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Abstract. Current end-to-end Scene Graph Generation (SGG) relies
solely on visual representations to separately detect sparse relations and
entities in an image. This leads to the issue where the predictions of
entities do not contribute to the prediction of relations, necessitating
post-processing to assign corresponding subjects and objects to the pre-
dicted relations. In this paper, we introduce a sparse relationship matrix
that bridges entity detection and relation detection. Our approach not
only eliminates the need for relation matching, but also leverages the
semantics and positional information of predicted entities to enhance
relation prediction. Specifically, a multi-granularity sparse relationship
matrix prediction network is proposed, which utilizes three gated pool-
ing modules focusing on filtering negative samples at different granu-
larities, thereby obtaining a sparse relationship matrix containing entity
pairs most likely to form relations. Finally, a set of sparse, most probable
subject-object pairs can be constructed and used for relation decoding.
Experimental results on multiple datasets demonstrate that our method
achieves a new state-of-the-art overall performance. Our code is available
at https://github.com/wanglei0618/Mg-RMPN.

Keywords: Scene Graph Generation · End-to-End · Sparse Relation-
ship Matrix · Multi-Granularity

1 Introduction

Scene Graph Generation (SGG) is a fundamental visual comprehension task
that captures semantic information by detecting relation triplets <subject en-
tity, predicate, object entity> in an image. This structured representation can
facilitate many downstream tasks, such as image captioning [4, 41], visual ques-
tion answering [9,28], image retrieval [11,25] and image generation [10,19]. The
end-to-end SGG methods [6, 16, 30] can directly generate sparse relations from
an image based on a fixed number of relation queries, avoiding dense predic-
tion that contains a lot of background relations in two-stage SGG. This leads to
faster inference speed, and because fewer background relations are predicted, it
exhibits superior predictive performance for rare samples of tail classes.
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Fig. 1: (a) End-to-end SGG pipeline. (b) Our proposed end-to-end pipeline based on
multi-granularity sparse relationship matrix prediction network. (c) The average num-
ber of entities and relations in the VG150, OIv6, and GQA200 datasets demonstrates
the sparsity of relations in an image.

Current end-to-end approaches [6,16,22] still lag behind two-stage methods in
performance, which is attributed to their reliance solely on visual representations
to separately detect entities and relations, as shown in Figure 1 (a). This leads
to two drawbacks: (1) It requires post-processing to match the corresponding
subjects and objects for the relations, and the model’s performance is constrained
by the capabilities of matching. (2) Due to the inability to determine the subject
and object in advance, entity predictions cannot help with relation prediction,
and relation prediction can only rely on visual features.

In this paper, we introduce a sparse relationship matrix that bridges entity
detection and relation detection. Our approach not only eliminates the need
for relation matching, but also leverages the semantics and positional informa-
tion of predicted entities to enhance relation prediction. Figure 1 (b) shows our
pipeline based on the "pair then relation" [30] framework, which first constructs
a relationship matrix based on entity predictions to represent the possibility of
forming a relation between two entities and then selects the sparsest, most likely
subject-object pairs for relation prediction.

Compared to all possible pairs formed by the entity proposals, the subject-
object pairs with relations are extremely sparse. Figure 1 (c) illustrates the
average entities and relations in the datasets. Taking VG150 [13] as an example,
when generating Ne = 100 entities, there are a total of (100(100 − 1)) = 9900
possible combinations. But the average relations per image is only 5.8, which
means that more than 99. 9% pairs are negative samples. Therefore, directly
learning this extremely sparse relationship matrix is very challenging.

In this work, we propose a Multi-granularity sparse Relationship Matrix Pre-
diction Network (Mg-RMPN) to partition the negative samples into different
granularities, achieving layer-by-layer filtering of dense negative samples. Specif-
ically, Mg-RMPN employs three Gated Pooling Modules (GPM) with identical
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structures but independent parameters, each of which focuses on filtering neg-
ative samples at different granularities. The GPMs are used to generate rela-
tion matrices at different granularities and construct the corresponding ground
truth matrices for supervised learning. The experimental results from various
datasets reveal that our approach not only accurately identifies numerous head-
class samples, but also excels in predicting sparse tail-class samples, achieving
state-of-the-art overall performance.

The contributions are summarized as follows: (1) An end-to-end SGG frame-
work based on the relationship matrix is proposed that bridges entity detection
and relation detection. (2) An Mg-RMPN is proposed to achieve sparse relation-
ship matrix prediction based on multi-granularity negative sample learning. (3)
Experimental results have confirmed that our method achieves state-of-the-art
overall performance in both end-to-end and two-stage methods.

2 Related Works

2.1 Scene Graph Generation

Early work [5, 27, 32, 36] in SGG is based on the two-stage pipeline, first em-
ploying a Faster-RCNN [24] object detector to generate entity proposals, and
the class of each entity is predicted. Then, entities are paired to form relations,
and all possible pairs are classified. Its drawback lies that dense relation pairs
include numerous background relations, which dilute the sparse tail-class sam-
ples, thus aggravating the imbalance issue. Therefore, some recent efforts [8,23]
have focused on addressing the imbalanced predictions, developing a series of re-
balancing strategies such as logit adjustment [2,26], loss reweighting [18,33,35],
and data resampling [17,31, 37]. Unlike these methods, we introduce a relation-
ship matrix to generate sparse subject-object pairs for relation prediction. The
sparse relations generated in this way have a higher signal-to-noise ratio, which
can alleviate the imbalance problem. The results of the experiments validate
that our method maintains outstanding performance for head classes and also
demonstrates high performance for tail classes.

2.2 End-to-End Scene Graph Generation

End-to-end SGG, inspired by DETR [1], generates sparse relations directly from
an image based on queries. For instance, [6] introduced the Relation Transformer
to directly generate a set of relations from visual features. However, the gener-
ated relations did not match the corresponding subjects and objects, hence [16]
proposed a graph assembling module to address the relation matching. [30] fur-
ther introduced a "pair then relation" framework that predetermines subject-
object pairs, circumventing the relation matching. However, these approaches
suffer from the issue of relying solely on visual representations to detect relations
and entities separately. Therefore, this paper introduces Mg-RMPN to predict
a sparse relationship matrix to link entity detection and relation detection, not
only eliminating the need for relation matching but also utilizing the predicted
entity semantics and positional information to assist in relation prediction.



4 L. Wang et al.

3 Method

3.1 Problem Definition

SGG aims to generate a scene graph G = {E ,R} from an input image I. The
scene graph consists of a set of n entities E = {ei}ni=1 and a set of m relations
R = {rk}mk=1 between entities. The set of entities E can be further decomposed
into a set of bounding boxes B = {bi}ni=1 and a set of class labels C = {ci}ni=1

The generation of a scene graph G can be formulated as the joint probability
distribution:

Pr(G|I) = Pr(B, C|I)Pr(R|I,B, C), (1)

where Pr(B, C|I) represents the entity representation obtained from the object
detector, including the class labels and bounding boxes. Pr(R|I,B, C) represents
the relation prediction based on pairs of entities by the relation decoder. The
process from Pr(B, C|I) to Pr(R|I,B, C) requires our Mg-RMPN to predict the
pairs of entities most likely to form a relation from all possible pairs of entities.

3.2 Overall Architecture

As shown in Figure 2 (a), our method comprises three modules: (1) entity detec-
tion, (2) relationship matrix prediction, and (3) relation prediction. The entity
detection is responsible for generating a set of entities based on the object detec-
tor, including their visual representations, class labels, and bounding boxes. The
relationship matrix prediction is responsible for producing a sparse relationship
matrix that represents the relevance between two entities, and then obtaining the
indices of the subject and object entities that are most likely to form a relation
from all possible combinations. Finally, the relation of these sparse subject-object
pairs is predicted through the relation decoder.

3.3 Object Detector

This paper employs a deformable DETR [42] as the object detector, which con-
tains a transformer encoder-decoder architecture with a set of entity queries.
Here, the entity queries interact with encoder features through multi-scale de-
formable attention. Given an image I, the object detector produces Ne entity
representations Qe = {qe

i}
Ne
i=1 ∈ RNe×d from a set of learnable entity queries,

where d is the embedding dimensions. Based on Qe, the object detector then fol-
lows with a classification head and a regression head to predict the entity’s class
predictions C = {ĉi}ni=1 ∈ RNe×Ce and bounding boxes B = {b̂i}ni=1 ∈ RNe×4,
respectively, where Ce is the number of entity classes.

3.4 Multi-Granularity Relationship Matrix Prediction Network

Given Ne entities, Multi-granularity sparse Relationship Matrix Prediction Net-
work (Mg-RMPN) generates a Ne×Ne adjacency relationship matrix Mr. Each
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Fig. 2: (a) Overall pipeline of our end-to-end SGG method. (b)Multi-granularity sparse
Relationship Matrix Prediction Network (Mg-RMPN). GPM is Gated Pooling Module.

node represents the probability of forming a relationship between two entities.
Due to the sparse entities and relations in an image, Mr contains a large number
of pairs without relations, that is, negative samples.

Therefore, Mg-RMPN defined three Mr based on multi-granularity negative
samples, where the three Mr are learned through three structurally identical
but parameter-independent Gated Pooling Modules (GPM), as shown in Figure
2 (b). With the outputs of the GPMs, Mg-RMPN is able to generate the final
sparse relationship matrix, enabling the identification of most probable subject-
object pairs to predict relations.

Gated Pooling Module Unlike [30], which only uses visual features, our GPM
determines the correlation of two entities based on their visual representation,
linguistic prior and location information. Given a set of visual representations
Qe of the entities in an image, GPM first uses two fully connected networks Fsub

and Fobj to project it to the visual representations of the subject and object,
Qsub and Qobj , respectively, as follows:

Qsub = Fsub(Qe) = {qsub
i }Ne

i=1, Qobj = Fobj(Qe) = {qobj
j }Ne

j=1. (2)

Subsequently, the visual similarity between the subject i and the object j can
be calculated as vsimij = qsub

i · (qobj
j )T.

Given a set of class prediction distributions C for entities, GPM uses the
prior linguistic function Fprior from [26] to predict the correlation between two
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entities, spriorij = Fprior(ĉi, ĉj). Fprior aims to capture the linguistic inductive
bias that exists between two entities to enhance the prediction of the relational
matrices. Similarly to [26], Fprior obtains a reasonable initialization based on
the distribution of relations generated by entity pairs in the training dataset.

Based on the positions B of the entities, GPM uses the function Foverlap

to obtain the relative position information between two entities boverlap
ij =

Foverlap(b̂i, b̂j) ∈ R8, where 8 elements indicate difference in x and y coor-
dinates, width ratio, height ratio, IOU, center distance, area ratio, and as-
pect ratio. Additionally, we can also obtain the union bounding box b̂

u

ij ∈ R9

for the entity pairs, where 9 elements indicate the union bounding box coor-
dinates (x1, y1, x2, y2), center (x1+x2

2 , y1+y2

2 ), size (x2 − x1, y2 − y1) and area
(x2 − x1)(y2 − y1), respectively. Then, we can obtain the relevance representa-
tion of the subject i and object j as follows:

eij = [vsimij , spriorij ,boverlap
ij , b̂

u

ij ], (3)

where [·, ·] denotes the concatenation operation. Subsequently, the feature rep-
resentation of the entity pair can be expressed as

fij = [qsub
i ,qobj

j , fs(s
prior
ij ), pos(boverlap

ij ), pos(b̂
u

ij)], (4)

Where fs is a fully-connected layer for language prior encoding, and pos is a
fully-connected layer for positional encoding. Then, GPM uses a gated pooling
layer fgate to obtain the probability of relation between subject i and object j
as follows:

p̂ij = Sigmoid(
∑

fgate(fij)⊙ eij), (5)

where ⊙ represents element-wise multiplication. Finally, we can obtain a Ne ×
Ne relationship matrix Mr = GPM(Qe,C,B). Note that we set the diagonal
elements of Mr to zero, removing the cases where an entity serves as both subject
and object simultaneously.

Multi-Granularity Sparse Relationship Matrix Prediction Based on the
output of three GPMs, we can construct three relationship matrices based on
the granularity of negative samples and build the corresponding ground truth
matrices (see Section 3.6) for supervised learning, enabling each GPM to focus
on identifying negative samples of specific granularity.

Since the Ne entity proposals are typically much greater than the number of
entities contained in an image, resulting in a large number of background entities
among all possible pairs of entities. Since background entities do not form rela-
tionships, we divide the negative samples in the relationship matrix into three
levels of granularity: (1) high-confidence negative samples composed of back-
ground entities (background-background), (2) medium-confidence negative sam-
ples constructed from background and foreground entities (entity-background or
background-entity), and (3) low-confidence negative samples composed of fore-
ground entities (entity-entity).
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Then we can define three relationship matrices based on the output of the
GPMs as follows.

Mr1 = GPM-1(Qe,C,B)

Mr2 = Mr1 + GPM-2(Qe,C,B)

Mr3 = Mr2 + GPM-3(Qe,C,B)

(6)

In Eq.6, each GPM can focus on learning the filtering of negative samples
at different granularities, as follows: (1) GPM-1 focuses on learning from pairs
between background and filters out a large number of high-confidence negative
samples. (2) GPM-2 focuses on learning from pairs between background and
entities and filters out medium-confidence negative samples. (3) GPM-3 focuses
on learning from no relation pairs between entities and only needs to filter out
entity pairs that do not form relationships from the remaining entity pairs.

Based on the final sparse relationship matrix Mr3, we can select the top-
Nr subject-object pairs most likely to form relations and obtain their indices in
the entity visual representations Qe, the entity’s class predictions C, and the
bounding boxes B.

3.5 Relation Decoder

With the Qe, C and B of subjects and objects, we can obtain the subject-object
pair representation Qpair, which integrates visual, semantic, and positional en-
codings as follows:

Qpair = [Qsub
e , emb(Csub), pos(Bsub),Qobj

e , emb(Cobj), pos(Bobj)]. (7)

where emb is a pre-trained Glove language model to acquire the word embedding.
In this paper, we adopt the relation decoder in [30], which consists of trans-

former decoders in the style of DETR, to predict relations. In the relation de-
coder, we initialize a relation query Qr ∈ RNr×d as the query input, and the
subject-object pair Qpair is projected as the key and value of cross-attention.
Subsequently, the relation representation after the Relation Decoder (RD) can
be expressed as Q̃r = RD(Qr,Qpair). Then, the relation prediction for the entity
pairs can be expressed as r̂ = WclsQ̃r, where Wcls is the liner relation classifier.

3.6 Training

Our end-to-end SGG is divided into three subtasks: (1) an entity detection task
based on the object detector, (2) a sparse relationship matrix prediction task
based on the Mg-RMPN, and (3) a relation prediction task based on the relation
decoder. During training, each subtask generates the corresponding supervisory
information and losses, as follows.
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Entity Detection Loss We uses the end-to-end deformable DETR [42] as
object detector, which uses the set prediction loss proposed in DETR [1] by
assigning the ground truth entities to the predictions. A cost function is applied
to compute the matching cost between a prediction and a ground-truth entity.
With the cost matrix, the entity prediction-ground truth assignment is computed
with the Hungarian Matching [14]. Giver a set of Ne entity proposals {ei}Ne

i=1

from object detector, the set prediction loss for can be presented as:

Le = ΣNe
i=1[L

e
cls + 1ei ̸=ϕLe

box], (8)

where Le
cls denotes the cross-entropy loss for label classification and ei ̸= ϕ means

that <background> is not assigned to the ith entity prediction. Le
box consists of

L1 loss and generalized IoU loss for the box regression.

Multi-granularity Relationship Matrices Loss To predict the final sparse
relationship matrix, we need to define the supervisory information and loss func-
tions during the training phase.

Multi-granularity Supervision Matrices In the training phase, we assign labels
to the entity proposals {ei}Ne

i=1 by Hungarian matching and obtain the ground
truth for each node in Mr regarding the subject, object, and whether they form
a relation. In response to the sparsity of Mr, we propose Mg-RMPN to achieve
hierarchical identification of negative samples at different granularities.

Consequently, based on the granularity of the negative samples that each
GPM focuses on in Section 3.4, the corresponding ground truth can be obtained.
(1) Mgt

r1 filters out all pairs composed of background entities as follows:

Mgt
r1 = {pij | pij =

0 if (ei = ϕ and ej = ϕ) or i = j

1 otherwise
, 1 ≤ i ≤ Ne, 1 ≤ j ≤ Ne}, (9)

where ei = ϕ (ej = ϕ) means that <background> is assigned to the ith (jth)
entity prediction, i = j means removing self-connected entity pairs. (2) Mgt

r2
further filters out all pairs composed of backgrounds and entities as follows:

Mgt
r2 = {pij | pij =

0 if (ei = ϕ or ej = ϕ) or i = j

1 otherwise
, 1 ≤ i ≤ Ne, 1 ≤ j ≤ Ne}. (10)

(3) Mgt
r3 filters out all non-relationship pairs, and Mgt

r3 is also the final ground
truth relationship matrix of the scene graph, expressed as follows

Mgt
r3 = {pij | pij =

0 otherwise
1 if rij = 1

, 1 ≤ i ≤ Ne, 1 ≤ j ≤ Ne}, (11)

where rij = 1 implies that there is a relation between subject i and object j.
Here, the relationships of the negative sample subsets in Mgt

r1, Mgt
r2 and Mgt

r3 are
Mgt

r1|pij=0 ⊆ Mgt
r2|pij=0 ⊆ Mgt

r3|pij=0.
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Multi-granularity Relationship Matrices Loss Considering that the large number
of negative samples in Mr have different confidences, we modify the binary cross-
entropy function using focal loss [20], which applies weighted discrimination on
well-classified samples, forcing the model to focus on wrongly classified samples.
Then, the multi-granularity learning loss is

LMg = L1
RM (Mr1,Mgt

r1) + L2
RM (Mr2,Mgt

r2) + L3
RM (Mr3,Mgt

r3), (12)

where the relationship matrices loss Lk
RM (k = 1, 2, 3) is defined as

Lk
RM (Mr,Mgt

r ) =−
∑
i

∑
j

{αk(1− p̂ij)
γpij log(p̂ij)

+ (1− αk)p̂
γ
ij(1− pij)log(1− p̂ij)}/Npos

+ ∥Mr∥1 + ∥Mr∥2,

(13)

where the first part is the focal loss based on binary cross-entropy, and the second
part is the L1 and L2 regularization of Mr, αk(k = 1, 2, 3) is hyperparameters
that adjusts the weights of positive and negative samples, γ is a hyperparameter
for focal loss, and Npos is the number of positive samples in each mini-batch.

Relation Prediction Loss In this paper, the relation decoder also considers
relation prediction as a set prediction based on a query. Therefore, during the
training phase, we also use Hungarian Matching to assign labels for relation
prediction. Due to the imbalanced relation classes in SGG, we use Seesaw loss [29]
to dynamically adjust the gradients of samples of different classes. The relation
loss is as follows:

Lr = −
Cr∑
i=1

yilog(σ̂i), σ̂i =
er̂i∑Cr

i ̸=j Sijer̂j + er̂i
, (14)

where Cr is the number of relation classes, yi ∈ {0, 1}, 1 ⩽ i ⩽ Cr is the one-hot
ground truth label, Sij is a tunable balancing factor between different classes,
detail can be found in [29].

In summary, the total loss of our method is

L = Le + λ1LMg + λ2Lr, (15)

Where λ1 and λ2 are hyperparameters used to respectively adjust multi-granularity
learning loss LMg and relation prediction loss Lr.

4 Experiments

4.1 Experimental Settings

Datasets: We evaluate our proposed method on the following datasets: (1) Vi-
sual Genome (VG150) [13] is the most widely used dataset in SGG, consisting
of the most frequent 150 object classes and 50 predicate classes. (2) Open Im-
ages V6 (OIv6) [15] is a large-scale dataset proposed by Google. We follow
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the data processing and evaluation protocols in [17, 40]. OIv6 consists of 601
object classes and 30 predicate classes. (2) Generalized Question Answer-
ing (GQA200) [9] is another vision and language benchmark with more than
3.8M relation annotations. We follow the data processing in [7], which consists
of Top-200 object classes and Top-100 predicate classes.
Task & Evaluation Metrics: In this work, we focus on the Scene Graph De-
tection task, which detects all objects in an image and predicts their bounding
boxes, labels, and relations. The initial evaluation metric Recall@K (R@K) was
found to be dominated by head classes. Therefore, the mean Recall@K (mR@K)
across all relations classes is proposed to evaluate unbiased SGG. However, fo-
cusing solely on mR@K and neglecting R@K can result in a tail bias. Therefore,
we adopts the harmonic mean F@K of R@K and mR@K as an overall metric.
For OIv6, the weighted evaluation metrics (wmAPrel, wmAPphr, scorewtd) are
used for a more class-balanced evaluation.

Implementation Details: We utilized the pre-trained deformable DETR
[42] as the object detector. We set the loss hyperparameters λ1 and λ2 to 0.5
and 3 respectively. For the multi-granularity relationship matrices loss, we set
αk(k = 1, 2, 3) to 0.75, 0.9, and 0.99, respectively, to control the weight of positive
samples, with the focal loss parameter γ set to 2. The number of entities predicted
by the detector Ne is 100, the number of most probable subject-object pairs
selected Nr is 100, and the size of embedding dimemsions d is 256. Our model is
implemented on 8 NVIDIA 3090 GPUs with learning rate ×10−4 and batch size
16 for 24 epochs. More implementation details are shown in the Supplementary
Material.

4.2 Comparison with State of the Arts

VG150: Table 1 shows the comparison of our method on VG150, with methods
divided into two-stage (above) and end-to-end (below). Due to the imbalance
issue in SGG, the two-stage methods (Motifs, VCTree, GPS-Net, RelDN, PE-
Net) perform better in R@K but show very poor performance in mR@K. Thus,
many rebalancing techniques (VCTree+TDE, BGNN, SHA+GCL) have been
developed. Although they improve mR@K, they inevitably impair R@K. For
example, SHA+GCL, despite achieving the best mR@K, its recall performance
significantly deteriorates, with R@50/100 being only 14.9/18.2.

Although the end-to-end methods are inferior to the two-stage methods on
R@K, it demonstrates better potential on mR@K due to its advantage in sparse
relation prediction, which does not dilute the scarce tail-class samples. Further-
more, compared to the rebalancing techniques of the two-stage methods, the
end-to-end approach does not overly harm R@K and can achieve superior over-
all performance F@K, such as SGTR and Pair-Net.

Our Mg-RMPN leads comprehensively in end-to-end methods. Compared
with two-stage methods, Mg-RMPN achieves competitive performance in R@K
and significantly excels in mR@K, achieving the best overall performance F@K.
For example, Mg-RMPN achieved 19.3/22.8 on F@50/100, surpassing the end-
to-end and two-stage optimal methods Pair-Net and PE-Net, respectively.
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Table 1: Performance comparison at scene graph detection task on VG150. ∗ denotes
the results from [16].

Method R@20R@50R@100mR@20mR@50mR@100F@20F@50F@100

Motifs [36] 25.5 32.8 37.2 5.0 6.8 7.9 8.4 11.3 13.0
VCTree [27] 24.5 31.9 36.2 5.4 7.4 8.7 8.8 12.0 14.0
VCTree+TDE [26] 14.0 19.4 23.2 6.9 9.3 11.1 9.2 12.6 15.0
GPS-Net [21] 22.3 28.9 33.2 6.9 8.7 9.8 10.5 13.4 15.1
BGNN [17] - 31.0 35.8 - 10.7 12.6 - 15.9 18.6
RelDN [39] - 31.4 35.9 - 6.0 7.3 - 10.1 12.1
SHA+GCL [7] - 14.9 18.2 14.2 17.9 20.9 - 16.3 19.5
PE-Net [40] - 30.7 35.2 - 12.4 14.5 - 17.7 20.5

FCSGG [22] 16.1 21.3 25.1 2.7 3.6 4.2 4.6 6.2 7.2
RelTR [6] 21.2 27.5 - 6.8 10.8 - 10.3 15.5 -
AS-Net∗ [3] - 18.7 21.1 - 6.1 7.2 - 9.2 10.7
HOTR∗ [12] - 23.5 27.7 - 9.4 12.0 - 13.4 16.7
SGTR [16] - 24.6 28.4 - 12.0 15.2 - 16.1 19.8
Pair-Net [30] 18.8 24.9 29.3 8.9 12.4 15.4 12.1 16.6 20.2
Mg-RMPN(DETR) 21.0 27.1 31.3 9.9 13.5 16.2 13.5 18.0 21.3
Mg-RMPN(Ours) 22.5 29.1 33.5 10.3 14.4 17.3 14.1 19.3 22.8

We also compared with Pair-Net that is also based on relationship matrix
learning. The experimental results show that our method is comprehensively
superior to it, which demonstrates the effectiveness of our proposed Mg-RMPN.
Furthermore, we also present the results of Mg-RMPN based on the DETR
object detector to eliminate the influence of the detector. The results show that
our Mg-RMPN(DETR) still achieves the best overall performance among both
one-stage and two-stage methods.

Open Image V6: To validate the generalizability of Mg-RMPN, we performed
experiments on Open Images V6 in Table 2 and compared with two-stage (above)
and end-to-end (below) methods. Compared to classic SGG benchmarks, our
method achieved the optimal results among all methods with 45.5, 77.8, 57.4
respectively in mR@50, R@50, F@50. Compared to open image benchmarks, we
obtained competitive 35.5 and 36.4 in wmAPrel and wmAPphr, and achieved the
best result 43.6 in the overall metric scorewtd.

GQA200: We also conducted experiments on the more challenging GQA200, as
shown in Table 3. Compared to two-stage methods (VTransE, Motifs, VCTree,
SHA+GCL), our method’s overall performance F@K is only slightly inferior to
SHA+GCL on F@100, which sacrificed a significant amount of R@K to enhance
mR@K by using rebalancing techniques. Compared to the end-to-end method
Pair-Net, which is also based on relationship matrices, our method is compre-
hensively superior.
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Table 2: Performance comparison on OIv6. ∗ denotes the results from [16,17]. †denote
results reproduced with the authors’ code.

Method mR@50 R@50 F@50 wmAPrel wmAPphr scorewtd

Motifs∗ [36] 32.7 71.6 44.9 29.9 31.6 38.9
VCTree∗ [27] 33.9 74.1 46.5 34.2 33.1 40.2
RelDN∗ [39] 34.0 73.1 46.4 32.2 33.4 40.8
G-RCNN∗ [34] 34.0 74.5 46.7 33.2 34.2 41.8
GPS-Net∗ [21] 35.3 74.8 48.0 32.9 34.0 41.7
BGNN∗ [17] 40.5 75.0 52.6 33.5 34.2 42.1

RelTR [6] - 71.7 - 37.2 37.5 43.0
AS-Ne∗ [3] 35.2 55.3 43.0 25.9 27.5 32.4
HOTR∗ [12] 40.1 52.7 45.5 19.4 21.5 26.7
SGTR∗ [16] 42.6 59.9 49.8 37.0 38.7 42.3
Pair-Net† [30] 44.5 77.4 56.5 31.8 32.4 40.3
Mg-RMPN(Ours) 45.5 77.8 57.4 35.5 36.4 43.6

Table 3: Performance comparison at scene graph detection task on GQA200. ∗ denotes
the results from [7]. †denote results reproduced with the authors’ code.

Method R@50 R@100 mR@50 mR@100 F@50 F@100

VTransE∗ [38] 27.2 30.7 5.8 6.6 9.6 10.9
Motifs∗ [36] 28.9 33.1 6.4 7.7 10.5 12.5
VCTree∗ [27] 28.3 31.9 6.5 7.4 10.6 12.0
SHA+GCL∗ [7] 14.8 17.9 17.8 20.1 16.2 18.9

Pair-Net† [30] 20.2 23.4 10.6 12.6 13.9 16.4
Mg-RMPN (Ours) 23.2 25.7 12.8 14.5 16.5 18.5

4.3 Visualization of Multi-Granularity Relationship Matrices

Figure 3 presents a visualization of the multi-granularity relationship matrices
learned by our Mg-RMPN, where (d), (e), (f) are the sparse relationship matrices
learned after being filtered by GPM-1, GPM-2, GPM-3, respectively, and (a),
(b), (c) are the corresponding ground truth relationship matrices defined in
Section 3.6. The visualization results show that the dense negative samples in the
relationship matrix are filtered layer by layer according to different granularities.
The consistency of the generated multi-granularity relationship matrices with
their ground truth indicates that the three GPMs of Mg-RMPN indeed focus on
filtering negative samples of different granularities.

Figures 3 (h) and (g), respectively, present a zoomed-in view of the final
relationship matrix and its ground truth. We can observe that the predicted
relationship matrix successfully captures the true relationships, for example:
"man wearing shirt", "man holding racket", "man wearing short" and "pole
on fence". Additionally, the relationship matrix also predicts some relationships
that do not in the ground truth, as illustrated by the dashed lines in the rows
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Fig. 3: Visualization of Multi-Granularity Relationship Matrices

Table 4: Ablation studies of Mg-RMPN components on VG150.

GPM-1 GPM-2 GPM-3 R@20/50/100 mR@20/50/100 F@20/50/100

6.5/10.7/15.2 2.9/4.8/6.6 4.0/6.6/9.2
12.5/17.5/21.6 5.2/7.4/9.3 7.3/10.4/13.0
12.8/18.1/22.3 5.8/8.5/10.7 8.0/11.6/14.5
21.2/27.6/32.1 9.2/13.1/15.8 12.8/17.8/21.2
21.7/28.2/32.6 9.8/13.8/16.5 13.5/18.5/21.9
21.8/28.2/32.5 9.7/13.7/16.7 13.4/18.4/22.1

22.5/29.1/33.5 10.3/14.4/17.3 14.1/19.3/22.8

and columns, which represent the relationships with the corresponding entity
"man" as the subject and object, respectively. Due to the abundant presence of
"man" in SGG, the relationship matrix tends to favor predicting relations that
include "man", which aligns with the actual language induction bias. Therefore,
the results of visualization indicate that our Mg-RMPN can accurately predict
the sparse relationship matrix.

4.4 Ablation Studies

Component Analysis of Mg-RMPN. To assess the effectiveness of each
GPM in Mg-RMPN, we performed ablation experiments in Table 4. In Mg-
RMPN, each GPM focuses on negative sample filtering of different granularities,
and the three GPMs collaborate to complete the learning of the sparse rela-
tionship matrix. GPM-1 and GPM-2 are used to help GPM-3 filter negative
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Table 5: Ablation studies of different input information for Mg-RMPN on VG150.

Visual Semantic Position R@20/50/100 mR@20/50/100 F@20/50/100

21.2/27.6/32.1 9.8/13.6/16.4 13.4/18.2/21.7
22.2/28.7/33.1 10.1/14.1/16.9 13.9/18.9/22.4
21.2/27.6/32.2 9.8/13.8/16.8 13.4/18.4/22.1

22.5/29.1/33.5 10.3/14.4/17.3 14.1/19.3/22.8

samples. Using GPM-1 and GPM-2 individually cannot make full use of the
ground truth, hence their results are very poor. The results obtained using only
GPM-3 are also not good enough. Further increasing the assistance of GPMs for
negative sample filtering can significantly improve the performance of the model.
Mg-RMPN fully utilized three GPMs to achieve optimal results, confirming that
learning negative samples based on different granularities can effectively improve
the model’s learning ability for sparse relationship matrices.
Different input information for Mg-RMPN This paper bridges entity de-
tection and relation detection through a relationship matrix, making full use
of the semantic and positional information of entities and solving the problem
that end-to-end SGG relies solely on visual information to predict relations.
Table 5 presents ablation studies of Mg-RMPN based on different input infor-
mation. Compared to models that only utilize visual information, separately
incorporating the semantic and positional information of entities can enhance
the performance of the model. Furthermore, the improvement in introducing se-
mantic and positional information simultaneously is significantly greater than in
introducing a single modality of information, indicating that semantic and posi-
tional information are two complementary information. Hence, the semantic and
positional information incorporated in our approach plays a crucial role in pre-
dicting relations. More hyperparameter analysis can be found in Supplementary
Material.

5 Conclusion

In this paper, our proposed end-to-end method bridges entity detection and re-
lation detection through a sparse relationship matrix, which not only eliminates
the need for post-processing of relation matching but also leverages the semantics
and positional information of predicted entities to enhance relation prediction.
To predict the sparse relationship matrix, we propose a multi-granularity sparse
relationship matrix prediction network, which utilizes three gated pooling mod-
ules focusing on filtering negative samples at different granularities. Finally, a set
of sparse, most likely subject-object pairs can be constructed and used for rela-
tion decoding. The experimental results demonstrate that our method achieves
an optimal overall performance in both the end-to-end and two-stage methods.
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