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This supplementary document presents additional information about our
setup for the quantitative experiment on the cell tracking challenge (CTC) [7].
Videos of the cell tracking results and a python library with the proposed method
are also included in the supplementary material pack.

1 CTC Quantitative comparison

1.1 Processing details

Here, we describe in detail our CTC submission (Section 4.1).
All datasets were linearly interpolated on the z-axis to make them isotropic.

While isotropy is not necessary, it benefits the algorithm’s accuracy. They were
normalized by their lower and upper quantiles (lq and uq in Table 1), DRO
dataset had corrupted voxels which were set to 0.

In the datasets MDA231 and CE, where 3D segmentation labels are available,
we trained a U-Net to predict the foreground and the cell boundaries. In the
DRO, TRIF and TRIC datasets, where 3D labels are not available, we tried two
different approaches:

– IM: where the cells and their contours were estimated using traditional image
processing operators;

– PL: where we trained the U-Nets on labels generated by an algorithm and
not manually annotated.

Both PL and IM processing began the same way. The cells were detected
using a difference of Gaussians with σ1 and σ2 thresholding at 0.5, 0.5, and 0.75
times their Otsu for DRO, TRIF and TRIC, respectively. The cell contour maps
were simply the inverse of the Gaussian blurred image with σ1 and normalized to
be between 0 and 1. Through visual inspection, we selected σ1 = 2 and σ2 = 8 for
the DRO dataset, σ1 = (0, 1, 1) and σ2 = (1, 4, 4) for the TRIF dataset ((z, y, x)
order), and σ1 = 1 and σ2 = 6 for the TRIC dataset. For the pseudo-labels, we
used these contour maps and detections to run the hierarchical watershed and
performed a horizontal cut in the hierarchy to obtain the flat segments used for
training the network. In IM, they were used as the tracking input.

For the training set, the normalized time-lapses were used to learn the
network weights and find the optimal hyper-parameters using grid search and
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cross-validation between datasets. For that, we trained a network in a single
dataset and computed the results on the other. For example, we trained on
dataset 01 and predicted the network outputs, tracked, and measured the accu-
racy on dataset 02.

The parameter power p of the ILP weights (wp
..) was fixed to 4 throughout

the experiments.
The U-Nets were trained for 20 epochs using a learning rate of 10−4 with

exponential weight decay of 0.95 at every epoch. The networks used a kernel
size of 5, with simple convolution blocks without residual connections or batch
normalization. The number of planes used was 32, 64, 128, and 256. The network
features are linearly interpolated in the up-sampling step of the U-Net decoder.
The best parameters found through the grid search are reported in Table 1.

The images are processed in overlapping tiles to avoid boundary artifacts of
the CNNs’ inference. Once a whole frame was computed, the foreground detec-
tion channels were binarized with a Threshold parameter, and the contours were
Gaussian filtered with σ, values at Table 1. The PL and IM approaches shared
the same parameters.

The DRO and TRIC datasets, where cells move coherently during embryo de-
velopment, had their hierarchies registered with a local movement estimation be-
tween adjacent frames. The local movement is pre-computed as a low-resolution
time-lapse and then applied to translate each candidate segment, influencing
their location when accessing their neighbors in adjacent frames and their IoU.
The TRIF datasets were registered with a global translation between adjacent
frames because some frames are shifted, probably due to acquisition issues.

For the final submission, both training datasets were used for learning
the weights, and the segmentation and tracking were done using the hyper-
parameters found on the training sets as described above.

Table 1: Table of parameters used for our cell tracking challenge submission. †Gaussian
filter applied on yx axes only.

normalization CNN output hierarchy construction tracking

Dataset lq uq σ Threshold Min. Area Max. Area Contour Strength Noise Link Radius wα wβ wδ

MDA231 0.001 0.9999 0.5 0.5 2500 25000 0.2 0 75 -0.01 -0.01 -0.001
CE 0.001 0.9999 1 0.1 5000 1000000 0 0.4 100 -0.005 -0.005 0
DRO 0.001 0.9999 1 0.5 1500 50000 0.1 0.1 50 -0.001 -0.001 -0.001
TRIF 0.5 0.99999 1† 0.5 1000 15000 0 0 50 -0.001 -0.001 0
TRIC 0.05 0.999 2 0.5 250 15000 0 0 25 -0.01 -0.001 -0.001

1.2 Cross-validation results

Table 2 reports our cross-validation results on the training set from Section 4.1,
from the main text.

The image processing solution showed superior results to the pseudo-label
alternatives in the DRO, TRIF, and TRIC datasets. Hence, it was the regime
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used in the final submission. Notably, the gap in evaluation metrics is the largest
in the extremely challenging DRO dataset, where the leaderboard scores are
smaller than other datasets. This is one of the datasets in which we achieved the
top score in the hidden test set (Table 1 from the main text).

Table 2: Results on the training set of the cell tracking challenge; Fully supervised
(Sup) and pseudo-labels (PL) regimes used cross-validation; Image processing (IM)
does not require training and achieved better results, especially on the DRO dataset.

Dataset Regime File TRA SEG CTB

MDA231 Sup
1 0.888 0.613 0.751
2 0.923 0.626 0.774

AVG 0.905 0.620 0.763

CE Sup
1 0.970 0.705 0.838
2 0.955 0.649 0.802

AVG 0.963 0.677 0.820

DRO

PL
1 0.693 0.425 0.559
2 0.923 0.528 0.726

AVG 0.808 0.476 0.642

IM
1 0.812 0.512 0.662
2 0.934 0.556 0.745

AVG 0.873 0.534 0.704

TRIF

PL
1 0.813 0.607 0.710
2 0.811 0.623 0.717

AVG 0.812 0.615 0.714

IM
1 0.870 0.687 0.779
2 0.918 0.679 0.799

AVG 0.894 0.683 0.789

TRIC

PL
1 0.946 0.552 0.749
2 0.880 0.690 0.785

AVG 0.913 0.621 0.767

IM
1 0.980 0.527 0.754
2 0.853 0.733 0.793

AVG 0.917 0.630 0.773
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2 Softwares

For our implementation, we used Gurobi [1] to solve the ILP. The deep learning
routines used PyTorch [4]. The hierarchical segmentation was done using Hi-
gra [5]. Throughout the code, we heavily used NumPy [2], SciPy [8], CuPy [3]
and scikit-image [9].

3 Videos

The supplementary material pack contains eight videos: One time-lapse per
dataset of the final submissions of CTC, five in total; one video each for the
peripodial (PRE) and proper discs (PRO) cells from the Epithelial Cell Bench-
mark, and a video of the whole embryo tracking.

These time lapses were visualized, and the videos were generated using na-
pari [6].
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