
Bridging Different Language Models and
Generative Vision Models for

Text-to-Image Generation

Shihao Zhao1 , Shaozhe Hao1 , Bojia Zi2, Huaizhe Xu3, and
Kwan-Yee K. Wong1⋆

1 The University of Hong Kong
{shzhao,szhao,kykwong}@cs.hku.hk

2 The Chinese University of Hong Kong
bjzi@se.cuhk.edu.hk

3 The Hong Kong University of Science and Technology
hxubr@connect.ust.hk

Abstract. Text-to-image generation has made significant advancements
with the introduction of text-to-image diffusion models. These models
typically consist of a language model that interprets user prompts and
a vision model that generates corresponding images. As language and
vision models continue to progress in their respective domains, there is
a great potential in exploring the replacement of components in text-
to-image diffusion models with more advanced counterparts. A broader
research objective would therefore be to investigate the integration of
any two unrelated language and generative vision models for text-to-
image generation. In this paper, we explore this objective and propose
LaVi-Bridge, a pipeline that enables the integration of diverse pre-trained
language models and generative vision models for text-to-image genera-
tion. By leveraging LoRA and adapters, LaVi-Bridge offers a flexible and
plug-and-play approach without requiring modifications to the original
weights of the language and vision models. Our pipeline is compatible
with various language models and generative vision models, accommo-
dating different structures. Within this framework, we demonstrate that
incorporating superior modules, such as more advanced language models
or generative vision models, results in notable improvements in capabili-
ties like text alignment or image quality. Extensive evaluations have been
conducted to verify the effectiveness of LaVi-Bridge. Code is available at
https://github.com/ShihaoZhaoZSH/LaVi-Bridge.

Keywords: Diffusion model · Text-to-image generation

1 Introduction

In recent years, there have been remarkable advancements in the field of text-to-
image generation, specifically through the use of diffusion models [9, 18, 43, 45].
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Fig. 1: Overview of LaVi-Bridge. LaVi-Bridge is capable of integrating various lan-
guage models and generative vision models. On the left side, we keep the vision model
fixed and experiment with different language models in our pipeline. On the right side,
we keep the language model fixed and try out different vision models. We display the
visualization results alongside each combination.

These models have made significant contributions and have gained considerable
attention for their exceptional performance. By leveraging large-scale training
datasets alongside large deep models, text-to-image diffusion models are capable
of producing high-quality images that faithfully align with the textual descrip-
tions provided by users. This has rendered them highly applicable in real-world
scenarios such as content creation and architectural design.

Text-to-image diffusion models [2, 6, 29,35,38,41,50] typically consist of two
key components, namely a language model and a generative vision model. The
language model is responsible for comprehending the input prompts, whereas
the vision model is tasked with generating images that align with the extracted
context. Existing text-to-image diffusion models employ various language models
and generative vision models and have gained widespread usage. For instance,
Stable Diffusion (SD) [38] is a highly popular text-to-image diffusion model that
employs the CLIP text encoder [31] as its language model and a U-Net [39] as
its generative vision model. Another example is PixArt [6], a recently proposed
text-to-image diffusion model that adopts the T5 [34] as its language model and
a Vision Transformer (ViT) [11] as its generative vision model. These models are
trained on a vast amount of text-image pairs, enabling seamless collaboration
between their language modules and vision modules.

The advancements in deep language models and deep vision models have
witnessed rapid progress in recent years, with both fields experiencing continu-
ous developments and the introduction of more powerful models. However, this
rapid development poses a challenge for the research in text-to-image gener-
ation when it comes to integrating more advanced language or vision models
into existing text-to-image diffusion models. The problem of how to integrate
any two unrelated language and vision models is unexplored, and the impact of
newly developed models on text-to-image generation capabilities also remains
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uncertain. The current situation highlights the presence of a gap between the
language or vision modules within text-to-image diffusion models and the state-
of-the-art models in their respective domains. Therefore, it has become crucial
to address this gap and explore ways to incorporate more advanced language
or vision models into existing text-to-image diffusion models. Furthermore, the
broader challenge of integrating any pre-trained language model with any gen-
erative vision model deserves a thorough investigation.

In this paper, our objective is to delve into the aforementioned problem. We
propose LaVi-Bridge, a flexible framework that facilitates the integration of di-
verse well-trained language models and generative vision models to achieve text-
to-image generation. Our framework enables the integration of two unrelated
language and vision models that have not been previously trained together, as
shown in Fig. 1. Importantly, LaVi-Bridge does not require modifying the orig-
inal weights of the language and vision models. Instead, it injects LoRA [20]
into the language and vision models separately and utilizes an adapter to bridge
these two modules. Moreover, LaVi-Bridge only necessitates a relatively small
dataset to integrate different language models and generative vision models for
text-to-image generation.

We summarize the advantages and features of LaVi-Bridge as follows:

1. LaVi-Bridge is designed for text-to-image diffusion models and serves as
a bridge, capable of connecting various pre-trained language models and
generative vision models. Our framework can accommodate different model
structures, including encoder-only, encoder-decoder, and decoder-only lan-
guage models, as well as U-Net-based and Transformer-based generative vi-
sion models.

2. LaVi-Bridge utilizes LoRA and adapters, eliminating the need to modify
the original weights of the models. It is more flexible and requires relatively
small computing resources compared to training the entire diffusion model.

3. We evaluated various text-image alignment and image quality metrics on
short prompts, long prompts, and compositional prompts. We also conducted
extensive visualization. We then drew several conclusions. For instance, inte-
grating superior models leads to improved performance in the corresponding
modality, such as enhanced semantic understanding with advanced language
models or improved image quality with more powerful generative vision mod-
els. Additionally, the diffusion model utilizing Llama-2 demonstrates excep-
tional semantic understanding, while the diffusion model utilizing the trans-
former in PixArt yields images with enhanced aesthetics.

2 Related Work

2.1 Language Models and Generative Vision Models

The mainstream Large Language Models (LLMs) [8, 32–34] are built based on
the transformer structure [48], with three main types of architectures, namely
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encoder-only, encoder-decoder, and decoder-only. All these three belong to Se-
quence to Sequence (Seq2Seq) [46]. The encoder-only architecture is exemplified
by BERT [8]. CLIP text encoder [31] is based on BERT and further trained to
align with the image domain. Models of this type excel at understanding the
content of the input and generating outputs tailored to specific tasks. On the
other hand, the encoder-decoder framework is adept at handling tasks that in-
volve complex mappings between input and output sequences. Examples include
T5 [34] and BART [24]. Recently, due to the tremendous success of ChatGPT,
attention has been drawn to models that consist solely of a decoder, like GPT-
3 [4] and Llama-2 [47]. The decoder-only architecture demonstrates exceptional
performance in semantic understanding. For text-to-image generation, all three
types of LLMs can provide effective semantic information to serve as conditions
for image generation in diffusion models. In this paper, we explore and compare
all these three types of language models.

A generative vision model refers to a vision model with the ability to generate
images or visual contents. There are two common types of structures, namely
U-Net-based [39] and Transformer-based [11]. Generative Adversarial Networks
(GANs) [14, 37, 51] employ a framework consisting of a discriminator and a
generator, with the generator’s structure based on U-Net. On the other hand,
motivated by the success of GPT models, recent works have attempted to use
the Transformer architecture for image generation in an autoregressive manner,
with notable examples being DALLE [36] and CogView [10]. Another popular
class of generative models is diffusion models [7, 18, 43, 45], which are based on
the diffusion process and gradually denoise to produce natural images. Early
diffusion models often employed U-Net as their generative vision model, such
as Stable Diffusion, which scaled up the Latent Diffusion Model (LDM) [38]
with larger data scales. Some recent works have started to replace the U-Net in
diffusion models with Vision Transformer and have made significant progress,
such as DiT [30], U-ViT [1] and PixArt [6]. In this paper, we focus on diffusion
models and explore both U-Net-based and Transformer-based vision models.

2.2 Text-to-Image Diffusion Models

Text-to-image diffusion models [2,9,29,38,41,44] are capable of generating images
based on user prompts. These models consist of two main components, namely
a language model and a vision model. The language module is responsible for
understanding the text input provided by the user, extracting contextual infor-
mation, and injecting it into the vision module to generate the desired image.
Text-to-image diffusion models have paved the way for various exciting research
areas, including image editing [3,22,27], controllable image generation [28,52,53],
personalized object generation [12, 16, 40], as well as other interesting applica-
tions [5,13,15]. In the extensive exploration of diffusion models, researchers have
utilized different language models and vision models. For instance, Stable Diffu-
sion [38] employs CLIP text encoder [31] as its language model and U-Net as its
vision model. Imagen [41] utilizes T5 [34] as its language model, which claims
to enhance both sample fidelity and image-text alignment. ParaDiffusion [49]
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focuses on paragraph-to-image generation and leverages the powerful seman-
tic understanding capability of Llama-2 [47] to comprehend lengthy sentences.
PixArt [6], on the other hand, utilizes a ViT [11] as its vision model and achieves
high image fidelity while being trained at a lower cost.

After training on a large dataset of text-image pairs [42], the language and
vision models in the text-to-image diffusion model become closely intertwined.
This tight coupling ensures a strong alignment between the provided text de-
scription and the generated image, but at the same time also limits the flexibility
of the diffusion model. For instance, if a more advanced language or vision model
becomes available, it may have the potential to enhance the text-to-image task.
However, decoupling the language and vision modules in existing text-to-image
diffusion models and replacing a module with a new one is nontrivial. Therefore,
this paper explores the dilemma faced by text-to-image generation and proposes
a framework that enables efficient integration of various language models and
generative vision models.

3 Method

3.1 Preliminary

A diffusion model is based on the diffusion process for image generation. This
process consists of two stages, namely the forward process and the reverse pro-
cess. During the forward process, Gaussian noise is progressively added to a
natural image until the image becomes completely noisy. After that, during the
reverse process, the noise is gradually eliminated over a series of time steps,
resulting in a natural image. In the reverse process, a trainable vision model is
used to predict and remove the noise. By employing this denoising model, we are
able to obtain a natural image from Gaussian noise by denoising. Within a text-
to-image diffusion model, there are two components at each time step, namely a
language model f and a vision model g. The language model converts user input
text y into embeddings, which capture the semantic meaning of the text. On
the other hand, the vision model, which is the denoising model aforementioned,
encodes image features z, extracting relevant visual information from the input
images. The interaction between text embeddings and image features is achieved
through cross-attention layers, which can be formulated as

c = f(y), (1)

Q = Wq(z),K = Wk(c), V = Wv(c), (2)

CrossAttention(Q,K, V ) = softmax(Q ·KT ) · V, (3)

where Wq,Wk and Wv are projection matrices.

3.2 Language and Vision Alignment

LaVi-Bridge enables the integration of any two pre-trained language and gen-
erative vision models, even though these models are not related and have been
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Fig. 2: Pipeline of LaVi-Bridge. We select one model each from the language and
vision model pools. We then freeze the pre-trained language and vision models and
incorporate LoRA into both models. The connection between the language and vision
models is established through an adapter. The only weights we need to train are the
ones introduced by LoRA and the adapter.

trained separately. Here, we denote the language model as f and the vision model
as g, as mentioned previously. If we directly interact the textual information and
image information using Eq. (1), considering that f and g are trained indepen-
dently, the parameters in the cross-attention layers of g cannot comprehend the
text embedding output by f , resulting in meaningless model outputs.

To establish a connection between them, LaVi-Bridge keeps the pre-trained
language and vision models fixed and utilizes LoRA to introduce trainable pa-
rameters ∆θ into both the language model and the vision model. In this context,
we denote the language and vision models with LoRA as fθ1+∆θ1 and gθ2+∆θ2 ,
where θ1 and θ2 are the original parameters of f and g, respectively. Further-
more, we introduce an adapter as a bridge between the language model and vision
model to facilitate better alignment. The adapter consists of stacked feedforward
layers, denoted as h. Consequently, the cross-attention layer can be expressed as

c =fθ1+∆θ1(y), (4)

Q = W θ2+∆θ2
q (z),K = Wk

θ2+∆θ2(h(c)), V = W θ2+∆θ2
v (h(c)), (5)

CrossAttention(Q,K,V ) = softmax(Q ·KT ) · V. (6)

Now, we only need to train ∆θ1, ∆θ2, and h on a relatively small amount of
text-image pairs. After training, the language and generative vision models can
effectively collaborate to generate meaningful images. We present the framework
of LaVi-Bridge in Fig. 2. LaVi-Bridge is very straightforward, with both LoRA
and the adapter being its crucial and indispensable components.
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3.3 Design Details

LaVi-Bridge is designed to accommodate a wide range of language model struc-
tures, including encoder-only, encoder-decoder, decoder-only, as well as genera-
tive vision model structures such as U-Net and ViT. In the language model,
we inject LoRA into all linear layers of the attention layers. Likewise, in a
transformer-based vision model, LoRA is injected into all linear layers of the
attention layers. In a U-Net-based vision model, LoRA is injected into all linear
layers and convolutional layers of the ResBlocks, attention, and cross-attention
layers. To address the dimension disparity between the output embedding of the
language model and the dimensions handled by the cross-attention of the vision
model, we employ two feedforward layers for the adapter. The input dimension
of the adapter matches the output text embedding dimension of the language
model, while the output dimension aligns with the dimensions received by the
cross-attention of the vision model.

For training, we first select the language and generative vision models that
we choose to integrate. We keep their original weights fixed and train LoRA
and the adapter on text-image pairs following the design mentioned above. The
trained LoRA and adapter have fewer parameters compared to the original model
weights, which makes LaVi-Bridge highly flexible. For evaluation, we used var-
ious metrics to assess text alignment and image quality across short prompts,
long prompts, and compositional prompts.

4 Experiments

4.1 Experimental Settings

In this section, we explored the performance of different language models and
generative vision models under LaVi-Bridge. We also tested the impact of LoRA
and adapters. We trained on a dataset consisting of a total of 1 million text-image
pairs, including around 600k text-image pairs from the COCO2017 [25] train set
and 400k text-image pairs from an internal dataset with high-quality images
and captions. For each setting, we set the LoRA rank to 32, image resolution to
512× 512 and the batch size to 256. We used the AdamW optimizer [26] with a
learning rate of 1× 10−4 and trained for a total of 50k steps. During inference,
we employed the DDIM sampler [43] for sampling with the number of time steps
set to 50 and the classifier free guidance scale [19] set to 7.5.

As mentioned above, we conducted our quantitative evaluation on short
prompts, long prompts, and compositional prompts. Specifically,

1. For short prompts, we evaluated using the COCO2014 [25] validation set. We
randomly sampled 30k images and tested image quality and text alignment
within this subset. We used FID [17] and aesthetic score [23] as evaluation
metrics for image quality and CLIP score for text alignment.

2. For long prompts, we employed the same 30k-subset of COCO2014 and uti-
lized Llama-2 to generate expanded captions ranging from 20 to 70 words to
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Marvel movie character, iron man, dress up to match movie 
character, full body photo, American apartment, lying down, life 

in distress, messy, lost hope, food, wine, hd, 8k, real, reality, 
super detail, 8k post photo manipulation, real photo.

Digital illustration of a beach scene crafted from yarn. The sandy beach is 
depicted with beige yarn, waves are made of blue and white yarn crashing onto 
the shore. A yarn sun sets on the horizon, casting a warm glow. Yarn palm trees 

sway gently, and little yarn seashells dot the shoreline.

A cute cat.
An illustration of a human heart made of translucent 

glass, standing on a pedestal amidst a stormy sea. Rays 

of sunlight pierce the clouds, illuminating the heart, 
revealing a tiny universe within.

A paper craft art depicting a girl giving her cat a gentle hug. 
Both sit amidst potted plants, with the cat purring 

contentedly while the girl smiles. The scene is adorned with 
handcrafted paper flowers and leaves.

A middle-aged woman of Asian descent, her dark hair streaked with silver, appears 
fractured and splintered, intricately embedded within a sea of broken porcelain. The 

porcelain glistens with splatter paint patterns in a harmonious blend of glossy and 
matte blues, greens, oranges, and reds, capturing her dance in a surreal juxtaposition 

of movement and stillness. Her skin tone, a light hue like the porcelain, adds an 
almost mystical quality to her form.

An ancient stone Colossus with eye, Stephan 
Martinière, dark yellow and light emerald, color zone 

painting, Denis Sarazhin, dark emerald and silver, 
robotic expressionism, high detail.

London luxurious interior living-room.

Fig. 3: Visualization results of LaVi-Bridge with different language models. The first
row to the fifth row present the results with CLIP text encoder, T5-Small, T5-Base,
T5-Large, and Llama-2, respectively. The prompts are displayed at the top or bottom
of each column.

construct a dataset of 30k long prompts. Since the caption expansion process
does not refer to the content of the reference image, we solely used aesthetic
score to evaluate image quality and CLIP score for text alignment.

3. For compositional prompts, we utilized the benchmark proposed by Comp-
bench [21]. Compositional prompts were mainly used to test the model’s
understanding of textual attributes, such as generating correct object prop-
erties like color and shape, as well as accurate relationships between objects,
such as spatial positioning.

We conducted a user study on different combinations of language and vision
models. For each combination, we evaluated two metrics, namely image quality
and text alignment. Users were asked to rank the generated images based on
these evaluation criteria. The image ranked last received a score of 1, the second-
to-last received a score of 2, and so on. We then calculated the percentage of
scores for each model. We selected 20 prompts and included 30 users participated
in the testing. In addition to quantitative evaluation and user study, we provided
ample visualization results in each section to offer a more intuitive understanding
of the performance of each model.
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Table 1: Quantitative evaluation of LaVi-Bridge with different language models.
"Short", "Long" and "Comp" denote short prompts, long prompts, and compositional
prompts respectively. The best results are in bold.

CLIP T5-Small T5-Base T5-Large Llama-2

Short - FID 23.57 22.98 22.62 23.11 21.80
Short - Aesthetics 5.609 5.813 5.888 5.881 5.883
Short - CLIP Score 0.3102 0.3122 0.3149 0.3156 0.3172

Long - Aesthetics 6.003 6.206 6.284 6.305 6.355
Long - CLIP Score 0.3120 0.3111 0.3179 0.3193 0.3231

Comp - Color 0.3578 0.3368 0.3856 0.3889 0.4859
Comp - Shape 0.3752 0.2962 0.3266 0.3552 0.4285
Comp - Texture 0.4506 0.3728 0.4132 0.4524 0.5055
Comp - Spatial 0.1296 0.1456 0.1569 0.1582 0.1914
Comp - Non-Spatial 0.3009 0.2984 0.3054 0.3068 0.3106
Comp - Complex 0.2985 0.2728 0.3055 0.3072 0.3094

4.2 Evaluation on Different Language Models

This section evaluates the performance of LaVi-Bridge with different language
models. We fixed the vision model to the U-Net of Stable Diffusion V1.4 and
integrated it with different language models under LaVi-Bridge. We considered
CLIP text encoder, based on the encoder-only framework, T5 series (T5-Small,
T5-Base, T5-Large), based on the encoder-decoder framework, and Llama-2-7B,
based on the decoder-only framework. We present the visualization results in
Fig. 3, quantitative evaluation in Tab. 1, and user study in Figure 1 in the
supplementary material.
Visualization From Fig. 3, we can observe that with LaVi-Bridge, all these
language models can effectively integrate with U-Net of Stable Diffusion V1.4
and generate meaningful results, such as cases of the cat and living room in
Fig. 3. This demonstrates the great generalization ability of LaVi-Bridge for
various language models. Additionally, we notice that the performance of dif-
ferent model structures varies when the provided prompts contain more com-
plex semantics. We find that the text-to-image diffusion model corresponding to
Llama-2 can perfectly describe semantic information. For example, in the third
column, Llama-2’s generated result effectively integrates a woman into the sea
of fragmented porcelain. In the fourth column, it correctly understands and gen-
erates both the girl and the cat in a paper craft art. In the seventh column,
it even portrays an entire beach scene using yarn. These examples surpass the
capabilities of those models with CLIP and T5. Furthermore, we observe that
T5-Large and Llama-2 accurately generate food and wine in the case of Iron
Man, and in the last column, they successfully generate "an ancient stone with
eyes in dark yellow and emerald". Models with CLIP text encoder, T5-Small,
and T5-Base are not able to capture these cases accurately.
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Abandoned city with ruined buildings, long deserted 
streets, cars aged by time, trees, flowers, scattered leaves, 

empty street, vibrant colors, lineart.

A fierce garden gnome warrior, clad in armor crafted from leaves and bark, brandishes a 
tiny sword and shield. He stands valiantly on a rock amidst a blooming garden, 

surrounded by colorful flowers and towering plants. A determined expression is painted 
on his face, ready to defend his garden kingdom.

Forest.

Smooth meat table, restaurant, Paris, 
elegant, lights.

Pirate ship trapped in a cosmic maelstrom nebula, rendered in cosmic 
beach whirlpool engine, volumetric lighting, spectacular, ambient 

lights, light pollution, cinematic atmosphere, art nouveau style, 
illustration art artwork by SenseiJaye, intricate detail.

A swirling, multicolored portal emerges from the depths of an ocean of 
coffee, with waves of the rich liquid gently rippling outward. The portal 

engulfs a coffee cup, which serves as a gateway to a fantastical dimension. 
The surrounding digital art landscape reflects the colors of the portal, 

creating an alluring scene of endless possibilities.

A natural landscape painting with white clouds floating in the blue 
sky. There are several mountains below with some plants growing 
on the mountains. There is a sea below the mountains. There is a 

house made of stone and wood on the shore. There are many 
green plants next to the house.

Portrait photography, a woman in a glamorous 
makeup, wearing a mask with tassels, in the style 

of midsommar by Ari Aster, made of flowers, 
bright pastel colors, prime lense.

Fig. 4: Visualization results of LaVi-Bridge under different generative vision models.
The first row to the third row present the results with U-Net in Latent Diffusion Model,
U-Net in Stable Diffusion V1.4 and transformer in PixArt, respectively. The prompts
are displayed at the top or bottom of each column.

Quantitative Evaluation From Tab. 1, we can observe that Llama-2 achieves
the best results for all the metrics used to evaluate text alignment ability, under
the setting of all the short prompts, long prompts, and compositional prompts.
Besides, Llama-2 also performs the best on most of the metrics evaluating image
quality. On the other hand, as the model capacity increases, in general circum-
stances T5-Large usually outperforms T5-Base, and T5-Base outperforms T5-
Small in the area of Natural Language Processing. This conclusion also holds
true for LaVi-Bridge. For all the metrics used to evaluate text alignment ability
in Tab. 1, T5-Large is superior to T5-Base, and T5-Base is superior to T5-Small.
This tells us that incorporating a better language model into the text-to-image
diffusion model under LaVi-Bridge can lead to improved text alignment. This
makes one of the motivations of LaVi-Bridge meaningful, which is that replacing
the model in the existing text-to-image diffusion model with a better model can
lead to performance improvements.
User Study We follow the settings described in Sec. 4.1, and the results are
presented in Section A in the supplementary material.

4.3 Evaluation on Different Vision Models

This section evaluates the performance of LaVi-Bridge with different vision mod-
els. We fixed the language model to T5-Large and integrated it with different
generative vision models under LaVi-Bridge. We considered the well-trained U-
Nets in the Latent Diffusion Model and Stable Diffusion V1.4, as well as the
Vision Transformer in PixArt, totally three models. We present the visualiza-
tion results in Fig. 4, quantitative evaluation in Tab. 2, and user study in Figure
1 in the supplementary material.
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Table 2: Quantitative evaluation of LaVi-Bridge under different generative vision
models. "Short", "Long" and "Comp" denote short prompts, long prompts, and com-
positional prompts respectively. The best results are in bold.

U-Net(LDM) U-Net(SD) Transformer(PixArt)

Short - FID 25.94 23.11 23.02
Short - Aesthetics 5.703 5.881 6.145
Short - CLIP Score 0.3126 0.3156 0.3172

Long - Aesthetics 6.122 6.305 6.406
Long - CLIP Score 0.3189 0.3193 0.3210

Comp - Color 0.4099 0.3889 0.3689
Comp - Shape 0.3724 0.3552 0.3316
Comp - Texture 0.5046 0.4524 0.4553
Comp - Spatial 0.1550 0.1582 0.1725
Comp - Non-Spatial 0.3004 0.3068 0.3098
Comp - Complex 0.3060 0.3072 0.3014

Visualization From Fig. 4, we can see that all these three vision models inte-
grate well with T5-Large and generate relatively accurate images based on the
given text prompts. From these cases, we can observe that the images generated
by the transformer model based on PixArt exhibit richer details compared to
the images generated by the other two models based on U-Net. For example,
the forest in the first column, the hull of the pirate ship in the third column,
and the bushes at the foot of the mountain in the sixth column are very intri-
cate and realistic. Additionally, we can observe from these cases that the images
generated by the model with U-Net of Stable Diffusion V1.4 have more detailed
features compared to the images generated by the model with U-Net of Latent
Diffusion Model. Furthermore, we can also find that, for the PixArt-based model,
text alignment is better in some cases. For instance, in the image of the fifth
column, only the model that is based on the transformer of PixArt generates
the "aged car" mentioned in the prompt. Similarly, in the seventh column, the
garden warrior holding a sword and shield is highly consistent with the prompt
description.

Quantitative Evaluation From Tab. 2, it can be observed that for all the met-
rics measuring image quality, LaVi-Bridge with the PixArt vision model achieves
the best results. Additionally, PixArt also achieves the best text alignment for
both short and long prompts. This reflects the use of PixArt’s transformer as a
vision model can also improves the model’s understanding of semantics to some
extent. Additionally, it is noteworthy that the U-Net in Stable Diffusion, an
enhanced version of the U-Net utilized in the Latent Diffusion Model, still out-
performs Latent Diffusion Model’s U-Net under LaVi-Bridge on all the metrics
measuring image quality. This aligns with our previous discussion in Sec. 4.2 and
further validates the underlying motivation behind our proposed LaVi-Bridge.
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User Study We follow the settings described in Sec. 4.1, and the results are
presented in Section A in the supplementary material.

4.4 Ablation Study

In this section, we investigate two sets of ablation experiments. The first set aims
to explore the impact of training LaVi-Bridge on the original pre-trained text-
to-image diffusion model. The second set of experiments is to study the effects
of LoRA and adapters in LaVi-Bridge. For both sets of experiments, we present
visualization results in Fig. 5 and provide quantitative evaluations in Tab. 3.
Training with LaVi-Bridge We investigate the impact of our LaVi-Bridge
training framework on the original pre-trained text-to-image diffusion model.
Specifically, we consider Stable Diffusion V1.4 which adopts CLIP text encoder
as its language model and U-Net as its vision model. We incorporate LoRA
and an adapter and apply LaVi-Bridge to the same language and vision models
with identical structures and weights to those in Stable Diffusion V1.4. We then
compare the performance of the model under LaVi-Bridge with the original
Stable Diffusion V1.4.

The visualization results are shown in the first two rows of Fig. 5. For these
two models, there is no significant difference in image quality and text alignment,
varying on a case-by-case basis. In some cases, Stable Diffusion performs better,
such as in the third column, where Stable Diffusion successfully generates the
case of a "Fox bracelet made of buckskin with fox features", while the model
trained under LaVi-Bridge only generates the fox and fails to understand the
bracelet made of buckskin. Similarly, in the case of Marvel’s Hulk playing basket-
ball, Stable Diffusion generates a slam dunk action following the prompt, whereas
the model trained under LaVi-Bridge does not. However, in the second column,
the model trained under LaVi-Bridge correctly understands the quantity and
successfully generates two elephants, while Stable Diffusion only generates one.
Moreover, in the last column, the model trained under LaVi-Bridge accurately
describes a frog in a spacesuit, while Stable Diffusion fails.

The left two columns of Tab. 3 present the quantitative evaluation results. It
can be observed that Stable Diffusion achieves the best image quality and text
alignment for both short prompts and long prompts. However, for compositional
prompts, the model trained under LaVi-Bridge outperforms Stable Diffusion in
four out of six settings.

Based on the visualization results and quantitative evaluations, we can con-
clude that overall there is no significant improvement or decline in text align-
ment. Regarding image quality, it should be noted that training with LaVi-
Bridge may result in a decrease compared to the original text-to-image diffusion
model, if the same models and weights are used. However, it is important to
understand that the main purpose of LaVi-Bridge is to establish connections
between different language and vision models, enabling the utilization of more
advanced models for performance enhancement. It is not intended to be directly
applied to the original text-to-image diffusion models using the same models and
weights.
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A mischievous ferret with a playful grin squeezes itself into a large glass jar, 
surrounded by colorful candy. The jar sits on a wooden table in a cozy kitchen, 

and warm sunlight filters through a nearby window.

A rabbit, forest in spring. A cute frog wearing a space suit floating 
through space but sleepy.

White Nelore bull, anthropomorphic adult cattle, a Weightlifter, very strong, 
doing a lot of strength, expression of strength, lifting a very heavy barbell, 
weightlifter position, doing Weightlifting, wearing athlete's clothes, action, 

white background, full body, surreal realistic.

Marvel‘s Hulk playing basketball, he is jumping to dunk on the 
hoop, and he is dressed in the Lakers uniform, realistic 

perspective, graphics, surrealistic realism, emotive realism.

Two elephants in the forest.

Fox bracelet made of buckskin with fox features.Sea.

Fig. 5: Visualization results of the ablation study. The top two rows show the impact
of LaVi-Bridge on the original pre-trained text-to-image diffusion models. The bottom
three rows illustrate the influence of the adapter and LoRA. The prompts are displayed
at the top or bottom of each column.

LoRA and Adapter Here, we investigate the role of LoRA and adapters in
LaVi-Bridge. We use T5-Large as the language model and Stable Diffusion V1.4’s
U-Net as the vision model. For the LoRA experiments, we kept the language and
vision models fixed without introducing LoRA, and only trained the adapter. For
the adapter experiments, considering the mismatch in the dimensions of text
embeddings from the language model and the input embeddings acceptable by
the vision model, we aligned the dimensions between the language and vision
models using a single linear layer instead of stacked feedforward layers which
include non-linear activation layers. Under this setting, we trained both LoRA
and this linear layer.

The visualization results are shown in the bottom three rows of Fig. 5. We
can observe that both image quality and text alignment are significantly affected
when LoRA and adapters are not used. For example, in the case of "Bull Fit
Athlete" in the seventh column, without LoRA or the adapter, the model cannot
understand and integrate these two less related elements, and the image quality
is much lower compared to results generated by the original setting. We also
found that the results without LoRA are worse than those without the adapter.
For instance in the fourth column, there is not even a ferret present in the image
in the absence of LoRA.
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Table 3: Quantitative evaluation of the ablation study. The left two columns present
the impact of LaVi-Bridge on the original pre-trained text-to-image diffusion models.
The right three columns demonstrate the influence of the adapter and LoRA. "Short",
"Long" and "Comp" denote short prompts, long prompts, and compositional prompts
respectively. The best results are in bold.

SD CLIP+U-Net w/o Adapter w/o LoRA T5+U-Net

Short - FID 20.32 23.57 23.81 22.35 23.11
Short - Aesthetics 5.899 5.609 5.807 5.829 5.881
Short - CLIP Score 0.3132 0.3102 0.3147 0.3107 0.3156

Long - Aesthetics 6.120 6.003 6.131 6.273 6.305
Long - CLIP Score 0.3171 0.3120 0.3106 0.3097 0.3193

Comp - Color 0.3570 0.3578 0.3550 0.2485 0.3889
Comp - Shape 0.3563 0.3752 0.3044 0.2944 0.3552
Comp - Texture 0.4028 0.4506 0.4001 0.3190 0.4524
Comp - Spatial 0.1225 0.1296 0.1651 0.0956 0.1582
Comp - Non-Spatial 0.3104 0.3009 0.3065 0.2998 0.3068
Comp - Complex 0.3042 0.2985 0.2878 0.2687 0.3072

The right three columns of Tab. 3 present the quantitative evaluation results.
We find that our default setting, which utilizes both LoRA and the adapter,
achieves the best performance in most cases. Additionally, overall, the absence
of LoRA has a significant impact on text alignment, with many text alignment
evaluation metrics being much lower compared to the absence of the adapter.

5 Conclusion

In this paper, we propose LaVi-Bridge, which works on text-to-image diffusion
models. LaVi-Bridge is capable of connecting various language models and gen-
erative vision models for text-to-image generation. It is highly versatile and can
adapt to different structures. LaVi-Bridge is also flexible, as it achieves inte-
gration without modifying the original weights of language and vision models.
Instead, it utilizes LoRA and an adapter for fine-tuning. Additionally, under
LaVi-Bridge, using superior language or vision models can enhance the text com-
prehension capability or image quality. These advantages enable LaVi-Bridge to
help text-to-image diffusion models leverage the latest advancements in the areas
of Natural Language Processing and Computer Vision, to enhance text-to-image
generation. We believe that this task holds significant research value and requires
further exploration. LaVi-Bridge allows designers, artists, and others to flexibly
utilize existing language and vision models to achieve their creative goals. It
is of utmost importance to avoid misuse and mitigate potential negative social
impacts. In practical deployment, it is crucial to standardize its usage, improve
model transparency.
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