, together with
our ablation study (Tab. 5), shows how our signal/noise decomposition helps the
model learn even without GT annotation.

Table 9: The first 2 rows: the results that rerun the experiments 5 times with differ-
ent labeled training samples on GlaS dataset. The last 2 rows: the ablation study on
retaining the noise and removing the signal.

Method Dice_obj ↑ BME ↓
Ours (10%) 0.876±0.035 9.885±0.825
Ours (20%) 0.893±0.007 9.384±0.479

Noise✓Signal ✗ 0.866 21.325
Ours 0.898 8.575

Consistent Comparisons. To ensure a consistent comparison, we add the re-
sults of XNet [64] for MoNuSeg dataset, CCT [37] for CRAG and GlaS dataset
and FixMatch [43] for CRAG dataset in Tab. 10. Our method consistently
outperforms these 3 methods. Noted that FixMatch simply selects trustwor-
thy pseudo-labels by thresholding the classifier’s confidence. Many samples are
discarded. Instead, we use all images, using persistence thresholding to select
true topology signal to learn (with theoretical and empirical guarantees).
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Table 10: The results of XNet, CCT and FixMatch.

Dataset Labeled Ratio (%) Method Dice_Obj ↑ BE ↓ BME ↓ VOI ↓

CRAG
10% CCT 0.853 1.954 40.210 0.864

Ours 0.884 0.227 10.475 0.758

20% CCT 0.872 1.262 25.420 0.773
FixMatch 0.868 1.706 30.680 0.855

Ours 0.898 0.226 8.575 0.709

GlaS
10% CCT 0.864 0.862 16.645 0.932

Ours 0.878 0.551 8.300 0.811

20% CCT 0.876 0.761 13.125 0.834
Ours 0.895 0.510 9.825 0.808

MoNuSeg
10% XNet 0.762 7.152 220.405 0.842

Ours 0.783 6.661 196.357 0.789

20% XNet 0.776 6.750 198.525 0.831
Ours 0.793 4.250 188.642 0.787

Comparison to fully-sup. baselines. To better demonstrate that our method
can effectively unearth the topological information from the unlabeled data, we
make a comparison with two fully-supervised methods: [18] and [6]. We use these
two losses only on 20% labeled training data and report the results in Tab. 11.
Our TopoSemiSeg consistently outperforms these baselines because we utilize
the topological information from the unlabeled data.

Table 11: Comparison to fully-sup. baselines.

Method Dice_obj ↑ BME ↓
TopoLoss [18] 0.865 19.925
TopoLoss [6] 0.857 24.625

Ours 0.898 8.575

Accuracy/guarantee of the decomposition strategy. Using a persistence
threshold to filter out topological noise is theoretically supported. The stability
theorem of persistent homology [7,8] guarantees that topology due to small per-
turbation has small persistence. This is also demonstrated in Fig. 2. We observe
that a proper persistence threshold ensures the model learns true structures and
eliminates noise. To validate this, we compare the selected signal topology with
the ground truth (GT) topology. On CRAG unlabeled training set, we compare
the number of selected signal topology of the teacher with the Betti number of
the GT. Fig. 8 shows the mean absolute difference between the two decreases
during training. Thus, as training continues, the teacher’s signal topology ap-
proaches GT’s. This empirically shows that the decomposition picks up true
topology signals, which the student learns from.
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Fig. 8: Visual interpretation of the decomposition strategy.
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