
CroMo-Mixup 19

A Related Works: Continued

Self Supervised Learning: SSL divides into two primary sub-areas: 1- Gener-
ative self-supervised learning, in which models predict missing data components
(e.g., inpainting) [15], and 2- Discriminative self-supervised learning, where mod-
els learn representations by distinguishing between different views of identical
data (e.g., contrastive learning) [15]. As the focus of this work is discriminative
SSL, we will offer comprehensive literature on this aspect and utilize SSL to
specifically denote discriminative SSL throughout this work.

Recent works in SSL are predominantly categorized into three families: sam-
ple contrastive, asymmetric network and dimension-contrastive [43]. Sample-
contrastive techniques, exemplified by SimCLR [8], MoCO [17], SwAV [4], and
FroSSL [43], treat to different views of a sample (i.e. different augmented ver-
sions) as positive samples, and any other sample as negative. Then, a contrastive
loss is employed to bring positive samples closer while pushing negative samples
apart. Asymmetric-network approaches include SimSiam [9], BYOL [14], and
DINO [5]. These methods require distinct network architectures for input views.
While one network serves as the primary network for final use, the other can
adopt a different encoder structure, or stop-gradient techniques can be employed
within the same architecture as the primary network [14]. Dimension-contrastive
methods, such as Barlow-Twins [48], VicReg [2], W-MSE [12], CorInfoMax [36],
and FroSSL [43], focus on reducing redundancy within embedding dimensions.
Such approaches may eliminate the need for negative samples and the require-
ment for an asymmetric network structure.

Continual Learning: Continual Learning refers to Continual Supervised Learn-
ing generally. The main problem of Continual learning is catastrophic forgetting,
and recent methods developed various strategies to solve that problem [11]. These
methods can be broadly classified into three distinct approaches:

1. Rehearsal-based Approaches: These methods mitigate forgetting by re-
playing data from previous tasks, either stored in a limited memory [7, 16,
33, 37] or synthesized by generative models [42]. Notably, [29] employs an
experience replay technique, utilizing a stored model from a preceding task
as a ’teacher’ for knowledge distillation on features pre-classification.

2. Expansion-based Approaches: To prevent forgetting, these methods dy-
namically increase the network’s capacity in response to new tasks [38, 40,
46, 47]. The most crucial disadvantage of expansion-based methods is large
model sizes when the new tasks appear continuously.

3. Regularization-based Approaches: This category encompasses methods
that adjust the optimization process by introducing task-specific regulariza-
tion. Such regularization aims to align the optimal parameters of new tasks
with those of prior tasks, thereby minimizing forgetting [24, 32, 35, 41]. A
notable variation within this approach is the Gradient Projection Memory
(GPM) technique [39], which adjusts model gradients on a per-layer basis to
ensure updates are orthogonal to the gradient subspace of preceding tasks,

20 E. Mushtaq et al.

thus preserving prior learning. Federated Orthogonal training (FOT) [1] is
another work mainly proposed for distributed learning settings that mod-
ify the global updates of new tasks so that they are orthogonal to previous
tasks’ activation principal subspace.

Although these methods listed above show impressive results on Continual
Supervised Learning, they are not that effective in CSSL [6,13].

B Task Confusion Experiments

In Section 3, we stated our hypothesis, which is as follows,
The task confusion problem in Contrastive SSL methods arises pri-
marily from the inability to train the model with different classes
belonging to different tasks concurrently.

Here, we perform a data-incremental learning-based ablation study to further
analyze our hypothesis.

Data-Incremental Learning: An Ablation Study
In this ablation study, we aim to analyze that the performance drop in LA and
TP observed in Table 4 was because of the class split across tasks, not because
of the data split across tasks. For that, we explore both self-supervised and
supervised learning in another fairly simple but representative data-incremental
setup, where each task has all classes data but data is split across tasks. To be
more specific, our experiment setup is as follows: we follow a data-incremental
setup with a sequence of tasks T1, T2, ..., TT that have same set of classes. We
consider the CIFAR100 dataset and split the 50,000 data in 10 tasks with each
task containing all 100 classes data and total of 5,000 samples per task. Further,
we assume that tasks change after each iteration, i.e., mini-batches are sampled
from different tasks at each iteration. To remove the forgetting effect, we assume
that tasks can be revisited, i.e., task 2 follows task 1, task 3 follows task 2, and
so on. The repeatability of tasks ensures that the SSL learner does not forget the
previous knowledge. For simplicity, we refer to this experimental setup, 10x10
data-incremental learning across mini-batches, 10x10 DIL-minibatch because the
data is divided into 10 tasks where each task contains 5000 samples. Further,
to show how the performance of the methods changes in DIL-minibatch setting,
we also compare it to the regular setting where we sample uniformly random
from the whole training data. We call this regular training setting as 100x1 DIL-
minibatches because there is 1 task containing all 100 classes and all the data.
Here again, we report the training accuracy of the methods because we only care
about the methods’ capability of creating linearly separable features on the data
they trained on. The training accuracy of these methods is reported in Figure 5.
If data split across batches/tasks would have been the reason for the accuracy
drop, we would observe an accuracy drop in these settings as well. However, in
contrast to what we observed in Figure 4, we did not observe any accuracy drop

CroMo-Mixup 21

(a) LA: 10x10 versus 100x1 (b) TP: 10x10 versus 100x1 (c) WP: 10x10 versus 100x1

Fig. 5: Training LA, WP, and TP performance of contrastive SSL methods and su-
pervised learning on the CIFAR100 Dataset for both 100x1 and 10x10 DIL-minibatch
settings. Figures (a), (b), and (c) demonstrate that the 10x10 setting performs as good
as the 100x1 setting in terms of LA, TP, and WP, respectively.

in average linear accuracy between 10x10 and 100x1 DIL experiment settings for
both supervised as well as self-supervised learning settings. This reaffirms our
hypothesis that the task confusion problem in Contrastive SSL methods arises
primarily from the inability to train the model with different classes belonging
to different tasks concurrently.

C Continual Learning Experiments

In this section, we provide further evaluations: an ablation study to compare
different design components of CroMo-Mixup, buffer size versus accuracy per-
formance, the model’s generalization performance, and catastrophic forgetting
analysis of CroMo-Mixup with the progression of time.

C.1 An Ablation Study: Different Design Components’ Performance

In Table 3, we evaluate three key components of our design model, cross-task data
mixup, cross-model feature mixup, and distillation (⇣) on CIFAR100-Split5 with
Barlow-Twins. First, we compare the cross-task data mixup without adding any
other component. For input mixup comparison, we have two choices: within-task
data mixup and cross-task data mixup. We find that the cross-task data mixup
enhances the performance by 8% accuracy gain as compared to the within-task
setting, as shown in the first two rows of Table 3. Next, we compare output
mixup, again we have two cases, the same model feature mixup that uses only
the current model to obtain embeddings, and cross-model feature mixup, the
proposed formulation. We note that the cross-model feature mixup enhances
the performance by 1.6% accuracy gain as compared to the same-model mixup
for the cross-task data mixup. This highlights the significance of the proposed
CroMo-Mixup formulation. Additionally, we also notice that distillation improves
the performance by another 1.5% accuracy gain with these components. Hence,
cross-task mixup, cross-model mixup, and distillation components help in achiev-
ing the highest performance among other design choices of these components.

22 E. Mushtaq et al.

Table 3: An Ablation Study on Different Design Components of CroMo-Mixup

Input Mixup Output Mixup Distillation (⇣) Accuracy(%)

within-task same-model 0 54.16

cross-task same-model 0 62.31

cross-task same-model 0 62.31

cross-task cross-model 0 63.94

cross-task same-model 1 64.35

cross-task cross-model 1 65.48

C.2 Buffer Size versus Accuracy Performance

To analyze the impact of buffer size on the performance of CroMo-Mixup, we
experiment with four buffer size options, 25, 50, 75, and 100 samples saved per
task for CIFAR100-Split10. As shown in Figure 6, we observe that with smaller
buffer sizes, model performance drops within the 1-2 percentage. However, even
in the smaller budget of 25 samples/task, CroMo-Mixup outperforms the SOTA
baseline CaSSLe+, that saves 100 samples per task, for each respective SSL
baseline.

Fig. 6: Average linear accuracy performance of CIFAR100-Split10 CroMo-Mixup with
varying buffer size options: 25, 50, 75, 100 samples/task. As buffer size reduces, the
model performance decreases from 1-2 % at most; however, it still outperforms the
SOTA baseline CaSSLe+ for each respective SSL baseline.

C.3 Out-of-Distribution Performance

To evaluate the model’s generalization performance, we test the ResNet-18 model
trained with the CIFAR100-Split5 setting on two other datasets, CIFAR10 and
Oxford Flower102. We compare the model trained on five different settings; of-
fline, FineTune, Ering, CaSSLe+, and CroMo-Mixup. For all these baselines,
at the end of the training, we freeze the encoder and train a linear classifier
on the training dataset of CIFAR10 and Flower102 for 200 epochs. We use an
SGD optimizer with a learning rate of 0.2 for the downstream task. We evalu-
ate its performance on the test set of each respective dataset. We present the
results in Table 4. The key observation from these experiments is that CroMo-
Mixup outperforms CaSSL+ on both datasets. This highlights the significance
of CroMo-Mixup to generalize better to the unseen distributions.

CroMo-Mixup 23

Table 4: Average Linear Accuracy Performance evaluation of CIFAR100-Split5 trained
model on the test data of CIFAR10 and Flower 102 datasets

Dataset Offine FineTune Ering CaSSLe+ CroMo-Mixup

CIFAR10 82.27 71.71 75.08 77.16 80.36

Flower102 51.94 34.05 38.00 44.17 49.03

C.4 Catastrophic Forgetting Mitigation Performance

We analyze CIFAR100-Split10 as an example to compare the performance of
CaSSLe+ and CroMo-Mixup to address catastrophic forgetting. Figure 7, shows
the K-nearest neighbors (KNN) accuracy of the model with the progression of
tasks. We use (K=200) to report the KNN accuracy.

(a) Task 1 Evaluation (b) Task 2 Evaluation (c) Task 3 Evaluation

Fig. 7: KNN Accuracy evaluation of Task 1, 2, and 3 on their respective test sets for
CIFAR100-Split10 with the Barlow Twins SSL baseline.

From Figure 7, we can see that finetune baseline model struggles with catas-
trophic forgetting. We observe a significant accuracy drop as the model learns
new tasks. Though CaSSLe+ and CroMo-Mixup help to alleviate catastrophic
forgetting, CroMo-Mixup outperforms CaSSLe+ by achieving 4.5%, 6%, and
4.5% higher KNN test accuracy at the end of CL training as shown in Figures
7a, 7b and 7c. For the remaining tasks, we present the confusion matrix for
FineTune, CaSSLe+, and CroMo-Mixup in Figures 8a, 8b, and 8c, respectively.
First we note that all these matrices are diagonal dominant. Further, for the last
column of each task, CroMo-Mixup either achieves equal or higher performance
than CaSSLe+, which highlights the model’s ability to alleviate forgetting.

D Hyper-Parameter Configurations

In this section, we provide the hyper-parameter configurations and the SSL loss
function descriptions.

D.1 Hyper-Parameter Configurations in CSSL Experiments

Table 5 presents the important hyperparameters for all SSL methods. Most hy-
perparameters are selected from the original code bases of these works. For CSSL

24 E. Mushtaq et al.

(a) FineTune (b) CaSSLe+ (c) CroMo-Mixup

Fig. 8: KNN Accuracy Performance of different tasks for CIFAR100-Split10 with the
Barlow-Twins baseline. 0 here indicates the time instances when that task was not avail-
able and, therefore, is not evaluated. Comparing the last column of each task, CroMo-
Mixup either achieves equal or higher accuracy than the SOTA baseline, CaSSLe+.

hyper-parameters such as epochs/task, learning rate scaling, etc, optimal hyper-
parameters are found by doing a hyperparameter grid search on basic fine-tuning
(FT). Subsequently, the identified optimal set of hyperparameters is uniformly
applied across all CSSL methods for consistency in evaluation. Furthermore, the
buffer size details are provided in Table 6. For sampling data from the memory
buffer, we use a batch size of 64, which we selected by hyperparameter tuning
on ER.

Table 5: Hyperparameter Settings for the CSSL experiments

CIFAR-10 / CIFAR-100
/ Tiny-Imagenet Cor-Infomax SimCLR BYOL Barlow-Twins

Batch Size 512/512/256 512/512/256 256 256
Learning rate 0.1/0.1/0.5 0.6/0.6/0.3 1.0 / 1.0 / 0.3 0.3

Optimizer SGD SGD LARS LARS
Weight decay 1e-4 5e-4 1e-5 1e-4

Projection layer
(dim) 64/128/64 128/128/2048 4096 2048

Prediction layer
(dim, for BYOL) - - 4096 -

Temperature
(⌧) - 0.5 - -

D.2 Hyper-Parameter Configurations in Task Confusion
Experiments

For the task confusion experiments, we use ResNet-18 encoder to train on the CI-
FAR100 dataset. We select the hyper-parameters following the original papers of
the respective works for 100x1 and use the same settings for 10x10 experiments.
Details of some of the hyper-parameters are provided in Table 7.

CroMo-Mixup 25

Table 6: CSSL Experiment Setup Details

Experiment Total # Classes Total # Samples Total # of

Name of Classes per Task of Tasks saved/Task Samples per Task

cifar10-Split2 10 5 2 500 25,000

cifar100-Split5 100 20 5 500 10,000

cifar100-Split10 100 10 10 100 5,000

tinyImageNet-Split10 200 20 10 100 50,000

Table 7: Hyper-Parameter Settings for the Task Confusion Experiments

Name CorInfomax Barlow-Twins SimCLR BYOL Supervised

Optimizer SGD LARS LARS LARS SGD

lr 0.5 0.3 0.6 1.0 0.075

epochs 1000 1000 1000 1000 200

batch size 512 256 512 256 128

D.3 SSL Loss functions

Here, we provide the details of the loss functions of the four SSL baselines on
which we deployed CroMo-Mixup.

BYOL Loss Function BYOL employs a momentum encoder, where gradi-
ents are backpropagated only through the first augmentation of the data, and
the second augmentation encoder network is updated by an exponential moving
average (EMA). It employs an MSE-based loss function, which essentially en-
forces consistency between the l2 normalized embedding vectors of z1 and z2 as
||q1 � z2||22, where q1 = h(z1) and h(.) is the predictor head.

SimCLR Loss Function SimCLR uses InfoNCE loss function which treats
the second of augmentation of an image as its positive, and every other image
in the mini-batch as negative. The InfoNCE loss function is calculated on the
feature embeddings as follows,

LInfoNCE = �log
exp(z1i , z2i)P

zj2⌘(i) exp(z1i , zj)
(6)

where ⌘(i) contains all the negative samples of image indexed at i and all the
embedding vectors are l2 normalized.

Barlow-Twins Loss Function Barlow-twins employs a cross-correlation based
loss function, as shown below,

LBT =
X

i

(1� Cii)
2 + �

X

i

X

i 6=j

C
2
ij (7)

26 E. Mushtaq et al.

where � is a positive hyper-parameter. The first term is invariance term that
makes the feature embeddings invariant to the data augmentation, whereas sec-
ond term is redundancy reduction term which reduces the redundancy in the
output units. The cross-correlation C is computed between the feature embed-
dings of first and second augmentation along the batch dimension as given below,

Cij =

P
b z

1
b,iz

2
b,jqP

b(z
1
b,i)

2
qP

b(z
2
b,j)

2
(8)

where b signifies the index for the batch samples and i, j identify the index of
the vector dimension of the output embeddings.

CorInfomax Loss Function CorInfomax uses log determinant mutual infor-
mation (LDMI) criterion for self-supervised learning. Its objective is essentially
an estimate of LDMI between the two augmented views of model output embed-
dings vectors as given below,

LCorInfomax = �log det(R̂(1)
z [l]+✏I)�log det(R̂(2)

z [l]+✏I)+2
2

✏N
||Z(1)[l]�Z(2)[l]||2F

(9)
where l identifies the batch number, ||.||F is Frobenius norm. Further, R(2)

z [l]

and R(2)
z [l] are auto-covariance estimates calculated as follows,

R̂(1)
z [l] = �R̂(1)

z [l � 1](1� �)
1

N
Z̄(1)[l]Z̄(1)[l]T (10)

Likewise, R̂(2)
z [l] is estimated based on the current and last batch statistics. Note

that Z̄(2)[l] are the mean-centralized feature embeddings, Z̄(2)[l] = Z(2)[l] �
µ(2)[l]ITN where µ(2) is the mean estimate of the current and old batches.

	CroMo-Mixup: Augmenting Cross-Model Representations for Continual Self-Supervised Learning

