
18 F. Croce et al.

Contents of the Appendix

1. Broader Impact
2. Appendix A . . . Omitted proofs
3. Appendix B . . . Experimental and evaluation details
4. Appendix C . . . Additional SEA experiments, ablations and comparisons
5. Appendix D . . . Visualizations of adversarial images generated by SEA

Broader Impact

We propose new techniques to test the robustness of segmentation models to
adversarial attacks. While we consider it important to estimate the vulnerability
of existing systems, such methods might potentially be used by malicious actors.
However, we also provide insights on how to obtain, at limited computational
cost, models which are robust to such perturbations.

A Proof of the Properties of Cross-Entropy, and the
Jensen-Shannon-Divergence loss

Cross-entropy loss:
The cross-entropy is given as: LCE(p, ey) = − log py, and has gradient

∂LCE(u, ey)

∂ut
= −δyt + pt(u).

We note that
∥∇uLCE(u, ey)∥22 =

∑
t̸=y

p2
t + (1− py)

2.

As 0 ≤ pt ≤ 1, it holds ∑
t ̸=y

p2
t ≤

∑
t̸=y

pt = 1− py.

Moreover, the point of minimal ℓ2-distance on the surface of the ℓ1-ball with
radius 1− py has equal components, and thus

∑
t̸=y

p2
t ≥ (1− py)

2

K − 1
,

which yields

K

K − 1
(1− py)

2 ≤ ∥∇uLCE(u, ey)∥22 ≤ 1− py + (1− py)
2.

We note that both lower and upper bounds are monotonically increasing as
py → 0.

Towards Robust Semantic Segmentation 19

Jensen-Shannon divergence:
The Jensen-Shannon-divergence between the predicted distribution p and the
label distribution q is given by

DJS(p ∥ q) = (DKL(p ∥m) +DKL(q ∥m)) /2, with m = (p+ q)/2,

Assuming that we have a one-hot label encoding q = ey (where ey is the y-th
cartesian coordinate vector), one gets

DJS(p ∥ ey) =
1

2
log

(
2

1 + py

)
+

1

2

K∑
i=1

pi log

(
2pi

δyi + pi

)
.

Then

∂DJS(p ∥ ey)
∂pr

=
1

2

[
− 1

1 + py
δyr + log

(
2pr

δyr + pr

)
+ 1− pr

δyr + pr

]
=

1

2

{
log

(
2py

1+py

)
if r = y,

log(2) else.

Given the logits u we use the softmax function

pr =
eur∑K
t=1 e

ut

, r = 1, . . . ,K,

to obtain the predicted probability distribution p. One can compute:

∂pr

∂ut
= δrtpt − prpt =⇒

K∑
r=1

∂pr

∂ut
= 0

Then

∂DJS(p ∥ ey)
∂ut

=

K∑
r=1

∂DJS(p ∥ ey)
∂pr

∂pr

∂ut
=

1

2

log(2py

1 + py

)
∂py

∂ut
+ log(2)

∑
r ̸=y

∂pr

∂ut

=

1

2

(
log

(
2py

1 + py

∂py

∂ut

)
− log(2)

∂py

∂ut

)
=

1

2

(
log

(
py

1 + py

)
[δytpy − pypt]

)
=

1

2

(
py log

(
py

1 + py

)
[δyt − pt]

)
Noting that limx→0 x log(x) = 0 we get the result that: lim

py→0

∂DJS(p ∥ ey)
∂ut

= 0.

Thus the LJS loss automatically down-weights contributions from mis-classified
pixels and thus pixels which are still correctly classified get a higher weight in
the gradient.

20 F. Croce et al.

Discussion. The (theoretical) discussion of benefits and weaknesses for each
loss in Sec. 3.4 suggests that one main difference among losses is how they
balance the weight of different pixels in the objective function. On one extreme,
the plain cross-entropy maximizes the loss for all pixels independently of whether
they are misclassified, and assigns them the same importance. Conversely, the
masked losses exclude (via the mask) the misclassified pixels from the objective
function, with the danger of reverting back the successful perturbations. As
middle ground, losses like the JS divergence assign a weight to each pixel based
on how “confidently” they are misclassified. We conjecture that for radii where
robustness is low, masked losses help focusing on the remaining pixels, and
already misclassified pixels are hardly reverted since they are far from the decision
boundary. Conversely, at smaller radii achieving confident misclassification is
harder (since the perturbations are smaller), and most pixels are still correctly
classified or misclassified but close to the decision boundary: then it becomes
more important to balance all of them in the loss, hence losses like JS divergence
are more effective. This hypothesis is in line with the empirical results in Tab. 1
and Tab. 6.

B Experimental Details

We here provide additional details about both attacks and training scheme used
in the experiments in the main part.

B.1 Attacks for semantic segmentation

Baselines. Since [1, 21] do not provide code for their methods, we re-implement
both SegPGD and CosPGD following the indications in the respective papers
and personal communication with the authors of CosPGD. In the comparison
in Table 1, we use PGD with step size (8e-4, 9e-4, 1e-3, 2e-3, 3e-3, 5e-3, 6e-3)
for radii (0.25/255, 0.5/255, 1/255, 2/255, 4/255, 8/255, 12/255) resp. for both
CosPGD and SegPGD for 300 iterations each. The step size selection was done
via a small grid-search in [2e-3, 3e-3, 5e-3, 6e-3, 1e-4] for ϵ = 4/255 and 8/255,
the values for other radii were extrapolated from these. Moreover, at the end
we select for each image the iterate with highest loss (strongest yet generated
adversary).

APGD with masked losses. Since APGD relies on the progression of the
objective function value to e.g. select the step size, using losses which mask
the mis-classified pixels might be problematic, since the loss is not necessarily
monotonic. Then, in practice we only apply the mask when computing the
gradient at each iteration.

B.2 Training robust models

In the following, we detail the employed network architectures, as well as our
training procedure for the utilized datasets. All experiments are conducted in

Towards Robust Semantic Segmentation 21

Table 4: Training and data configurations. For all the models trained in this
work, we list according to the dataset, the training and dataset configurations. Warmup
epochs are scaled depending on the total number of epochs. Poly dec. is the polynomially
decaying schedule, from [49]. The setup stays the same across all setups of adversarial
training (clean init./robust init. or 2 vs 5 step).

Configuration Pascal-Voc Ade20K

PSPNet UPerNet UPerNet Segmenter

D
A

T
A

Base size 512 512 520 520

Crop size 473x473 473x473 512x512 512x512

Random Horizontal Flip ✓ ✓ ✓ ✓

Random Gaussian Blur ✓ ✓ ✓ ✓

T
R

A
IN

IN
G

Optimizer SGD AdamW AdamW SGD

Base learning rate 5e-4 1e-3 1e-3 2e-3

Weight decay 0.0 1e-2 1e-2 1e-2

Batch size 16x8 16x8 16x8 16x8

Epochs 50/300 50/300 32/128 32/128

Warmup epochs 5/30 5/30 5/20 5/20

Momentum 0.9 0.9, 0.999 0.9, 0.999 0.9

LR schedule poly dec. poly dec. poly dec. poly dec.

Warmup schedule linear linear linear linear

Schedule power 0.9 1.0 1.0 0.9

LR ratio (Enc:Dec) 1:10 ✗ ✗ ✗

Auxilary loss weight 0.4 0.4 0.4 –

multi-GPU setting with PyTorch [34] library. For adversarial training we use
PGD at ϵ = 4/255 and step size 0.01. While training clean or adversarially, the
backbones are initialized with publicly available ImageNet pre-trained models,
source of which are listed in Table 5.

Model architectures. Semantic segmentation model architectures have
adapted to use image classifiers in their backbone. UPerNet coupled with Con-
vNeXt [29] and transformer models like ViT [17] with Segmenter [40] achieve
SOTA segmentation results. We choose UPerNet and Segmenter architectures
for our experiments with ConvNeXt and ViT as their respective backbones. For
direct comparison to existing robust segmentation works [21,48] which only train
with a PSPNet [49], we also train a PSPNet with a ResNet-50 backbone (see
Tables 2 and 6). Tab. 4 reports the training and data related information about
the various architectures and the backbones used.

22 F. Croce et al.

Table 5: Source of our pre-trained backbones. We employ the same backbone for
both Pascal-Voc and Ade20K. The robust column indicates if the backbone used is
adversarially robust for ImageNet and we also list the ImageNet clean and robust
accuracy at ℓ∞-radius of 4/255.

Architecture Backbone Robust Source ImageNet acc.
clean ℓ∞

UPerNet ConvNeXt-T + ConvStem ✗ [39] 80.9% 0.0%
UPerNet ConvNeXt-T + ConvStem ✓ [39] 72.7% 49.5%
UPerNet ConvNeXt-S + ConvStem ✓ [39] 74.1% 52.4%

Segmenter ViT-S ✗ [43] 81.2% 0.0%
Segmenter ViT-S ✓ [39] 69.2% 44.4%
PSPNet ResNet-50 ✓ [37] 64.0% 35.0%

UPerNet with ConvNeXt backbone. For both clean and robust initial-
ization setups, we use the publically available ImageNet-1k pre-trained weights4
from [39], which achieve SOTA robustness for ℓ∞-threat model at ϵ = 4/255.
They propose some architectural changes, notably replacing PatchStem with a
ConvStem in their most robust ConvNeXt models, and we keep these changes
intact in our UPerNet models, we always use a ConvNeXt with ConvStem in this
work. We highlight that ConvNeXt-T, when adversarially trained for classification
on ImageNet, attains significantly higher robustness than ResNet-50 at a similar
parameter and FLOPs count. For example, at ϵ∞ = 4/255, the ConvNeXt-T
we use has 49.5% of robust accuracy, while ResNet-50 is reported to achieve
around 35% [4,37]. This supports choosing ConvNeXt as backbone for obtaining
robust segmentation models with the UPerNet architecture. For UPerNet with
the ConvNeXt backbone, we use the training setup from [29], listed in Tab. 4. We
also use the same values of 0.4 or 0.3 for stochastic depth coefficient depending on
the backbone, same as the original work.5 We do not use heavier augmentations
and Layer-Decay [5] optimizer as done by [29].

Segmenter with ViT backbone. Testing with Segmenter also enables a
further comparison across model size as Segmenter with a ViT-S backbone is
less than half the size (26 million parameters) of UPerNet with a ConvNeXt-T
backbone (60 million parameters). We define the training setup in Table 4, which
is similar to the setup used by [40]. The decoder is a Mask transformer and is
randomly initialized. Note that [40] predominantly use ImageNet pre-trained
classifiers at resolution of 384x384, whereas we use 224x224 resolution as no
robust models at the higher resolution are available.

PSPNet with ResNet backbone. As prior works [21,48] use a PSPNet
with a ResNet [23] backbone to test their robustness evaluations, we also train
the same model for the Pascal-Voc dataset. Both DDCAT [48] and SegPGD-

4 https://github.com/nmndeep/revisiting-at
5 https : / / github . com / facebookresearch / ConvNeXt / blob / main / semantic _
segmentation/configs/convnext

https://github.com/nmndeep/revisiting-at
https://github.com/facebookresearch/ConvNeXt/blob/main/semantic_segmentation/configs/convnext
https://github.com/facebookresearch/ConvNeXt/blob/main/semantic_segmentation/configs/convnext

Towards Robust Semantic Segmentation 23

MCE Bal MCE JS Worst-case32

35

38

41

44

47

m
Io

U

= 8/255

MCE Bal MCE JS Worst-case4

7

10

13

16

19

= 12/255 APGD const- . 100 x 3
APGD const- . 300 x 1
APGD red- . 300 x 1

Fig. 4: Comparison of const-ϵ- and red-ϵ optimization schemes for mIoU.
Balanced attack accuracy for the robust PIR-AT trained UPerNet + ConvNeXt-T
model from Tab. 2 trained on Pascal-Voc, across different losses for the same iteration
budget. The radius reduction (red-ϵ) scheme performs best across all losses, and ϵ∞
and even the worst-case over all losses improves.

AT [21] use a split of 50% clean and 50% adversarial inputs for training. Instead
for PIR-AT with PSPNet, we just use adversarial inputs. Due to this change, and
due to the fact that we initialize PIR-AT with ImageNet pre-trained ResNet-50
(RN50), we slightly deviate from the standard training parameters (learning rate,
weight decay, warmup epochs) as in the original PSPNet work [49]. The detailed
training setup is listed in Tab. 4.

Training setup for Pascal-Voc. We use the augmentation setup from [22].
Our training set comprises of 8498 images and we validate on the original Pascal-
Voc validation set of 1449 images. Data and training configurations are detailed
in Tab. 4. Adversarial training is done with either 2 or 5 steps of PGD with the
cross-entropy loss. Unlike some other works in literature, we train for 21 classes
(including the background class).

Training setup for Ade20K. We use the full standard training and
validation sets from [50]. Adversarial training is done with either 2 or 5 steps
of PGD with the cross-entropy loss. Unlike the original work we train with 151
classes (including the background class).

B.3 Initialization with pre-trained backbones

PIR-AT uses pre-trained ImageNet models as an initialization for the backbone.
Note that in the semantic segmentation literature most modern works [29,40] use
clean ImageNet pre-trained models as initialization for the backbone, making
ours a natural choice. The robust models are sourced from [39] (see Tab. 5),
and more are available e.g. in RobustBench [12], thus they do not cost us any
additional pre-training. One can further reduce the cost of pre-training by using
robust models trained for either 1-step [16] or 2-step [39] adversarial training,
which is the common budget for robust ImageNet training. For our UPerNet
+ ConvNeXt-S PIR-AT model for Pascal-Voc, we use the 2-step 50 epoch
ImageNet trained model from [39] as initialization. Using such low-cost pre-

24 F. Croce et al.

Table 6: Component analysis for SEA. We show the individual performance (Acc)
of the runs of APGD (red- ϵ) with each loss in SEA for both Pascal-Voc and Ade20K
on 5-step robust models. The best results, among either individual runs, are in bold.

ϵ∞
individual attacks

LMCE LMCE-Bal LJS SEA

model: PSPNet ResNet50, PIR-AT, 50 epochs, Pascal-Voc

4/255 83.3 48.6 84.7 49.9 81.8 47.8 81.5 47.7
8/255 53.4 13.5 56.4 12.2 53.7 14.1 50.6 11.2
12/255 14.9 2.3 17.6 1.7 20.7 4.1 12.9 1.4

model: UPerNet ConvNeXt-T, PIR-AT, 50 epochs, Pascal-Voc

4/255 89.2 65.9 90.4 67.4 88.7 64.9 88.6 64.9
8/255 74.0 40.6 77.5 38.4 73.9 41.3 71.7 34.6
12/255 31.5 10.3 36.9 6.7 38.6 15.1 28.1 5.5

model: UPerNet ConvNeXt-S, PIR-AT, 50 epochs, Pascal-Voc

4/255 89.7 67.5 90.9 68.9 89.3 66.7 89.1 66.0
8/255 73.6 41.0 77.5 36.9 74.3 42.7 71.0 36.4
12/255 31.2 10.7 36.9 7.5 39.0 15.6 27.6 6.2

model: UPerNet ConvNeXt-T, PIR-AT, 128 epochs, Ade20K

4/255 56.8 20.0 58.2 17.9 55.9 18.9 55.5 17.2
8/255 28.5 6.6 31.1 5.3 28.5 7.2 26.4 4.9
12/255 3.7 0.9 4.5 0.9 5.2 1.1 3.1 0.4

model: UPerNet ConvNeXt-S, PIR-AT, 128 epochs, Ade20K

4/255 58.6 20.4 59.8 18.6 57.6 19.4 56.8 17.9
8/255 31.3 8.1 33.3 5.8 30.9 7.7 28.7 5.4
12/255 4.6 1.1 5.4 0.8 6.2 1.3 3.1 0.6

model: Segmenter ViT-S, PIR-AT, 128 epochs, Ade20K

4/255 56.9 17.8 57.6 15.6 55.6 16.6 55.3 14.9
8/255 36.2 8.5 37.8 5.6 34.2 7.7 33.3 5.4
12/255 10.5 2.2 11.7 1.3 11.2 2.2 8.9 1.1

trained backbones works well, as this model in Tab. 2 achieves better or similar
robust accuracy as the 300 epoch 2-step ImageNet pre-trained ConvNeXt-T in
the same table.

C Additional Experiments and Discussion

We present additional studies of the properties of SEA and of the robust models.

Towards Robust Semantic Segmentation 25

C.1 Analysis of SEA

Effect of reducing the radius. We complement the comparison of const-ϵ
and red-ϵ schemes provided in Sec. 3.6 by showing the different robust mIoU
achieved by the various algorithms. In Fig. 4 one can observe that, consistently
with what reported for average pixel accuracy in Fig. 2, reducing the value of ϵ
(red-ϵ APGD) outperforms in all cases the other schemes.

Analysis of individual components in SEA. To assess how much each loss
contributes to the final performance of SEA, we report the individual performance
(both accuracy and mIoU) at different ϵ∞ in Tab. 6, using robust models on
Pascal-Voc and Ade20K. We recall that each loss is optimized with 300
iterations of red-ϵ APGD. A common trend across all models is that either LMCE
or LJS are best individual attacks for accuracy whereas LMCE-BAL attacks the
mIoU the best. Overall, SEA significantly reduces the worst case over individual
attacks.

Analysing attack pairs in SEA. Further insights into SEA are given by
looking at how different pairs of the components of SEA perform. Tab. 7 presents
such evaluation for the robust UPerNet on Pascal-Voc from Tab. 1: as expected,
MCE + JS yields the best robust aAcc, while the pairs with MCE-Bal have
the lowest mIoU. Moreover, the worst-case over all losses (SEA) gives further
improvements.

More iterations. We also explore the effect of different number of iterations
in SEA. In Fig. 5 we show the performance (measured by robust accuracy and
mIoU) of SEA with 50, 100, 200, 300 and 500 iterations. There is a substantial
improvement going from 50 to 300 iterations in all cases. On further increasing
the number of attack iterations to 500, the drop in robust accuracy and mIoU
is around 0.1% for both ℓ∞ radii of 8/255 and 12/255. Since going beyond 300
iterations gives no or minimal improvement for significantly higher computational
cost, we fix the number of iterations to 300 in SEA.

Effect of random seed. We study the impact of the randomness involved
in our algorithm (via random starting points for each run) by repeating the
evaluation on our robust model on Pascal-Voc with 3 random seeds. Tab. 8
shows that the proposed SEA is very stable across all perturbation strengths. It

Table 7: Effectiveness of pairs of losses. We evaluate by pairing subset of compo-
nents of SEA by measuring Acc and mIoU. Different pairs perform better or worse
depending on perturbation strengths, while SEA always yields the strongest attack.

Loss pair 4/255 8/255 12/255

LMCE+LMCE-Bal 88.8 65.1 73.2 35.1 31.6 5.6
LMCE+LJS 88.6 64.9 72.2 35.2 29.4 6.0
LJS+LMCE-Bal 88.8 64.9 73.0 34.7 32.6 5.6

SEA 88.6 64.9 71.7 34.6 28.1 5.5

26 F. Croce et al.

50 100 200 300 500
Number of iterations

66

68

70

72

74

76
R

ob
us

t a
cc

ur
ac

y

50 100 200 300 500
Number of iterations

30

32

34

36

38

40

42

R
ob

us
t m

Io
U

Mask CE SEA

Fig. 5: Influence of number of iterations in SEA. We show robust average pixel
accuracy (left) and mIoU (right) varying the number of iterations in our attack: 300
iterations give the best compute-effectiveness trade-off. We use the 5 step PIR-AT
Pascal-Voc trained ConvNeXt-T backbone UPerNet model and the attack is done for
ℓ∞ = 8/255.

is also interesting to note that all individual losses have negligible variance across
the different runs.

C.2 Excluding the background class from evaluation

For Ade20K, we train clean UPerNet + ConvNeXt-T models in two settings, i.e.
either ignoring the background class (150 possible classes), which is the standard
practice while training clean semantic segmentation models, or to predict it
(151 classes). To measure the effect of the additional background class, we can
evaluate the performance of both models with only 150 classes (for the one
trained on 151 classes, we can exclude the score of the background class when
computing the predictions). Training on 150 classes achieves (Acc, mIoU) of
(80.4%, 43.8%), compared to (80.2%, 43.8%) for 151. This shows that we do not
lose any performance when training with the background class, and the lower
clean accuracy of clean trained Ade20K models, (Acc, mIoU) of (75.5%, 41.1%)

Table 8: Stability of SEA across different runs. We report Acc computed on
Pascal-Voc with the 5 step UPerNet model trained with PIR-AT. The mean across 3
runs is shown along with the standard deviation. Across components and perturbation
strengths, SEA has a very low variance over random seeds.

ϵ∞ LMCE LMCE-Bal LJS SEA

model: UPerNet ConvNeXt-T, PIR-AT, 50 epochs

4/255 89.2±0.2 65.8±0.3 90.4±0.1 69.0±0.2 88.7±0.1 64.9±0.4 88.6±0.1 64.9±0.4
8/255 73.8±0.4 40.8±0.4 77.5±0.2 38.1±0.2 73.9±0.1 41.3±0.0 71.7±0.3 34.6±0.1
12/255 31.5±0.3 10.2±0.2 36.9±0.2 6.6±0.1 38.6±0.4 15.0±0.1 28.1±0.2 5.5±0.3

Towards Robust Semantic Segmentation 27

0.25
255

0.50
255

0.75
255

1.0
255

1.25
255

1.50
255

1.75
255

2.0
255

-epsilon

0

20

40

60

80

100

Fa
ilu

re
 ra

te
 (A

P
S

R
 <

 9
9%

)

Clean UperNet

Mask CE

SEA
ALMA-Prox

6
255

8
255

12
255

16
255

20
255

24
255

32
255

40
255

60
255

80
255

-epsilon

Robust UperNet

Fig. 6: Comparison to ALMA prox. We compare APGD with our novel loss
(LMask-CE) and the ensemble SEA according to the metric used by [36], which differs
from those (Acc and mIoU) we use in the rest of our experiments. In the left plot, the
attacks are tested on a clean trained model for the Pascal-Voc dataset, and in the
right plot we test against our robust PIR-AT model.

is due to including the background class when computing the statistics. This also
translates to the robust models trained in the 2 step PIR-AT setting. For the
robust model, the two settings have (76.6%, 37.8%) and (76.4%, 37.5%) (Acc,
mIoU) respectively.

C.3 Additional comparisons to existing attacks

Rony et al. [36] have recently proposed ALMA prox as an adversarial attack
against semantic segmentation models: its goal is to reach, for each image, a fixed
success rate threshold (i.e. a certain percentage of mis-classified pixels, in practice
99% is used) with a perturbation of minimal ℓ∞ norm. Thus, the threat model
considered by [36] is not comparable to ours, which aims at reducing average
pixel accuracy as much as possible with perturbations of a limited size.

In order to provide a comparison of our algorithms to ALMA prox, we measure
the percentage of images for which the attack cannot make 99% of pixels be
misclassified with perturbations of ℓ∞-norm smaller than a threshold ϵ (i.e. the
model is considered robust on such images). In this case, lower values indicate
stronger attacks. We show in Fig. 6 the results in such metric, at various ϵ, for
ALMA prox (default values, 500 iterations), APGD on the Mask-CE loss (300
iterations) and SEA. We test for 160 random images from the Pascal-Voc
dataset using the clean trained UPerNet with a ConvNeXt-T backbone in the
left plot and 5-step adversarially trained version of the same model in the right
plot Fig. 6. For the clean model (left plot) the three attacks perform similarly,
with a slight advantage of SEA at most radii. However, on the robust model
(right plot), both APGD on the Mask-CE loss and SEA significantly outperform
ALMA prox: for example, APGD, which uses even less iterations than ALMA
prox, attains 0% robustness at 32/255, compared to 77% of ALMA prox. This

28 F. Croce et al.

shows that, even considering a different threat model, our attacks are effective to
estimate adversarial robustness.

C.4 Additional discussion of existing PGD-based attacks

Recently, [1, 21] revisited the loss used in the attack to improve the effectiveness
of ℓ∞-bounded attacks, and are closest in spirit to our work. Since these methods
represent the main baseline for our attacks, in the following we briefly summarize
their approach to highlight the novelty of our proposed losses.

SegPGD: [21] proposes to balance the importance of the cross-entropy loss of
correctly and wrongly classified pixels over iterations. In particular, at iteration
t = 1, . . . , T , they use, with λ(t) = (t− 1)/(2T),

LSegPGD(u, y) = ((1− λ(t)) · I(argmax
j=1,...,K

uj = y)

+ λ(t) · I(argmax
j=1,...,K

uj ̸= y)) · LCE(u, y).

In this way the algorithm first focuses only on the correctly classified pixels and
then progressively balances the attention given to the two subset of pixels: this
has the goal of avoiding to make updates which find new misclassified pixels but
leads to correct decisions for already misclassified pixels.
CosPGD: [1] proposes to weigh the importance of the pixels via cosine similarity
between the prediction vector (after applying the sigmoid function σ(t) = 1/(1 +
e−t)) and the one-hot encoding ey of the ground truth class. This can be written
as

LCosPGD(u, y) =
⟨σ(u), ey⟩

∥σ(u)∥2 ∥ey∥2
· LCE(u, y) = σ(uy)/ ∥σ(u)∥2 · LCE(u, y),

and again has the effect of reducing the importance of the pixels which are
confidently misclassified.

C.5 Transfer attacks

To complement the evaluation of the robustness of our PIR-AT models, we further
test them with transfer attacks from less robust models. In particular, we run
APGD on the Masked-CE loss on Segmenter models obtained with either clean
training or AT (5 steps) on Ade20K. We then transfer the found perturbations
to our PIR-AT (5 steps, 128 epochs), and report robust accuracy and mIoU
in Tab. 9, together with the results of the white-box SEA on the same model
(from Tab. 2) as baseline. We observe that the transfer attacks are far from
the performance of SEA, which further supports the robustness of the PIR-AT
models.

Towards Robust Semantic Segmentation 29

Table 9: Transfer attacks. We show the robustness of PIR-AT to various transfer
attacks (measured with Acc and mIoU at various radii). For each case we indicate
the source and target models. Moreover, we report the evaluation given by white-box
attacks as baseline.

Attack Source Target 0 4/255 8/255 12/255

Ade20K, Segmenter with ViT-S backbone

APGD w/ LMask-CE clean PIR-AT 69.1 28.7 68.8 28.3 68.6 28.0 68.3 27.8
APGD w/ LMask-CE AT PIR-AT 69.1 28.7 66.3 26.0 63.1 23.8 57.4 19.9

SEA (white-box) PIR-AT PIR-AT 69.1 28.7 55.3 14.9 33.3 5.4 8.9 1.1

D Additional Figures

Untargeted attacks. Fig. 7 shows examples of our untargeted attacks at different
radii ϵ∞ on the clean model for Pascal-Voc dataset. In particular, we use 300
iterations of red-ϵ APGD on the LMask-CE loss. The first column presents the
original image with the ground truth segmentation mask, The following columns
contain the perturbed images and relative predicted segmentation masks for
increasing radii (ϵ∞ = 0 is equivalent to the unperturbed image): one can observe
that the model predictions progressively become farther away from the ground
truth values. We additionally report the average pixel accuracy for each image.
In Fig. 8, we repeat the same visualization for the most robust 5 step 300 epochs
PIR-AT model. Note that we use different values of ϵ∞ for the two models, i.e.
significantly smaller ones for the clean model, following Tab. 1. Finally, the same
setup is employed on the UPerNet + ConvNeXt-T model trained for Ade20K
dataset for the illustrations in Fig. 9 (clean model) and Fig. 10 (5-step robust
PIR-AT model), and we have similar observations as for the smaller dataset.
Again we use smaller radii for the clean model, since it is significantly less robust
than the PIR-AT one.

Targeted attacks. In Fig. 1 we show examples of the perturbed images and
corresponding predictions resulting from targeted attacks. In this case, we run
APGD (red-ϵ scheme with 300 iterations) on the negative JS divergence between
the model predictions and the one-hot encoding of the target class. In this way
the algorithm optimizes the adversarial perturbation to have all pixels classified
in the target class (e.g. “grass” or “sky” in Fig. 1). We note that other losses like
cross-entropy can be adapted to obtain a targeted version of SEA, and we leave
the exploration of this aspect of our attacks to future work.

30 F. Croce et al.

original 0 0.25/255 0.5/255 1/255 2/255

Acc: 95.9% Acc: 94.8% Acc: 75.9% Acc: 48.3% Acc: 0.0%

Acc: 96.1% Acc: 61.4% Acc: 0.0% Acc: 0.0% Acc: 0.0%

Fig. 7: Visualizing the perturbed images, corresponding predicted masks and Acc for
increasing radii. The attacks are generated on the clean model on Pascal-Voc with
APGD on LMask-CE. Original image and ground truth mask in the first column.

Towards Robust Semantic Segmentation 31

original 0 4/255 8/255 12/255 16/255

Acc: 95.5% Acc: 94.6% Acc: 90.8% Acc: 49.2% Acc: 0.0%

Acc: 93.7% Acc: 92.7% Acc: 83.3% Acc: 6.8% Acc: 0.0%

Fig. 8: Same setting as in Fig. 7 for the 5-step PIR-AT model

32 F. Croce et al.

original 0 0.25/255 0.5/255 1/255 2/255

Acc: 65.9% Acc: 54.9% Acc: 4.9% Acc: 0.0% Acc: 0.0%

Acc: 81.2% Acc: 47.9% Acc: 21.9% Acc: 2.6% Acc: 0.0%

Fig. 9: Visualizing the perturbed images, corresponding predicted masks and Acc for
increasing radii. The attacks are generated on the clean model on Ade20K with APGD
on LMask-CE. Original image and ground truth mask in the first column.

Towards Robust Semantic Segmentation 33

original 0 4/255 8/255 12/255 16/255

Acc: 61.3% Acc: 58.6% Acc: 29.7% Acc: 1.6% Acc: 0.0%

Acc: 84.4% Acc: 67.3% Acc: 32.8% Acc: 6.0% Acc: 0.0%

Fig. 10: Same setting as in Fig. 9 for the 5 step PIR-AT model.

