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8 Supplementary Material

We provide additional implementation details in Sec. A. We present additional
qualitative results on Blender-HS dataset, PartNet dataset, and LLFF dataset
in Sec. B. Additionally, we include a video attachment with visualizations of the
view-consistent hierarchical segmentation results.

A. Additional Implementation Details

A.1. Hyperparameters On Blender-HS and PartNet, we train our model
for 20,000 iterations with a batch size of 4096 and use the same optimization
parameters as DFF. In contrastive learning (see Eq. (3)), we set the temperature
7 to 0.1 and sample 64 positive and negative pairs from each mask. We set the
loss weight « of the Euclidean loss in Eq. (4) to 1. For depth continuity loss,
we sample 16 patches per mask, and begin using the depth continuity loss after
5000 iterations. During 3D inference, we extract a point cloud from training-
view depth maps, apply voxel downsampling with voxel size 2 x 1072, and run
outlier removal with distance threshold 4 x 10~3 and number threshold of 1. We
build the graph of points using kg,qpn = 16 nearest neighbors, and we transfer
point segmentation labels into a novel view using the mode of kqyery = 5 nearest
neighbors. We retain N = 200 graph components and set the distance threshold d
to be 5x 1073 Please refer to Sec. 4 for definitions of the above hyperparameters.

A.2. Hierarchical Sampling We first organize the segmentation masks into a
hierarchical structure determined by the inclusion ratio between them. One mask
A is designated as a child of another mask B when'A&fl > pin and % < ProU-
We empirically set p;,, = 0.95 and pr,y = 0.85. We present the hierarchical
sampling algorithm we introduced in Sec. 4.1 in Algorithm 1.

We sample same number of positive pairs and negative pairs for training
for training efficiency. Implementing a 4-1 ratio (4Xx more negatives than posi-
tives) instead of 1-1, the normalized covering (NC) score increases from 0.709 to
0.720. However, this slow down our training by 43%, primarily due to the time-
consuming computation of ultrametric distances and the associated minimum
spanning tree.

A.3. Additional Details on Evaluation Metrics

Normalized Covering Score As discribed in Sec. 5.1, we measure the quality of
hierarchical segmentation with the Normalized Covering (NC) score [19]. This
metric averages the Intersection over Union (IoU) between each ground truth
mask and the best-matching (i.e. most-overlapping) predicted mask. The metric
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Algorithm 1 Data Sampling

pos_samples < ||
neg samples < [
for all A € leaf masks do
4 Sampling positive pairs from the leaf node
sample < (Random(A), Random(A))
while A has Parent do
B <+ A.Parent
pos__samples = sample
# Sampling negative pairs for the current level
sample < (Random(A), Random(A N B))
neg samples += sample
A+ B
end while
end for
return pos_samples, neg samples

Where S denotes all segmentation masks and S’ denotes all predicted masks.
For LSeg, DFF, and LeRF, which only output feature fields without segmenta-
tion results (5), we adopt a similar approach as our method, and we extract
segmentations by thresholding feature distances.

Segmentation Injectivity Score We propose the Segmentation Injectivity (SI)
score to measure if each pixel belongs to only one mask for each level of gran-
ularity. As described in Sec. 5.1, given a ground truth mask, we first randomly
sample p; and py from that mask, and then query the model at these points
and granularity for a new mask prediction. Then, we measure the IoU between
the two resulting masks. We iterate this process N = 100 for each ground truth
mask, calculating scores for each run. The final SI score is obtained by averaging
the scores across all ground truth masks and viewpoints.

We represent the segmentation model as F'(v,p,t) — A’ where v denotes the
viewpoint, p represents the pixel query, t corresponds to the granularity level,
and A’ is the resulting segmentation mask. The SI score is defined as
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where v represents the view corresponding to the ground truth mask A.

View Consistency Score We use the View Consistency (VC) score to measure the
3D consistency of image segmentations. Starting with the source view, we rotate
the camera by 10 degrees, rendering both a new image and the corresponding
ground truth visibility mask in the shifted view — Fig. 6 provides an example of
two viewpoints and their visibility mask on the Blender Hotdog scene.
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For a given point query p; and a granularity ¢ and its mask prediction A1 =
F(v,p1,t) in the source view, we leverage the ground truth camera parameters
to warp the point to po = T(p1) and the mask prediction to T(A;) in the
shifted view where T' denotes the pixel transformation. Following this, we query
the model in the shifted view with ps using the same threshold ¢, resulting in
Ay = F(V', pa,t).

Utilizing the visibility mask V', we eliminate pixels that are occluded in ei-
ther view from A, and T(A;). The Intersection over Union (IoU) between the
remaining masks is computed as the VC score for this sample. We reduce the
noise induced by random sampling by computing this score for N = 100 times
per ground truth mask.

Taken together, the VC score is defined as
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For additional details, please refer to Sec. 5.1.
We also evaluate the View Consistency across multiple angles, in Tab. 5. The
ranking of the methods is the same.

Table 5: View Consistency score with different view angles.

Method VCl()O T VC450 T VCQ()O T V01350 T
LSeg [26] 0.536 0.522 0.510 0.498
LSeg + DFF [24] 0.827 0.813 0.810 0.808
SAMS3D [6] 0.724 0.601 0.578 0.539
Ours 0.789 0.763 0.742 0.712

Depth Error We leverage the ground truth depth map rendered in blender to
compute the depth error of our method. The scale of the depth error adheres to
the normalized NeRF scene.

A.4. Additional Details on Baselines

DFF We configure DFF to use a white background and employ uniform ray
sampling on the BlenderHS dataset. All other hyperparameters directly adhere
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(a) Image (b) Shifted Image (e) Visibility Mask

Fig. 6: View Consistency: We evaluate the view consistency between the source
viewpoint (a) and another one shifted 10 degrees (b). We render the ground truth
visibility mask (c) with ray casting to avoid the occlusion/disocclusion between views.

Table 6: Distilled Feature Fields: We present the NC score of DFF with volume
rendering (VR) and the NC score of the official codebase on our BlenderHS dataset.

Method NC()hj T NCcoll T Ncscene T Ncmean T
DFF (VR) 0.164 0.427 0.839 0.477
DFF (Official) 0.082 0.286 0.666 0.345

to the official implementation. Furthermore, DFF’s official code? does not apply
volume rendering to the feature branch. Instead, it generates a feature map by
directly querying the volumetric features at the 3D locations of the predicted sur-
face points. We extended their code to perform volume rendering, and we show
that using volume rendering leads to improved performance on the BlenderHS
dataset (see Tab. 6).

LeRF We use LeRF’s reported NSVF hyperparameters for the Blender synthetic
dataset. This includes configuring the background to white, selecting uniform
sampling as the ray sampling strategy, disabling space distortion, and setting
average appearance embedding to off. We train the model for 20000 steps. For the
Normalized Covering Score, we report the highest result among all 30 semantic
scales available in the LeRF feature field for each ground truth granularity. For
the Segmentation Injectivity score and View Consistency scores, we evaluate
LeRF at the semantic scale corresponding to the ground truth granularity which
yields the highest NC score.

SAMSD Given a pretrained NeRF and a segmentation mask from a single view,
SAMS3D optimizes a binary voxel grid using mask inverse rendering and cross-
view self-prompting to propagate the mask into 3D. In our experiments, we
propagate the SAM masks from the segment-everything mode using 20 training
views (while still using all 100 training images to pretrain the NeRF). We ob-
served saturation in SAM3D’s NC score after 20 views, and, on an A6000 GPU,
it takes approximately a day per scene to propagate the segmentation maps from
20 views. In contrast, our method takes around 2 hours.

2 https://github.com/pfnet-research/distilled-feature-fields
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SAM We employ the ViT-H model from the official SAM GitHub repository? to
generate mask predictions. To generate the training data of our model, we use
the segment-everything mode to generate our supervision.

In the evaluation process, when querying segmentation models with a ran-
domly sampled point, we employ the point as a prompt for SAM to generate the
segmentation prediction. This approach, compared to evaluating based on the
output of the segment-everything mode, yields a higher NC score and provides
a clearer granularity level.

A.5. Training and Inference Time We train and perform inference on a
Titan RTX GPU. Training typically takes ~70 minutes, while inference takes
5 seconds per granularity for 10 views. The main expense in inference is the
watershed algorithm running on 3D point clouds, which is executed once per
granularity and is view-independent.

B. Additional Qualitative Results

B.1. BlenderHS Dataset We first visualize the ground truth segmentations
for the Drums scene in the BlenderHS Dataset [33] in Fig. 8. We then present
qualitative results on the BlenderHS dataset [33] in Fig. 9. Our segmentations
exhibit a hierarchical structure and maintain consistency across different views.
We also visualize our ultrametric feature field on the Lego scene in Fig. 11,
showing sharper features than DFF.

B.2. PartNet Dataset We present qualitative results on the PartNet dataset [36]
in Fig. 10. Our method is able to generate hierarchical segmentation results of
different objects. Leveraging the 2D masks predicted with SAM as guidance,
our method proficiently segments various surfaces of sub-parts within the ob-
ject, while those are not included in the PartNet ground truth annotations.

B.3. LLFF Dataset We present qualitative results on the the LLFF dataset [33]
in Fig. 12. Our approach is able to generate view-consistent hierarchical segmen-
tation results for real-world scenes.

3 https://github.com/facebookresearch/segment-anything
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Fig.7: NC Score of SAM3D: We present the Normalized Covering (NC) score
(y-axis) of SAM3D, correlating it with the number of views (x-axis) from which we
propagate the SAM segmentation masks.

Fig. 8: Blender with Hierarchical Segmentation (Blender-HS): We render hi-
erarchical segmentation maps at three levels of granularity, namely Scene, Collection,
and Object, using information saved into the blender file by the scene artist.
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Fig.9: BlenderHS Dataset: We present the qualitative results obtained from our
BlenderHS dataset. The segmentation results demonstrate both view consistency and
hierarchical structure.



LA A A 4
W W W VW%
T
Addd
S I I
TYII X

(a) Image (b) Hierarchical Seg-
mentation

Fig.10: PartNet Dataset: We showcase the qualitative results on the PartNet
dataset.
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(a) Image (b) DFF [26] (c) Ours

Fig.11: Feature Visualization: We visualize rendered feature maps using PCA. The
feature map generated by DFF [26] fails to distinguish between different parts of the
Lego. In contrast, our method learns features that can distinguish various Lego bricks.

Fig. 12: LLFF Dataset: We showcase the qualitative results on the LLFF dataset.



