
20 H. Luo et al.

A Experiments Details

In this section, we describe the details of the implementations (Appendix A.1),
the hyperparameters (Appendix A.2), and the task settings (Appendix A.3).

A.1 Implementations

We build our framework based on PyTorch [46] and use the implementations of
Transformer tricks from the codebase x-transformers5. We pre-train a VQGAN
with the images extracted from BAIR and downstream tasks based on the re-
leased code6. We use 8×A100 Nvidia GPU and 64 CPU cores for the pre-training
run, while using one single A100 Nvidia GPU and 16 CPU cores for each training
run. 10 hours are required to pre-train PVDR. For the online stage, 12 hours
are required to train on each Meta-World [88] task, and 18 hours are required
to train on each RLBench [29] task. The details of the implementations are as
follows.

PVDR Structure. We implement all modules in PVDR as Transformer-based
structures. Overall, the structures of the modules in PVDR, including a visual
dynamics encoder, a visual dynamics prior, a visual dynamics decoder, an action
alignment module, and a critic network, are shown in Figure 8. These modules
use a pre-trained VQGAN to compress the raw frames into grids of visual to-
kens and subsequently employ the Spatial-Temporal Transformers [79] to process
spatial-temporal visual token sequences. The modules differ from each other in
the input data type and the post-processing form of the hidden states. Specifi-
cally, the visual dynamics representations are in the same shape as visual token
grids and are viewed as grids of prompts that will be concatenated with the visual
token grids. During the decoding process, the hidden state of each visual token
will be projected onto a vector, whose dimension equals the size of the VQGAN
codebook. The softmax value of each dimension is viewed as the probability of
the corresponding code. For a quick decoding process, we do not use the beam
search. Instead, we recurrently use the code with the highest probability to form
a grid and directly decode one visual frame with VQGAN.

ST Transformer. In our PVDR implementation, the core structure is the Spatial-
Temporal Transformer (ST Transformer). For a lower attention computation
burden, an ST Transformer uses cross-stacked spatial and temporal attention
blocks to, respectively, process the information in spatial and temporal sequences.
Generally, we design spatial and temporal attention blocks following MaskViT [24].
As shown in Figure 9, the spatial attention blocks process the attention map of
visual tokens at the same timestep, while the temporal attention blocks process
the attention map of visual tokens in a small local spatial window alongside the
temporal sequence.
5 https://github.com/lucidrains/x-transformers
6 https://github.com/CompVis/taming-transformers



Pre-trained Visual Dynamics Representations 21

⋯

⋯

Spatial-Temporal
Transformer

Aggregation

⋯

Tokenize with VQGAN

⋯

⋯

Spatial-Temporal
Transformer

Visual Dynamics Representations

⋯

Aggregation

Action

Hidden States

Visual Tokens

Value

⋯

Prediction

Decode with VQGAN

Concatenate

Fig. 8: Illustration of module structures in PVDR. The visual dynamics encoder and
the visual dynamics prior share the structure on the left. The visual dynamics decoder,
the action alignment module, and the critic network share the main network on the
right, with distinct post-processing forms of the hidden states.

Formally, (l+m)×h×w visual tokens are processed by the ST Transformer, which
are numbered {Ei,j,k | 0 ≤ i < h, 0 ≤ j < w, 0 ≤ k < l+m}. Take a certain visual
token, Ei⋆,j⋆,k⋆ , for example. The visual tokens in the set {Ei,j,k⋆ | 0 ≤ i < h, 0 ≤
j < w} are included in its spatial attention map. And the visual tokens in the
set {Ei,j,k | ⌊ i

b⌋ = ⌊ i⋆

b ⌋, ⌊
j
d⌋ = ⌊ j⋆

d ⌋, 0 ≤ k < l+m} are included in the temporal
attention map, where b×d are the local attention window size. Additionally, the
temporal attention block used in the visual dynamics decoder employs a causal
mask. That is, the visual tokens in the set {Ei,j,k | ⌊ i

b⌋ = ⌊ i⋆

b ⌋, ⌊
j
d⌋ = ⌊ j⋆

d ⌋, 0 ≤
k < k⋆} are included in the causal-masked temporal attention calculation of
Ei⋆,j⋆,k⋆ .

Baselines. For PVDR without pre-training and PVDR-based algorithms for ab-
lation, the structures of the modules are consistent as described above. For PPO,
the actor network is in the same structure as the action alignment module in
PVDR, while the critic network is identical to the one in PVDR. The setups
of APV, FICC, and STG are consistent with the original setups. In particular,
FICC requires a discrete action space for search. Thus, we evenly divide the con-
tinuous action space of environments into 16 subspaces and uniformly sample
one action in each space for each round of search. As PVDR does not learn a re-
ward function, we replace the reward function in FICC with rt = −∥ot+1 − g∥1
during inference for a fair comparison. All algorithms use rt = −∥ot+1 − g∥1 as
an intrinsic reward for the goal-conditioned setting.



22 H. Luo et al.

Spatial Attention

Feed-Forward Layer

Feed-Forward Layer

Temporal Attention

Spatial-Temporal Transformer

𝑁×

Temporal Attention

⋯

𝑡 = 0 𝑡 = 1 𝑡 = 2 𝑡 = 𝑇

Spatial Attention

⋯

𝑡 = 0 𝑡 = 1 𝑡 = 2 𝑡 = 𝑇

Fig. 9: Illustration of Spatial-Temporal Transformer in PVDR. An ST Transformer
(left) is composed of N cross-stacked Spatial Attention and Temporal Attention blocks,
with interleaved Feed-Forward Layers. The visual tokens (right) in the same color are
processed in one attention map.

Table 1: Hyperparameters of the VQGAN used in PVDR.

Parameter Setting

Resolution 128× 128
Visual token grid size 16× 16

Codebook size 256
Code dimension 1024
Codebook loss weight 1.0

Discriminator loss weight 0.8
Discriminator loss start step 10000

Number of downsampling blcoks 4
Number of residual blocks 2
Channel multiplier (1, 2, 2, 4)
Channel in & out in:160 out:64

Minibatch size 1600
Optimizer Adam
Optimizer: learning rate 4.5e − 6
Dropout rate 0.1
Training steps 4e5

A.2 Hyperparameters

In this section, we list the hyperparameters in our PVDR implementation. The
hyperparameters of the pre-trained VQGAN we used are shown in Table 1.
The hyperparameters on structures and learning of ST Transformers in PVDR
are shown in Table 2. The hyperparameters of the PPO training are shown in
Table 3. In fact, the hyperparameters of the PPO baseline are identical to those
shown in Table 3. In particular, there are slight differences in our PPO training of
different Meta-World tasks. Here, we list the tasks of 3 different hyperparameter
sets. Task Set 1: button press topdown, dial turn, drawer close, reach, window



Pre-trained Visual Dynamics Representations 23

Table 2: Hyperparameters of the ST Transformer used in PVDR.

Parameter Setting

Visual token grid size 16× 16
Local window size 4× 4
Context frames length m 2
Future frames length l 6

Visual dynamics representation shape 16× 16× 32
Attention dimension 512
Feedforward dimension 512
Token embedding dimension 1024
Visual token vocabulary size 256

Encoder Transformer depth 6
Encoder Transformer heads 4
Prior Transformer depth 6
Prior Transformer heads 4
Decoder Transformer depth 3
Decoder Transformer heads 4
Action alignment Transformer depth 3
Action alignment Transformer heads 4
Critic Transformer depth 3
Critic Transformer heads 4

Loss weight λ1 1e − 3
Loss weight λ2 2.5 (RLBench); 0.8 (Meta-World)
Reward weight λ3 4.5 (RLBench); 1.0 (Meta-World)

Minibatch size 1025
Optimizer Adam
Pre-training learning rate 1e − 4
Fine-tuning learning rate 1e − 5
Downstream training rate 4e − 5
Pre-training steps 3.5e5

open. Task Set 2: button press, plate slide, plate slide back, window close. Task
Set 3: plate slide side, hand insert, drawer open.

A.3 Task Settings

We select 12 tasks from Meta-World and 3 tasks from RLBench for our exper-
iments. As we consider goal-based tasks, we replace the original dense reward
in Meta-World with the sparse reward. A positive rsuc will be given when the
goal is achieved. Concretely, rsuc is 100 in RLBench tasks and 60 in Meta-World
tasks. And the visual goals of the tasks are shown in Figures 10 and 11.



24 H. Luo et al.

Table 3: Hyperparameters of PPO in PVDR.

Parameter RLBench Task Set 1 Task Set 2 Task Set 3

λ 0.92
γ 0.99
ϵ 0.4 0.6 0.2 0.5
ϵvalue 10
centropy 3e − 4 1e − 2 2e − 4 5e − 3
cvalue 0.5
Max gradient norm 1.0
Minibatch size 100
Actor learning rate 3e − 4
Critic learning rate 1e − 3
Training Epochs 500 200 200 200

plate slide back plate slide plate slide side hand insert

window closewindow openpush buttonpush button topdown

dial turn reach drawer open drawer close

Fig. 10: Illustration of the image goals in Meta-World tasks.

reach target lamp onbox close

Fig. 11: Illustration of the image goals in RLBench tasks.



Pre-trained Visual Dynamics Representations 25

B Additional Experiments

B.1 Hyperparameters Influence

Given that PVDR contains three weight factor hyperparameters (λ1, λ2, λ3), we
conduct additional experiments to explore the impact of these factors on the
experimental results. Specifically, we experiment with a range of values for these
three factors on four Meta-World tasks, and the learning curves are shown in
Figures 12 to 14. The performance of PVDR is shown to be quite sensitive to
the value of λ1, relatively stable to the value of λ2, and moderately influenced
by the value of λ3.

0×10 25×10 50×10 75×10 100×10
0

10

20

30

40

50

60
Reach

1 = 1e-3

1 = 1e-1

1 = 1e-2

1 = 1e-4

1 = 1e-5

0×10 25×10 50×10 75×10 100×10
0

5

10

15

20

25

Window Open

0×10 25×10 50×10 75×10 100×10
0

5

10

15

20

25

30

35

40

Plate Slide

0×10 25×10 50×10 75×10 100×10
0

5

10

15

20

25

30

Drawer Close

Environment Steps

Su
cc

es
s R

at
e 

(%
)

Fig. 12: Learning curves of different λ1 value in PVDR on four Meta-World tasks
measured on success rate. The solid line and the shaded regions represent the mean
and variance of performance across five runs with different seeds.

0×10 25×10 50×10 75×10 100×10
0

10

20

30

40

50

60
Reach

2 = 0.8

2 = 1.6

2 = 3.2

2 = 0.4

2 = 0.2

0×10 25×10 50×10 75×10 100×10
0

5

10

15

20

25

Window Open

0×10 25×10 50×10 75×10 100×10
0

5

10

15

20

25

30

35

40

Plate Slide

0×10 25×10 50×10 75×10 100×10
0

5

10

15

20

25

30

35

Drawer Close

Environment Steps

Su
cc

es
s R

at
e 

(%
)

Fig. 13: Learning curves of different λ2 value in PVDR on four Meta-World tasks
measured on success rate. The solid line and the shaded regions represent the mean
and variance of performance across five runs with different seeds.

0×10 25×10 50×10 75×10 100×10
0

10

20

30

40

50

60
Reach

3 = 1.0

3 = 0.1

3 = 0.5

3 = 5.0

3 = 10.0

0×10 25×10 50×10 75×10 100×10
0

5

10

15

20

25

Window Open

0×10 25×10 50×10 75×10 100×10
0

10

20

30

40

Plate Slide

0×10 25×10 50×10 75×10 100×10
0

5

10

15

20

25

30

Drawer Close

Environment Steps

Su
cc

es
s R

at
e 

(%
)

Fig. 14: Learning curves of different λ3 value in PVDR on four Meta-World tasks
measured on success rate. The solid line and the shaded regions represent the mean
and variance of performance across five runs with different seeds.



26 H. Luo et al.

Table 4: Success rates (%) of PVDR with various horizon lengths in 2 Meta-World
tasks. The means and variances of the performance over five runs with different seeds
are reported.

Horizon Length (m+ n) 2+ 6 1+ 1 2+ 2

Reach 45.0± 1.3 7.8± 1.5 11.0± 4.1
Plate Slide 35.2± 4.2 7.6± 2.2 11.4± 3.4

In addition, we conduct ablation studies on the horizon length (m + n) in
PVDR. As shown in Table 4, we find that shorter horizons negatively impact
the performance. This indicates that encoding more abstract and compressed
information from longer horizons is beneficial.

B.2 Various Dataset

We also conduct additional experiments to evaluate the generalization ability
of PVDR using various datasets: trajectory dataset collected in Meta-World,
Open-X Embodiment datasets [45] (USC Jaco Pay and Berkeley Cable Routing).
The size of each used dataset is consistent with the BAIR dataset to ensure
fairness. For the four datasets (including BAIR) we conduct experiments on,
they represent different quality of the pre-training datasets:(1) Meta-World
Dataset is in-domain. (2) BAIR Dataset is task-relevant but has a visual
gap. (3) USC Jaco Pay Dataset uses Jaco robot in less relevant tasks. (4)
Berkeley Cable Routing Dataset uses Franka robot in totally different tasks.
The results are shown in

Table 5, indicating different pre-training datasets impact the performance
and generalization, and PVDR works effectively across various datasets. The
benefits of pre-training are limited by the increasing gap, which necessitates cap-
turing the more generalizable dynamics priors. Our results indicate that PVDR
effectively bridges the gap across different pre-training datasets and downstream
tasks.

B.3 Discussion about ContextWM

In our baseline selection, we choose APV instead of ContextWM, which is some-
how an extension of APV. ContextWM introduces a representation of the visual
context to ‘facilitate knowledge transfer between distinct scenes’ and thus enables
the leverage of videos from multiple sources. This mechanism can be incorpo-
rated in PVDR by adding an extra condition (context representation) during
the video prediction. We don’t compare PVDR with ContextWM because BAIR
dataset doesn’t contain distinct scenes. Instead, the single-scene dataset may
hinder the learning of meaningful context representation. We conduct additional
experiments with ContextWM and PVDR with context representation. The re-
sults in Table 6 show that incorporating context representation indeed worsens
performance in the current setting.



Pre-trained Visual Dynamics Representations 27

Table 5: Success rates (%) of PVDR in Meta-World with 4 various pre-training
datasets. The datasets are represented with the following numbers: (1) Meta-World
Dataset, (2) BAIR Dataset, (3) USC Jaco Pay Dataset, and (4) Berkeley Ca-
ble Routing Dataset. The means and variances of the performance over five runs
with different seeds are reported.

Dataset (1) (2) (3) (4)

Reach
PVDR 65.4± 5.9 45.0± 1.3 47.2± 3.2 39.0± 4.1
APV 64.2± 4.4 26.8± 3.4 35.8± 2.6 21.2± 1.6
FICC 36.4± 3.8 5.4± 2.3 4.2± 2.8 0.0± 0.0

Plate Slide
PVDR 56.0± 2.5 35.2± 4.2 30.8± 2.7 22.2± 2.2
APV 38.8± 1.6 20.4± 2.6 26.6± 2.2 16.8± 0.8
FICC 22.4± 3.7 5.2± 3.7 3.0± 1.1 0.0± 0.0

Hand Insert
PVDR 45.8± 3.7 28.6± 3.0 27.2± 1.3 17.8± 2.0
APV 43.6± 2.4 27.6± 1.4 26.0± 0.6 12.6± 6.1
FICC 14.2± 1.2 4.6± 2.0 2.4± 1.4 0.0± 0.0

Table 6: Success rates (%) of PVDR, PVDR with context representation and Con-
textWM in 2 Meta-World tasks. The means and variances of the performance over five
runs with different seeds are reported.

PVDR PVDR with context representation ContextWM

Reach 45.0± 1.3 31.0± 2.4 26.0± 1.7
Plate Slide 35.2± 4.2 22.0± 2.6 20.6± 2.2

C Cases Visualization

In this section, we showcase the visualization of some cases from the pre-training
video dataset and downstream tasks in Figures 15 to 17. Additionally, we provide
some examples in Figure 18, showing the effectiveness of the online adaptation.
As is shown in Figure 18.(a), online adaptation helps to generate more rea-
sonable visual plans. Furthermore, the gradually converging action alignment
reward curves in Figure 18.(b) indicate the effectiveness of the action alignment
mechanism.



28 H. Luo et al.

Ground Truth

Prediction

Ground Truth

Prediction

Ground Truth

Prediction

Context

Fig. 15: Future frames predicted by the pre-trained visual dynamics model on three
cases from the BAIR dataset. The pre-trained model is capable of capturing the dy-
namics prior in the pre-trainig video datasets.

Visual Obs.

Selected Plan

𝑡 = 0 𝑡 = 5 𝑡 = 10 𝑡 = 20 𝑡 = 70𝑡 = 40 𝑡 = 110 𝑡 = 161

Fig. 16: Visual observations and selected plans alongside the interaction of PVDR in
the plate slide task from Meta-World environment. PVDR is capable of generating
meaningful plans with dynamics information and executing relevant actions.



Pre-trained Visual Dynamics Representations 29

Visual Obs.

Selected Plan

𝑡 = 0 𝑡 = 5 𝑡 = 10 𝑡 = 20 𝑡 = 30𝑡 = 25 𝑡 = 65 𝑡 = 73

Fig. 17: Visual observations and selected plans alongside the interaction of PVDR in
the lamp on task from RLBench environment. PVDR is capable of generating mean-
ingful plans with dynamics information and executing relevant actions.

Selected Plan

0.5

En
v.

 S
te

ps
 (×
10

! )

100

60

30

(a) (b)
Env. Steps (×10!)C

um
ul

at
iv

e 
N

or
m

al
iz

ed
 R

ew
ar

d

Fig. 18: Examples from the adaptation in window close task: selected visual plans (a)
and action alignment reward curves (b).

D Extended Related Works

Our work involves video prediction as well as goal-conditioned RL in addition to
RL pre-training with videos. We are here to discuss the works related to these
two topics. In addition, some works [15, 26, 31, 60, 75] pre-train modules with



30 H. Luo et al.

aligned video-text pairs to assist in solving tasks conditioned on textual goals,
which is not within the scope of our work.

Video Prediction. As a complex amalgamation of visual comprehension and tem-
poral sequence prediction, video prediction tasks aim to predict future frames
given context frames. Generally, a series of generative models, prominently gen-
erative adversarial networks [17,34], variational autoencoders [1,72,73], autore-
gressive models [80,81,86], and diffusion models [8, 28,36], have been shown in-
strumental in surmounting this challenge. Furthermore, many works [8,63,71,74]
consider the incorporation of text prompts/descriptions to aid in video genera-
tion. Our work mainly builds up the video prediction structure through a com-
bination of earlier VAE-style works [1, 72] and some recent works [24, 79] based
on spatial-temporal attention.

Goal-Conditioned Reinforcement Learning. Our work uses the goal-conditioned
RL framework. Unlike the setting based on a reward function, agents are pro-
vided with a behavior goal of the task in goal-conditioned RL. The goals can be
images, feature vectors, language, commands, intrinsic skills, and so on, which
are more general and flexible than the sometimes hard-to-define reward function.
Many works address the challenge from various perspectives, such as optimiza-
tion based on the divergence to the goal [39, 44, 53, 68], sub-goal generation/
selection [41,42], and relabeling techniques [2]. Our work uses the most common
and direct approach [19,49,77] to measure the distance between observation and
goal. Our choice accommodates the nature of the tasks in our experiments, and
more delicate methods may help when handling more complex tasks.

E Limitation Discussion

Despite being an effective method for pre-training with videos, PVDR has some
limitations. Firstly, the learning of the reward function is not included in PVDR,
and instead a preset reasonable reward function is assigned. Such a direct des-
ignation may not provide valid guidance for more complex tasks. In fact, some
works have developed the usage of the foundation model as a reward function,
which has the potential to be integrated to address the lack of a learned reward
function. In addition, the pre-training videos are limited to a single source cur-
rently, and incorporating Internet videos from a wider range of sources may lead
to a more general and capable agent. ContextWM [76] actually already provides
an effective way to extend single-source video data to large wide-source datasets
through the introduction of context representations, and the introduction of this
mechanism to PVDR may address this limitation.


