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Abstract. The supplementary material provides implementations, ad-
ditional analysis and experiments, as well as discussion of limitations in
detail. In summary, we include
– Appendix A. More implementation details of each module in our

pipeline.
– Appendix B. More experiment details in the main paper.
– Appendix C. More experiments on key components in our frame-

work.
– Appendix D. Additional qualitative comparisons and controllable

generation results.
– Appendix E. Generation limitation analysis of our current approach.

A Implementation Details

A.1 Perception

Segmentation. We use GPT-4V to recognize all objects in the given image
and determine if they are movable. Movable objects are treated as foreground
objects, while non-movable objects are treated as background objects. The query
prompt is shown in Fig. 1. The outputs from GPT-4V are sent to Grounded-
SAM [6] for instance segmentation. We also enable non-maximum suppression
(NMS) to prevent overlapping segmentation. For foreground objects, we check if
the segmentation is fully connected within its mask. If not, we rerun Grounded-
SAM to further separate any poor segmentation from the first round.

Boundary extraction. To extract boundaries from non-movable background
objects, we utilize depth and normal information estimated from GeoWizard [2].
We first order the background objects according to relative depth estimation
and select only those whose depth range falls within that of the foreground
objects. For candidate objects, we extract their segmentation boundaries within
the foreground object’s depth range and use corresponding normal to determine
if they are planes. If so, we fit horizontal or vertical edges to the boundaries and
use it as the physical boundary of the scene.
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User: Describe all unique object categories in the given image, ensuring all
pixels are included and assigned to one of the categories, do not miss any
movable or static object appeared in the image, each category name is a single
word and in singular noun format, do not include ’-’ in the name. Different
categories should not be repeated or overlapped with each other in the image.
For each category, judge if the instances in the image is movable, the answer
is True or False. If there are multiple instances of the same category in the
image, the judgement is True only if the object category satisfies the following
requirements: 1. The object category is things (objects with a well-defined
shape, e.g. car, person) and not stuff (amorphous background regions, e.g.
grass, sky, largest segmentation component). 2. All instances in the image of
this category are movable with complete shape and fully-visible.
Format Requirement: You must provide your answer in the following JSON
format, as it will be parsed by a code script later. Your answer must look like:
"category-1": False, "category-2": True
Do not include any other text in your answer. Do not include unnecessary words
besides the category name and True/False values.

Fig. 1: Prompt used for GPT-4V image recognition and movability judgment.

Physical properties reasoning. The query prompt for reasoning the physical
properties of a foreground object is shown in Fig. 2.

Geometry primitives. Given a object segmentation mask, we automatically
choose the proper primitive that best fits the object. We first use a circle to fit
the corresponding segmentation mask and compute the Intersection over Union
(IoU) between the fitted mask and segmentation mask. If IoU is smaller than
0.85, we switch to the generic polygons by extracting the contour of the segmen-
tation.

Background Inpainting. Given the foreground masks of the input image, we
use off-the-shelf image inpainting model [8] to recover the background scene.
Considering foreground objects might have shadow beneath, we dilate the fore-
ground segmentation mask by a kernel size of 40 pixels. To this end, we aim
to get a clean background image without shadows. However, if the input image
is heavy-shadowed, the inpainting model could not remove it completely. We
discuss it use a detailed example in Appendix E.

A.2 Image Space Dynamics Simulation

In image space dynamics simulation, we set ∆t as 1 second, gravity as g =
980cm/s2. Considering most foreground objects are captured at a similar dis-
tance, we set 1pixel as 1cm to map from image space to world space without
reasoning metric scale. We visualize the physical simulation procedure of billiard
balls and blocks with two different primitives (circle and polygon) in Fig. 3.
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User: You will be given an image and a binary mask specifying an object on the
image, analyze and provide your final answer of the object physical property.
The query object will be enclosed in white mask. The physical property includes
the mass, the friction and elasticity. The mass is in grams. The friction uses
the Coulomb friction model, a value of 0.0 is frictionless. The elasticity value
of 0.0 gives no bounce, while a value of 1.0 will give a perfect bounce.
Format Requirement: You must provide your answer in the following JSON
format, as it will be parsed by a code script later. Your answer must look like:
"mass": number, "friction": number, "elasticity": number The answer should
be one exact number for each property, do not include any other text in your
answer, as it will be parsed by a code script later.

Fig. 2: Prompt used for GPT-4V image recognition and movability judgment.

Input Simulation (left→right: time steps)

Fig. 3: Image space dynamics simulation example. We show two simulation
examples with different primitives. The primitives are fitted from the segmentation
mask of the input image and we perform dynamic simulation on those primitives. The
edges show the physical boundary.

A.3 Generative Refinement Algorithm

We present the detailed algorithm of the proposed generative refinement with
latent diffusion models in Sec. 3.4. In video diffusion model, a input video V ∈
RT×H×W×3 is encoded to a latent vector via a encoder E by z0 = E(V) ∈
RT×h×w×3, where c is the dimension of the latent space. The forward diffusion
process [4] is to iteratively add Gaussian noise to the signal, given by Eq. (1).

q (zt | zt−1) = N
(
zt;

√
1− βt−1zt−1, βtI

)
, t = 1, . . . , T

q (zt | z0) = N
(
zt;

√
ᾱtz0, (1− ᾱt)I

)
, t = 1, . . . , T

(1)

where αt = 1 − βt, ᾱt =
∏t

i=1 αi, q (zt | zt−1) is the one-step forward diffusion
process, and q (zt | z0) is t-step forward diffusion process. T is a large integer to
make the forward process completely destroys the initial signal z0 resulting in
zT ∼ N (0, I). The diffusion model learns to recover z0 from standard Gaussian
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Input Composited Relight Render

Fig. 4: Rendered Video comparison. The left shows the input frame, and the rest
3 are future frame generations. The composited frame hasn’t been aware of the light
change. The relighted output synthesized no shadows beneath. The rendered output
from diffusion model is most photorealistic.

Table 1: Runtime analysis. We summarize the runtime of each module for each run.

Perception Simulation Render Refinement
Segmentation GPT4-V Inpainting

50s 10s 20s 5s 60s 35s

noise zT by backward diffusion process in Eq. (2).

pθ (zt−1 | zt) = N (zt−1;µθ (zt, t) ,Σθ (zt, t)) , t = T, . . . , 1 (2)

where θ is the learned parameters of the model. The output is passed to a decoder
D to generate the output video V = D(z0). To this end, given the relit video Ṽ,
we encode to get z̃0, our goal is to obtain the denoised z0 from the pretrained
latent-diffusion-based video pθ. The algorithm is shown in Algorithm 1.

In Fig. 4, we compare the composed video V̂, the relit video Ṽ, and our final
output V by 2 additional examples.

A.4 Runtime Analysis

We summarize the runtime of each module in Tab. 1 for a single run. The
perception module takes 1 minute, the simulation (120 steps) takes 5 seconds,
the render module takes 1 minute, the generative refinement takes 35 seconds.
In total it takes around 3 minute for a single generation, which is much faster
than other controllable generation, e.g . Motion Guidance [3] takes 70 minutes
for a single run.
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Algorithm 1 Video Generative Refinement
Input: Init z̃0, foreground mask m, video diffusion model pθ, noise strength s, fusion
timestamp δ, total denoising timesteps T
Output: refined latent z0

1: T ← ⌊T ∗ s⌉ ▷ Denoised time steps
2: zT , z̃T ∼ q (zT | z̃0) ▷ Add noise to the guidance latent code
3: for t = T, T − 1, ..., 1 do
4: if t ≤ (T − δ) then
5: ˜zt−1 ∼ q (zt−1 | z̃0) ▷ Add noise to guidance code at t− 1
6: zt−1 ∼ pθ (zt−1 | zt) ▷ Denoised output from network at t− 1
7: w = (T − t)/T ▷ fusion weight
8: zt−1 ← (1−m)zt−1 +m [wzt−1 + (1− w) ˜zt−1] ▷ update latent code
9: else

10: zt−1 ∼ pθ (zt−1 | zt) ▷ Denoised output from network
11: end if
12: end for
13: return z0
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Fig. 5: Human evaluation score distribution. The distribution of scores shows
our method largely outperforms other I2V generative models in both physical-realism
and photo-realism. Our average rate is close to agree for both two claims.

B Experiment details

B.1 Human evaluation

Fig. 5 shows the score distribution of the conducted human evaluation. Our
method has much higher percentage in agree and strongly-agree to both claims,
outperform compared I2V methods by a large margin in physical-realism and
photo-realism. Our average rate falls within Agree level.

B.2 Quantitative evaluation

To quantitative evaluate the generation performance and compare with other
approaches, we record 50 videos for a given scene as GT by varying initial forces
applied on the object. The random selected sequences are shown in Fig. 6.
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Fig. 7: Precision-recall curve of open-world movable objects segmentation.
Our proposed pipeline achieves 0.93 precision, 0.82 recall at 0.5 IoU.

C More experiments

C.1 Open-world movable object segmentation

To measure the performance of the open-world movable object segmentation, we
collect 10 images of very complicated open-world scenes where 118 movable in-
stances are annotated following COCO [5] format. The perception system works
well, achieves 0.93 precision 0.82 recall under 0.5 IoU. The precision-recall curve
is shown in Fig. 7. Qualitative results are shown in Fig. 9.

C.2 GPT-4V physical property estimation evaluation

We evaluate the physical property estimator GPT-4V used in the paper. For
1) mass: follow [9], we select 20 different portable objects from ABO dataset
and find that GPT4-V has an average absolute error of 0.39 kg and achieves
75% accuracy within 30% of the GT. 2) friction and elasticity : Since GT is
unavailable, we use reference videos of toy cars sliding on various surfaces and
balls of different materials bouncing to rank materials by friction and elasticity.
Comparing the models’ rankings to the ones in the videos, GPT-4V gives reason-
able estimations, getting 12 out of 13 for friction and 6 out of 7 for elasticity
across different comparisons. Two testing scenarios of friction and elasticity are
shown in Fig. 8.

D More qualitative results

D.1 Qualitative comparison

We visualize more qualitative comparisons in Fig. 10 and Fig. 11. As can be seen,
image-video generation methods could not generate physically plausible outputs.
We notice DynamiCrafter [7] model tends to generate static scene with lighting
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or viewpoint changes, without output reasonable physical motion. SEINE [1] and
I2VGen-XL [10] outputs reasonably apparent motions, but the motions are not
physical realistic, and the foreground objects could not guarantee consistency
across different time steps. Please check the supplementary video for details.

D.2 More controllable generation

We show more controllable generation results in Fig. 12.

E Limitation Analysis

We summarize 4 different generation artifacts in Fig. 13.

Incorrect Inpainting. The first row shows the domino example. The genera-
tion results contains incorrect shadow in the middle of the frame. The reason is
that the shadow of the boxes could not be fully removed in the inpainted image
as shown on the right.

Gap between segmentations and primitives. The second row shows the
blocks example where there is a gap between different blocks in the generated
videos, whereas no such phenomenon appeared in simulation. The reason is the
primitives used in the simulation is slight different from the real segments, thus
could cause some gap in the simulated results and rendered outputs.

Inaccurate Segmentation. The third row shows the billiard example where
the balls’ shape is not perfect circle in the generated frames given the input
segmentation mask is not accurate on the boundaries. Thus the synthesized ball
has artifacts near its boundary. The generated video quality is affected by the
segmentation mask of the input image.

Hallucinations introduced by diffusion refinement. The fourth rows shows
the blocks example where the diffusion refinement brings hallucination of the
input object. In our proposed generative refinement algorithm, the generated
latent injects into both the foreground and background. Thus in some scenarios
there could be hallucinations of the foreground object and slightly modify its
appearance, e.g . the block on the top.
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(left→right: time steps)

Fig. 6: Random sampled real-captured videos. We captured real-world videos for
the same given scene 50 times to evaluate the generation fidelity. We vary initial force
on the hand that applied to the blue piggy bank in each run, and record the videos.
We random select 5 recored videos for visualization.

Fig. 8: GPT-4V physical property estimation evaluation testing scenes.
Given directly measure friction and elasticity is hard, we use reference videos of toy
cars sliding on various surfaces (left) and balls of different materials bouncing (right)
to rank materials by friction and elasticity.
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Fig. 9: Qualitative visualization of open-world movable objects segmentation
results. From left to right, we show the selected input image, inferred segmentation
from our perception module and GT movable object segmentations.
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Input Generation (left→right: time steps)
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Fig. 10: Additional qualitative comparison against I2V generative models: Dy-
namiCrafter(DC) [7], I2VGen-XL(VGen) [10], SEINE [1].
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Input Generation (left→right: time steps)
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Fig. 11: Additional qualitative comparison against I2V generative models: Dy-
namiCrafter(DC) [7], I2VGen-XL(VGen) [10], SEINE [1].
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Input Generation (left→right: time steps)

Fig. 12: More controllable video generation.
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Input Artifact in generation Bg Inpainting

Input Artifact in generation Simulation

Input Artifact in generation Segmentation

Input Artifact in generation Rendered image before refinement

Fig. 13: Limitation analysis. We showcase 3 different examples of our current
method’s limitation. The left column shows the input image, the middle column shows
the sampled frame from the generation video with artifacts, the right column shows
the underlying reason for the artifact.
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