
18 X. Gu et al.

A Training Details

Stage Prediction BEV Feature Attention

Map Model LR Weight Decay Patch Size MLPdim Depth Heads Headdim

MapTR [22] 5E-4 1E-4 (20, 10) 512 6 16 64
MapTRv2 [23] 3.5E-4 1E-2 (20, 10) 64 6 16 64
MapTRv2-Centerline [23] 3.5E-4 1E-2 (20, 20) 64 4 12 32
StreamMapNet [37] 3.5E-4 1E-3 (10, 5) 128 6 16 64

Table 3: The hyperparameters used when training HiVT [40] with various online
mapping models in Sec. 3.1, where agent-lane attention is replaced with agent-BEV
attention.

Map Model LR Weight Decay Dropout

MapTR [22] 1.5E-4 0.05 0.2
MapTRv2 [23] 1.5E-4 0.05 0.2
MapTRv2-Centerline [23] 2E-4 0.05 0.2

Table 4: The hyperparameters used when training DenseTNT [12] with various online
mapping models in Sec. 3.2, where lane vectors are enhanced with BEV grid features.

Prediction BEV Feature Attention

LR Weight Decay Patch Size MLPdim Depth Heads Headdim

5E-4 1E-2 (10, 5) 128 6 16 64

Table 5: The hyperparameters used when training DenseTNT [12] with StreamMap-
Net [37] in Sec. 3.3, where agent information is replaced with temporal BEV feature
attention.

A.1 Data Preprocessing

To ensure a fair comparison across di�erent map estimation and prediction mod-
els, we unify the orientations of the BEV features and the resulting estimated
map. The scene is centered at the ego-vehicle frame, with the positive y-axis
aligned with the forward-moving direction, and the positive x-axis aligned with
the right side of the ego-vehicle. The BEV features are adjusted accordingly. The
perception range (H × W ) is 60m × 30m. Due to the limits of AV perception,
we only predict for agents within this perception range.

A.2 Model Training

To address the potential variability in convergence rates between di�erent inte-
gration approaches and map-prediction combinations, each model is individually
adjusted to optimize performance. The BEV dimension is 200× 100 for MapTR
models [22,23] and 100× 50 for StreamMapNet [37].
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During training, online map estimation models are trained �rst as in [13].
This produces map element polylines with corresponding uncertainties. During
inference, we also save the BEV features produced by the trained models, pro-
viding the necessary data for all three settings for prediction: Baseline, where
only lane vectors are used; Uncertainty, where uncertainty is incorporated; and
our approach, where BEV features are incorporated. After we obtain this mod-
i�ed dataset, HiVT [40] and DenseTNT [12] are trained following the di�erent
strategies in Sec. 3.

In Sec. 3.1, HiVT's local encoder is modi�ed by replacing agent-lane features
with agent-BEV features. As seen in Tab. 3, we reduce the attention module size
as the complexity of the mapping model increases. This adjustment is shown via
the decrease in MLP layer size and head dimension across the MapTR series. The
increase in BEV patch size for MapTRv2-Centerline compared to MapTRv2 also
indicates a coarser feature representation. The output dimension of the attention
module is adjusted to match the original agent-lane feature dimension, ensuring
compatibility with the HiVT's global interaction module.

For the approach in Sec. 3.2, we tune the prediction training hyperparameters
to accommodate the additional information provided by BEV features, as seen
in Tab. 4. Due to the increased complexity of input data, the learning rate is
reduced to the order of 10−4 and weight decay is increased to 0.05 from 0.01 to
ensure smooth training convergence. Dropout is also increased slightly from 0.1
to 0.2. When encoding lane information in the point-level subgraph of Vectornet,
the hidden layer size is doubled to accommodate the extra BEV features after
concatenating them with the original raw lane vertices.

The hyperparameter choices for Sec. 3.3 are shown in Tab. 5. Prediction
model values are adjusted in the same way as Tab. 4, with a smaller learning
rate to ensure convergence. For the BEV attention module, the hyperparameter
choices are the same as in the corresponding row of Tab. 3.

B Additional Quantitative Comparisons

B.1 Runtime Comparisons

Below, runtime is measured on an RTX 4090 GPU from when raw RGB camera
images are input to when trajectories are produced.

Model Combination Base (ms) Ours (ms)

HiVT + MapTR 22.4 9.1
HiVT + MapTRv2 26.7 13
HiVT + StreamMapNet 33.6 29.4

C Additional Visualizations
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Fig. 7: StreamMapNet [37] and HiVT [40] combined using the strategy in Sec. 3.1. By
replacing lane information with temporal BEV features, HiVT is able to better predict
stopping behavior, avoiding overshooting the GT (as in the Baseline and Uncertainty-
enhanced approach).
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Fig. 8: StreamMapNet [37] and HiVT [40] combined using the strategy in Sec. 3.1. By
replacing lane information with temporal BEV features, HiVT's predictions respect
boundaries, in contrast to both the Baseline and Uncertainty-enhanced approaches
which deviate outside the green road boundary. Further, our approach's predicted
trajectories align more closely to the GT.
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Fig. 9: MapTR [22] and DenseTNT [12] combined via the strategy in Sec. 3.2. Our
augmentation of map vertices with BEV features enables DenseTNT to produce ac-
curate trajectories, preventing overshooting at an intersection as seen in the Baseline
and Uncertainty-enhanced setups.
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Fig. 10: StreamMapNet [37] and DenseTNT [12] combined using the strategy in
Sec. 3.3. By replacing agent trajectory information with BEV features, DenseTNT
is able to predict more accurate trajectories, compared to the signi�cant overshooting
outputs from the Baseline and Uncertainty-enhanced approaches.


