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1 Perceptual Study

We conducted a perceptual study to measure human preference between our
method and the corresponding baseline. Using Amazon Mechanical Turk (AMT),
each participant was presented with 30 pairwise results. The participants were
instructed to select the video they found more “realistic, of higher quality, and
exhibiting more natural motions and transitions”. In each pair, one video was ran-
domly assigned to be from our method, while the other one was the correspond-
ing generation from the closest baseline. The videos presented were randomly
selected from either of the three tasks. To ensure the validity of the responses, we
included 5 control trials within these comparisons with clearly unnatural videos.
From this study, we collected 66 valid responses. The preference rate, indicating
the proportion of participants favoring our method over the baseline, was then
calculated based on the valid responses.

The results are shown in Table 1. The study shows a clear preference for
our method in all three tasks with an overall average preference rate of 83.67%.
Particularly, we obtain the higher rate on view-bound results with a 97.79%
preference rate. Note that this task (generating camera trajectories from two
sparse and unposed views) has traditionally been considered difficult, as also
acknowledged by Du et al . [1]. While the quality of their method significantly
degrades when no camera pose is given, exhibiting blurry and unclear images,
our work retains the sharpness and quality of SVD and generates reasonable
camera trajectories.

Overall Avg. View bound Identical bound Dynamic bound
83.67% 97.79% 70.28% 82.94%

Table 1: Perceptual study: Preference rates for each of the three subtasks, compared
against Du et al . [1], Text2Cinemagraph [2] and FILM [3].

2 Further Discussion

Probing I2V models. The bounded generation task along with TRF can offer
a unique lens to evaluate SVD’s world dynamics understanding. Given two ob-
servations, we can analyze how the I2V model connects the motion trajectory,
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allowing us to compare the generated and the observed real-world dynamics.
For example, the results on Dynamics Bound on the top of Fig. 7 (main paper)
indicate the model’s ability to understand and generate complex kinematics tra-
jectories of articulated human bodies under different clothing, lighting, or with
different image quality. Beyond articulated motion, the results of rows 2 and
4 indicate an ability to synthesize non-rigid motions like expression transitions
and hair movements. In addition, the View Bound scenario exhibits 3D con-
sistency across diverse real-world scenes, showcasing the model’s generalization
ability and 3D understanding of the physical world. The looping videos gener-
ated with identical bound indicate how well the model understands the implicit
movement tendencies within a static image. These results suggest that applying
similar techniques to other I2V models can serve as a way to probe the type and
complexity of the dynamics that the model has learned.

The importance of the motion bucket ID. While our Time Reversal Fusion (TRF)
method successfully achieves bounded generation without additional training, it
does require careful tuning of the temporal conditioning parameters, such as mo-
tion bucket ID and frames per second (fps), to produce visually coherent outputs
for different inputs. A critical aspect to note is the necessity for a match between
the image content and the motion ID. This requirement stems from the underly-
ing principles of Stable Video Diffusion (SVD), where the motion ID influences
the intensity of pixel movement in the generated video – higher values result in
more dynamic pixel behavior and vice versa. Selecting an appropriate motion ID
range is crucial for each input image based on its dynamic contents; otherwise,
the generated video may exhibit artifacts. Interestingly, even though bounded
generation poses a more complex challenge than straightforward sampling from
SVD – requiring the model to generate specific motion trajectories that may
not align with its typical motion distribution – our TRF method can effectively
alleviate motion incompatibility artifacts. We believe this is due to the fact that
the second view acts effectively as a constraint, providing additional guidance for
the generation process. Through this we can mitigate the problem of motion ID
in SVD, except in cases where the original motion ID is significantly inaccurate.
For example, in a static scene, a large motion ID may lead to excessive camera
motion or unnatural addition of moving objects into the scene. Conversely, a
smaller ID typically results in more subtle camera movements. However, if two
wide-baseline views are significantly different, fusing them might inevitably lead
to cut or blend effects due to insufficient dynamics that can seamlessly bridge
the views.

Limitations. One limitation of our method stems from the stochasticity involved
in the generation of the forward and backward passes. For two given images, the
distribution of motion paths that SVD can take might vary significantly. This
means that the start- and end-frame paths could generate very different videos,
resulting in an unrealistically fused video. In the extreme case where start and
end frames are completely unrelated, it is generally difficult to obtain good re-
sults, due to the constrained generative ability of SVD and the limited video
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duration. In addition, our method inherits several limitations of SVD. For ex-
ample, we observed that in some cases fine-grained color details cannot be well
reconstructed. This is mainly due the resolution of the VQ-VAE encoder, and
since the starting frame is already encoded with artifacts, the generated video
retains them. Further, while SVD’s generations suggest strong understanding
of the physical world, there is still a lack of understanding regarding “common
sense” and causal effect. For example, given an image of the famous moon land-
ing, TRF generates a loop video in which the planted flag moves as if there was
wind, which is not possible given the known context of the location. This is not
only inaccurate, but could potentially bring ethical issues –e.g. the previous ex-
ample could be misused as proof that the moon landing never happened. Video
examples are shown in our project page.

Interestingly, there are some limitations of SVD that can be mitigated or
resolved by our method. For example, SVD usually struggles with complex kine-
matic motions such as body limbs movement. Here, the generation tends to
degrade throughout time, performing worse the further it is from the initial
frame. On the other hand, TRF regularizes this through the bi-directional gen-
eration process, and can generate good-quality body motion between complex
and distinct body poses.

Performance Even though our method requires two diffusion paths, the addi-
tional performance cost is not necessarily significant since the two paths are
independent and can be run in parallel. The noise re-injection step also does not
incur in significant additional cost, since it is only employed during the first few
denoising steps. Hence, TRF leads to only marginally slower inference times (11
seconds more on an NVIDIA A100).

3 Additional Details

3.1 Inference

All our results were obtained with the base I2V model ‘stabilityai/stable-video-
diffusion-img2vid-xt’ (model card on huggingface.com) under the scheduler setup
of 50 inference steps (not including the noise re-injection / re-denoising steps)
with euler EDM sampler. After considering the noise re-injection steps, the re-
quired denoising steps varies from 55 to 100 given different samples, with an
A100-80GB gpu. Most of the paper results were obtained in under 4 minutes.

3.2 Quantitative evaluations with FVD

Evaluation setup. We compare FVD [4] scores on our self-collected frame in-
terpolation dataset, and the eulerian-validation dataset. On our self-collected
frame interpolation dataset, we compare ours with FILM [3]. For a fair compar-
ison with the latter, we generate videos of 33 frames and then sample the video
to 25 frames. We compute FVD using those 25 frames against the ground truth

https://time-reversal.github.io
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videos (which also consist of 25 frames). On the eulerian-validation dataset, we
compare ours against text2cinemagraph [2]. We resize our generated videos and
the ground-truth videos to 512×512, to keep consistent with text2cinemagraph’s
results, and then sample both the ground-truth videos and text2cinemagraph’s
results to 25 frames.

Sanity baseline. We ran the FVD score for a baseline that merely duplicates the
first frame throughout the video. The resulting FVD score is 1559.4, which is
more than 3 times higher than our method and 70% higher than the comparison
baseline.
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